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Abstract  

Even though process-based crop models are widely used to 
simulate crop growth, the challenge of parameter calibration 
makes it difficult to use them in practice. Also, it is labor-
consuming to improve the model by adjusting the model de-
scription. To address these issues, we propose a knowledge-
guided machine learning model (DeepOryza) to directly learn 
the crop growth pattern from data. A synthetic dataset gener-
ated by a process-based model (ORYZA2000) was used to 
pre-train the DeepOryza. An observation dataset was used to 
finetune and evaluate the DeepOryza. The preliminary results 
showed that DeepOryza can perform equally or better than 
the well-calibrated ORYZA2000. To investigate the effect of 
the proposed knowledge-guided structure, we designed two 
DeepOryza models with different structures. Results showed 
that the knowledge-guided structure can improve the perfor-
mance of DeepOryza when the synthetic dataset was gener-
ated by the uncalibrated ORYZA2000. This finding indicates 
that the knowledge-guided structure could potentially reduce 
the calibration requirement of the process-based model. 

 Introduction    

In agriculture, crop models with the ability to describe in-

teractions between crops and the environment, are widely 

used as physics-based methods to simulate crop growth and 

optimize crop production (Ewert et al., 2015; Keating et al., 

2003). Studies over the past decades have developed crop 

models such as WOFOST (van Diepen et al., 1989), SWAP 

(van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., 

Kabat, P., van Walsum and P. E. V., Groenendijk, P., & van 

Diepen, 1997), and ORYZA (Bouman et al., 2001) based on 

different physical mechanisms. Despite their extensive use, 

these crop models have several limitations due to simplified 

representations of the physical processes (Feng et al., 2019; 

Karpatne et al., 2017) or challenges in parameter calibration 

(Seidel et al., 2018; Wallach et al., 2021). The limitations of 

physics-based models cut across discipline boundaries and 

are well-known in the scientific community (Lall, 2014). 
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To address these issues, various methods have focused on 

improving the accuracy of parameter estimation as well as 

reducing the model structure error. For parameter estimation, 

a model-independent software (e.g., PEST) (Doherty, 1994) 

or package (e.g., SOPTPY) (Houska et al., 2015) could be 

employed to calibrate models, but applications are limited 

by the difficulty of coupling the model and the soft-

ware/package (Christian et al., 2020). As a result, most re-

searchers used trial-and-error procedures to search for the 

best-fit parameters (Seidel et al., 2018) even though many 

other algorithms (least squares, generalized likelihood un-

certainty estimation, Bayesian parameter estimation) could 

be used. However, the optimal parameters could change as 

the evaluation criteria change, which means that there will 

never be an optimal set of parameters that allow all simu-

lated variables to be optimal at the same time. Regarding 

model structure error, it always arises from the imperfect de-

scription of crop growth mechanism. Thus, the only way to 

decrease the structure error of a process-based model is to 

adjust the model description, such as the model function, the 

model structure or involve additional inputs into the model. 

However, this procedure is labor-consuming and may in-

crease the model complexity, making it more difficult to cal-

ibrate (Yin et al., 2021). 

Data-driven methods, especially machine learning (ML) 

methods, have shown superior performance in various dis-

ciplines for their feature extraction capabilities and captur-

ing nonlinear dynamics (Kashinath et al., 2021). For agri-

cultural models, the application of purely data-driven meth-

ods is restricted by the lack of data, and also from the learned 

dynamics which may violate the laws of crop growth and 

physics. In recent years, research is being directed towards 

combining process-based crop models and data-driven 

methods (Everingham et al., 2016; Feng et al., 2020; 

Guzmán et al., 2018; Pagani et al., 2017; Shahhosseini et al., 

2021). Prior studies consider crop models as tools for feature 

 



engineering to discover valuable information from raw data, 

but they do not truly integrate the two modeling approaches. 

