
Genetics and population analysis

ChromaX: a fast and scalable breeding program simulator

Omar G. Younis 1,*, Matteo Turchetta1,*, Daniel Ariza Suarez2, Steven Yates2, Bruno Studer2,

Ioannis N. Athanasiadis3, Andreas Krause1, Joachim M. Buhmann1, Luca Corinzia 1,*
1Department of Computer Science, ETH Zurich, Zürich, 8092, Switzerland
2Department of Environmental Systems Science, Molecular Plant Breeding, ETH Zurich, Switzerland
3Department of Social Sciences, Wageningen University & Research, Wageningen, 6708, The Netherlands

*Corresponding authors. Department of Computer Science, ETH Zurich, OAT Y, Andreasstrasse 5, Zürich, 8092, Switzerland. E-mails:
omargallalaly.younis@inf.ethz.ch (O.G.Y.), luca.corinzia@inf.ethz.ch (L.C.), and matteo.turchetta@inf.ethz.ch (M.T.)

Associate Editor: Russell Schwartz

Abstract
Summary: ChromaX is a Python library that enables the simulation of genetic recombination, genomic estimated breeding value calculations,
and selection processes. By utilizing GPU processing, it can perform these simulations up to two orders of magnitude faster than existing tools
with standard hardware. This offers breeders and scientists new opportunities to simulate genetic gain and optimize breeding schemes.

Availability and implementation: The documentation is available at https://chromax.readthedocs.io. The code is available at https://github.com/
kora-labs/chromax.

1 Introduction

Livestock and plant breeding is crucial to sustainable agricul-
ture (Schön and Simianer 2015) and to develop new breeds
more suited for specific environments or market demands
(Qaim 2020). Recently, the availability of genomic data and
advanced statistical methods have revolutionized breeding
programs (Kim et al. 2020). Notably, genomic selection
allows a breeder to predict the performance of an individual
based on genetic makeup, avoiding expensive phenotyping
(Meuwissen et al. 2001, Crossa et al. 2017). These new meth-
ods unlock various design possibilities for breeding schemes,
making it harder to optimize them. Moreover, a single breed-
ing cycle can take many years, involving many design choices
during the process. Thus, there is a growing interest in using
simulations to optimize breeding programs. The existing tools
for simulating crosses are implemented in R (Broman et al.
2003, Mohammadi et al. 2015, Gaynor et al. 2020, Pook
et al. 2020) or Julia (Chen et al. 2022). While they provide an
extensive set of features, they are not capable of exploiting
parallelism in high-performance computers that may be neces-
sary for large and complex breeding schemes. For example,
simulating a full-diallel cross of ten individuals with ten off-
spring results in 450 offspring, while a similar diallel of 20
individuals generates 1900 offspring. With this rapid scaling,
simulating a full diallel in a breeding program with thousands
of individuals may be unfeasible; hence developing tools that
can speed up simulations is desirable. The most attractive lan-
guage for this purpose is Python. Python is one of the most
used programming languages for numerical computing and
data science, with many libraries available for optimization
and machine learning (Pedregosa et al. 2011, Bradbury et al.

2018, Paszke et al. 2019, Harris et al. 2020, Virtanen et al.
2020). Some of them allow exploiting parallelization capabili-
ties of specialized hardware devices, such as Graphics
Processing units (GPUs) and Tensor Processing Units (TPUs).
Thus, developing a parallelizable Python tool for simulating
crosses can increase the throughput of simulations and opens
new opportunities to improve breeding efficiency. In this pa-
per, we introduce ChromaX, a fast and scalable Python li-
brary that enables the stochastic simulation of the most
common features in a breeding program like genetic recombi-
nation, fixation of genomes by doubled haploid induction,
and selection. It can further calculate the Genomic Estimated
Breeding Value (GEBV), and simulate genotype-by-
environment interactions. ChromaX has been designed and
implemented with scalability in mind and exploits recent
advances in that direction from the Python language.