To fundamentally integrate scientific knowledge from 

process-based models and ML models, a new paradigm 

termed knowledge-guided machine learning (KGML) was 

proposed. There have been attempts to apply this new para-

digm to several disciplines by transforming physical 

knowledge into different forms for integration into machine 

learning models, such as logic rules, constraints, simulated 

datasets, etc. A detailed review of these forms can be found 

in (Karpatne et al., 2017; Von Rueden et al., 2019; Willard 

et al., 2020). A study conducted by Read et al. (2019) used 

a neural network pre-trained on a synthetic dataset generated 

by a physical model to accurately predict lake water temper-

ature for various conditions. Another research developed a 

model to estimate N2O emissions using a knowledge-guided 

model structure that was designed according to the relation-

ship of variables defined in equations of process-based mod-

els (Liu et al., 2021). However, to the best of our knowledge, 

there is no research exploring the potential of the KGML for 

crop growth simulation, which involves the interactions be-

tween crops and environment. As agricultural data acquisi-

tion becomes easier, it is necessary to build a crop growth 

model that can learn from both real observed data and 

knowledge embedded in crop model. 

In this paper, we present a knowledge-guided machine 

learning model for crop growth. A baseline model (DeepO-

ryza_baseline) and a knowledge-guided machine learning 

model (DeepOryza_kgml) are proposed and compared with 

a process-based crop growth model (ORYZA2000). DeepO-

ryza was developed as an LSTM for multivariate time series 

forecasting of seven crop states. The baseline model does 

not consider any physical relationship between the outputs. 

In contrast, the knowledge-guided machine learning 

DeepOryza enforces known relationships between them. 

DeepOryza is demonstrated for a case study in China with 

field observations from two years. The DeepOryza model 

was trained with synthetic data generated using 

ORYZA2000. 

The aim of this study is to investigate: 1) how a ML model 

performs against a well-calibrated process-based crop 

growth model; 2) the effect of knowledge-guided structures 

in ML models; 3) the necessity of calibration for the pro-

cess-based model before generating a synthetic dataset.  

Methodology and data 

To develop DeepOryza and evaluate its performance, we 

design the following framework (Fig.1): 

1 Synthetic dataset generation: The ORYZA2000 model 

was calibrated on observed data from YEAR-A. The cali-

brated and uncalibrated ORYZA2000 models were then 

used to generate synthetic datasets, respectively. 

2 Model pretraining: The DeepOryza model was trained 

on the synthetic dataset to learn basic patterns of rice growth. 

3 Model finetuning: The pre-trained DeepOryza model 

was finetuned on the observation dataset from Year-A and 

the Finetuned DeepOryza model was tested on the observa-

tion dataset from both Year-A and Year-B. 

4 Model evaluation: The results of the uncalibrated 

ORYZA2000 (with default parameters), the calibrated 

ORYZA2000, and the finetuned DeepOryza were compared 

to evaluate model performance, the necessity for calibration, 

and the effect of knowledge-guided structures. 

 

Fig. 1 The framework for building and evaluating the 

DeepOryza model. 

The synthetic dataset 

The ORYZA2000 model was selected for generating syn-

thetic datasets due to its verification through a broad range 

of studies (Cao et al., 2017; Han et al., 2022, 2020; Li et al., 

2013). After determining the model parameters, the date of 

seeding and transplanting, ORYZA2000 can simulate rice 

growth in daily steps for the rate of dry matter production 

and phenological development driven by the daily inputs 

(weather, irrigation, and fertilization) (Bouman et al., 2001). 

To reduce the complexity of the model, the irrigation and 

model parameters were not involved in the synthetic dataset. 

Also, only seven model outputs (development stage, plant 

area index, leaf/stem/grain biomass, above-ground biomass, 

final yield) which had the corresponding observations in the 

real datasets were selected for the synthetic dataset. Thus, 

the synthetic datasets consist of weather, management (fer-

tilization, dates of seeding and transplanting), and the seven 

corresponding outputs of the ORYZA2000. Cligen (Nicks 

et al. 1995), a software that can generate random synthetic 

time-series weather data that match the pattern of historical 

weather of a specific site, was used to generate weather data. 

The management was randomly generated according to the 

schedule of local farmers. To calibrate the ORYZA2000 

model, 14 parameters that are sensitive to the seven output 

variables were selected. The PEST (Doherty, 1994) soft-

ware was then used to calibrate these parameters with the 

real dataset.  

Finally, two synthetic datasets were created with the un-

calibrated ORYZA2000 with default parameters (only ad-

justing the DVS-related parameters to make the growth 

timetable roughly consistent with the real data) and cali-

brated ORYZA2000. Each synthetic dataset included 250k 



 

 

samples, and was further divided into five sub-datasets to 

pre-train five models in order to reduce the effect of random 

factors. The results of DeepOryza were derived by averag-

ing the results of the models in the five sub-datasets. 