2 Software description

ChromaX is based on the high-performance numerical com-
puting library JAX (Bradbury et al. 2018). Using JAX,
ChromaX functions are compiled in XLA (Accelerated Linear
Algebra) (Sabne 2020), a compiler for linear algebra that
accelerates function execution according to the domain and
hardware available. This allows ChromaX to run seamlessly
on various devices, such as CPUs, GPUs, and TPUs exploiting
the parallelization offered by a variety of high-performance
computing devices. ChromaX is available with the open-
source license 3-Clause BSD. Source code is available on
GitHub and is also distributed via the Python package in-
staller “pip” as chromax. In the following sections, we

Received: 16 June 2023; Revised: 8 October 2023; Editorial Decision: 7 November 2023
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(12), btad691
https://doi.org/10.1093/bioinformatics/btad691

Advance Access Publication Date: 22 November 2023

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/12/btad691/7441500 by W
ageningen U

niversity and R
esearch – Library user on 15 January 2024

https://orcid.org/0009-0004-2783-7932
https://orcid.org/0000-0001-8549-8351
https://chromax.readthedocs.io
https://github.com/kora-labs/chromax
https://github.com/kora-labs/chromax


describe the core functions available with ChromaX; for a
complete list see the documentation.

2.1 Simulator initialization

The simulator is initialized by providing a genetic linkage
map supplied as a Pandas DataFrame (McKinney et al. 2010)
or a path to a spreadsheet. In the genetic linkage map, each
row represents a marker and columns contain the chromo-
some identifier, the position of the marker in centimorgans,
and a column for each trait containing linear marker effects.
Instead of marker positions, it can include a column indicat-
ing the probability of recombination occurring after the
marker and before the next. The argument trait_names can be
used to specify a list of trait names; every element must match
a column name in the genetic linkage map. A heritability
value for each trait can also be specified.

2.2 Population data

ChromaX represents the genome of an individual as a NumPy
array of shape ðm;dÞ, where m is the total number of markers
and d is the ploidy. Thus, a population of n individuals is rep-
resented as an array of shape ðn;m;dÞ. Please note that this
encoding requires that input genetic data is phased, which can
be achieved using a program such as Beagle (Browning et al.
2021). The simulator allows the user to load population data
from a file and save it at any point in the breeding program
simulation.

2.3 Genetic recombination

ChromaX simulates the genetic recombinations that take
place during meiosis to create new haplotypes. For simplicity,
we assume diploid species and the Poisson model for cross-
over interference (McPeek and Speed 1995). The genetic re-
combination function receives as input an array of genetic
markers of the k parent pairs. The function performs crosses
between pairs of parents and produces k offspring. The use of
a single genetic recombination function for all biparental
crosses allows the function to be parallelized across several
dimensions, namely the number of crosses k, the pair of
parents, and the ploidy number. Generalizations to autopoly-
ploid species and to other models for crossover interference
are left for future developments.

2.4 Differentiable genetic recombination

In ChromaX, we further develop a novel genetic recombina-
tion function that generalizes the one that takes place in bipa-
rental crosses. This function computes the parents of a cross
by taking the weighted average of a population. With a
weight vector of dimension ðk;n; 2Þ, it performs k crosses on
a population of size n. Using the JAX grad functionality, the
user can obtain the analytical gradient with respect to parents’
weights. This provides a continuous relaxation of the genetic
recombination that can be used to optimize the crossing by
gradient-based methods (Polak 2012).

2.5 Doubled haploid lines

ChromaX can simulate the fixation of genomes by doubled
haploid induction. The user can specify the number of off-
spring per individual dh; ChromaX generates a line from each
individual of the population. With an input population of
shape ðn;m; dÞ, the generated population will be of shape
ðn;dh;m;dÞ. Like the genetic recombination function, the

parallelization occurs over the number of lines n, ploidy d,
and the number of individuals per line dh.

2.6 Traits

ChromaX computes the GEBV for additive traits of a popula-
tion using the marker effects available in the genetic linkage
map or drawn from a standard probability distribution (e.g.
normal distribution). The marker effects are represented as an
array of shape ðt;mÞ, where t is the number of traits and m is
the number of markers. ChromaX computes the genomic
value by performing a tensor contraction of the marker effect
with the input population array of markers of shape ðn;m; dÞ.
The arrays are multiplied along the m-axis and then sum re-
duced along the m and d axes. The result is an array of shape
ðn; tÞ containing the GEBV of the population for each trait.
This operation is well-suited for GPUs due to their ability to
efficiently perform multi-dimensional multiplication and sum
reduction.

ChromaX can further model phenotypes that have a
genotype-by-environment interaction component, as de-
scribed in Faux et al. (2016). In genotype-by-environment in-
teraction, an environment is simulated as a random variable
drawn from a normal distribution; this value multiplies a ran-
dom additive trait that we fix at the beginning of the simula-
tion with the variance determined by the heritability.