The observation dataset 

The observation data were collected in a late-season rice 

experiment in a small region (23°5′52″˜23°7′23″ N, 

108°57′7″˜108°58′34″ E) located in Binyang County of 

Guangxi in China. The meteorological data, including solar 

radiation, air temperature, relative humidity, and precipita-

tion acquired from https://power.larc.nasa.gov/. There were 

65 plots in 2018 and 40 plots in 2019 were used in this study. 

The management recording was obtained by performing 

surveys during the growing season. The observation values 

of DVS (development stage), PAI (plant area index), WLV 

(leaf biomass), WST (stem biomass), WSO (storage organ 

biomass), and AGB (above-ground biomass) were obtained 

by destructive sampling. The final yield was obtained by 

combine-harvesters. The details of the dataset can be found 

in Han et al., (2022). 

 

 

Fig. 2 The structure of the two DeepOryza models 

The structure, training, and evaluation 

The LSTM model, proposed by Hochreiter and Schmid-
huber (1997), was employed to build the DeepOryza be-

cause it can learn longer dependencies between variables on 

long time series data. As shown in Fig.2, the hidden states 

of the LSTM cell were initialized from the values of the in-

itial crop state, which could reduce the effect of random in-

itialization. The time series of weather and management 

were used as input because they are known drivers of rice 

growth. The DeepOryza_baseline estimates seven crop 

states directly without considering their relationship. The 

structure of DeepOryza_kgml was designed by considering 

the relationship between the crop states: 1) AGB should be 

the sum of WLV, WST, and WSO; 2) the yield comes from 

the partition biomass of the storage organ and the transloca-

tion biomass of the stem over the stage after the flowering 

stage (Laza et al., 2003). These two relationships were also 

described by functions in ORYZA2000. Thus, the AGB was 

derived from WLV, WST, and WSO; the YIELD was de-

rived from DVS, WST, and WSO in DeepOryza_kgml. 

The input size was 8 (temperature_min, temperature 

_max, irradiance, vapor pressure, wind speed, precipitation, 

fertilization amount, if transplanting). The hidden state size 

of the LSTM cell was 64, and the other layer setting was 

shown in Fig.2. ADAM was used to optimize the model pa-

rameters. The loss function was defined as: 

Loss = ∑ 𝐿𝑜𝑠𝑠𝑠𝑡𝑎𝑡𝑒

𝑠𝑡𝑎𝑡𝑒

(1) 

Loss𝑠𝑡𝑎𝑡𝑒 = 
∑(prediction𝑠𝑡𝑎𝑡𝑒 − observation𝑠𝑡𝑎𝑡𝑒)2

𝑁
(2) 

where state includes DVS, PAI, WLV, WST, WSO, AGB 

and YIELD; N is the number of observations for the corre-

sponding state. 

The model performance was evaluated by RMSE. The 

pretraining process was repeated 25 times (5 synthetic da-

tasets × 5 random seeds) to make the results more robust. 

The RMSE was the average value of the 25 repeats. 

Results 

The results of Calibrated-Oryza2000, DeepO-

ryza_baseline and DeepOryza_kgml 

Since the ORYZA2000 was calibrated with the PEST 

software, its performance improved significantly (Case 5 

and Case 6 in Table 1). As shown in Table 1, the DeepOryza 

models had better performance than calibrated-

ORYZA2000 in Case 1 and Case 3. But the performances 

of the three models were similar in Case 2 and Case 4. A 

reason for that may be that ORYZA2000 model was well  

 



Table 1 

Performance of the models on the training and testing dataset 

Case 
Training 

set 

Testing 

set 

Synthetic dataset 

was generated by 
Model 

DVS PAI WLV WST WSO AGB YIELD 

- m2/m2 kg/ha kg/ha kg/ha kg/ha kg/ha 

Mean of RMSE / Std of RMSE 

1 2018 2018 

Calibrated 

ORYZA2000 

Calibrated_ORYZA2000 0.099 1.05 464 962 926 1523 944 

DeepOryza_baseline 0.099/0.001 0.96/0.006 500/8 950/7 890/13 1515/7 922/26 

DeepOryza_kgml 0.097/0.002 0.94/0.006 488/8 952/11 886/12 1495/6 888/38 

2 2019 2019 

Calibrated_ORYZA2000 0.073 0.9 382 743 605 1186 660 

DeepOryza_baseline 0.077/0.001 0.87/0.007 407/4 682/9 594/9 1187/9 637/14 

DeepOryza_kgml 0.075/0.001 0.87/0.005 393/3 673/10 587/8 1176/8 639/14 

3 2018 2019 

Calibrated 

ORYZA2000 

Calibrated_ORYZA2000 0.117 1.36 399 768 832 1173 894 

DeepOryza_baseline 0.110/0.006 1.00/0.022 387/4.4 665/8.3 765/24.4 1250/19.2 784/46 

DeepOryza_kgml 0.111/0.005 1.00/0.011 387/3.6 666/13.6 794/26.9 1220/12.3 804/57 

4 2019 2018 

Calibrated_ORYZA2000 0.115 1.01 521 1002 963 1569 1002 

DeepOryza_baseline 0.112/0.003 1.09/0.013 576/13 986/17 1058/32 1560/9 1056/22 

DeepOryza_kgml 0.111/0.003 1.11/0.011 549/8 973/13 994/25 1550/6 1036/30 

5 2018 2019 

Uncalibrated 

ORYZA2000 

Uncalibrated_ORYZA2000 0.142 1.94 460 719 962 1395 749 

Calibrated_ORYZA2000 0.117 1.36 399 768 832 1173 894 

DeepOryza_baseline 0.101/0.005 0.97/0.019 433/12 726/21 867/40 1275/38 862/50 

DeepOryza_kgml 0.104/0.004 0.97/0.024 383/7 667/9 796/44 1245/28 836/74 

6 2019 2018 

Uncalibrated_ORYZA2000 0.108 1.46 470 1026 1674 1835 1267 

Calibrated_ORYZA2000 0.115 1.01 521 1002 963 1569 1002 

DeepOryza_baseline 0.119/0.005 1.01/0.023 533/20 977/26 1030/49 1587/23 1051/47 

DeepOryza_kgml 0.126/0.007 1.03/0.018 510/20 936/19 979/52 1559/26 1054/49 

 

calibrated in the dataset of 2019, making it difficult to fur-

ther improve the model performance with DeepOryza. Com-

paring the accuracy of WLV, WST, WSO and YIELD (Case 

1-4 in Table 1), there was no obvious winner between the 

two DeepOryza models because the synthetic dataset was 

generated by the calibrated ORYZA2000 model, which had 

embedded the prior knowledge between the variables of the 

real dataset. Thus, the knowledge-guided structure did not 

improve the model performance. 

The effect of knowledge-guided structure and the 

necessity of calibration for the process-based 

model 

In Table 1, the DeepOryza models in Case 5 and Case 6 

were pre-trained on the synthetic dataset generated by the 

uncalibrated ORYZA2000. The performance of DeepO-

ryza_baseline of Case 5 was worse than that of Case 3. This 

is due to the lack of restriction of the knowledge-guided 

structure, which made the DeepOryza_baseline easier to 

overfit and violate crop growth pattern when fine-tuning. 

The DeepOryza_kgml of Case 3 had similar accuracy to that 

of Case 5, which meant that a reasonable structure, although 

not as detailed as the process model, could also have a pos-

itive effect on model training. Furthermore, the accuracy of 

biomass-related variables (except the YIELD in Case 6) of 

DeepOryza_kgml was better than that of DeepOryza_base-

line, which indicated that the knowledge-guided structure 

could potentially reduce the requirement of calibration. 

Conclusions and Limitations 

In this study, we proposed a knowledge-guided machine 

model named DeepOryza for rice growth simulation. The 

LSTM model was used as the basic model. Its initialization 

and structure design were guided by the knowledge of the 

ORYZA2000 crop growth model. This is the first attempt of 

simulating multivariate time-series for crop growth. The 

preliminary results showed that the DeepOryza could per-

form equally or better than a well-calibrated process-based 

model. The knowledge-guided structure could improve the 

model performance and potentially reduce the calibration 

requirement of the process-based model.  

However, the dataset is relatively small and requires more 

case studies and a variety of datasets to verify the described 

methods. Also, fundamental principles (e.g., mass conserva-

tion) are not embedded in the structure or loss function. The 

naïve LSTM cell makes the iterative process of crop growth 

a black box and weakens the interpretability. Therefore, a 

better structure and interpretation should also be further in-

vestigated in the future. 
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