2.7 Selection

ChromaX enables the user to select the best individuals from
a population based on a user-defined score. The score func-
tion accepts population data as input and returns an array of
n scores, where n is the number of individuals in the popula-
tion. Examples of scoring functions included in the software
are breeding values (Lande and Thompson 1990), optimal
haploid value (Daetwyler et al. 2015), and phenotype.

3 Performance

The performance of ChromaX is compared to AlphaSimR
(Gaynor et al. 2020), a popular breeding program simulator.
We perform this comparison on two hardware settings repre-
senting typical simulation conditions: a computing cluster
CPU (AMD EPYC 7742 64-Core), and a commonly available
GPU (Quadro RTX 6000). Table 1 shows the computation
times when simulating 1k, 10k, and 100k biparental crosses
from a population described by 1000 markers across ten
chromosomes. We do not benchmark AlphaSimR on GPU as
it cannot run on this hardware. On the CPU, the computation
time scales linearly with the number of crosses for both simu-
lators and ChromaX is around three times faster than
AlphaSimR for the tested sizes. In contrast, on GPU the

Table 1. User CPU time in milliseconds as a function of the numbers of

crosses for AlphaSimR and ChromaX on different hardware settings

(CPU, CPU computer cluster AMD EPYC 7742 64-Core; GPU, Quadro RTX

6000).a

Number of crosses

1k 10k 100k

AlphaSimR CPU 150 6 5 1352 6 9 14 821 6 149
ChromaX CPU 47 6 1 473 6 9 5149 6 94
ChromaX GPU 3 6 0 6 6 1 29 6 2

a Reported are the mean 6 standard deviation over 100 simulations.

2 Younis et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/12/btad691/7441500 by W
ageningen U

niversity and R
esearch – Library user on 15 January 2024



computation time scales sub-linearly (10� the computation
time for 100� more crosses), and ChromaX can be hundreds
of times faster than AlphaSimR.

As a further comparison, we implement the breeding pro-
gram described in Gaynor et al. (2020) with both simulators
and compare the results. This breeding program, typical for
an inbred species, assumes an initial diallel F0 characterized
by 100 QTL per chromosome and 21 chromosomes. F1 is
obtained by performing random biparental crosses from F0.
Then, we obtain homozygous lines using the doubled haploid
technique. To obtain the final cultivars, we simulate visual se-
lection on head rows and preliminary, advanced, and elite
yield trials, where individuals are evaluated with increasing
accuracy for smaller population sizes. Figure 1 shows the evo-
lution of the population breeding values during the program.
While some differences are expected due to the stochasticity
of the process, the values are similar for both simulators.
Table 2 reports the simulation times when the population
sizes at the different generations are multiplied by various
scaling factors. The results are similar to Table 1 with
ChromaX achieving around 500� speed up on GPU com-
pared to AlphaSimR. Finally, in Table 3, we present data re-
garding the peak memory usage on the device, measured in
megabytes. Notably, ChromaX exhibits higher memory con-
sumption, attributed to its functional design and the utiliza-
tion of vectorization techniques. We aim to tackle this issue in
forthcoming releases.

4 Discussion

Our benchmarking experiments show that ChromaX can uti-
lize modern hardware and parallelism to run simulations

many times faster than AlphaSimR, in some cases by orders
of magnitude. Crucially, this will pave the way for the system-
atic exploration and optimization of complex designs in mod-
ern breeding programs.

5 Limitations

ChromaX can simulate standard breeding programs but has
limitations. First, ChromaX requires a genetic linkage map
with marker effects and genetic data of the populations to
simulate breeding cycles. To circumvent these requirements,
other programs can simulate these data in silico by making
some assumptions about the genetic features of the species.
Second, ChromaX models additive traits and genotype-by-
environment effects to simulate population phenotypes.
ChromaX does not yet implement other biological effects,
such as dominance or epistasis. Finally, ChromaX is designed
for breeding programs of self- or open-pollinated species;
other systems, such as hybrid breeding from distant heterotic

Figure 1. Comparision between the genetic value simulated by ChromaX and AlphaSimR for the same breeding schema. The F0 population contains 50

lines and F1 is created by 200 random biparental crosses. From each line in F1, 100 doubled haploids are obtained and evaluated in head rows (HDRW)

using visual selection (low accuracy). Then plants are evaluated with increasing accuracy while reducing the population size. PYT, Preliminary Yield Trial;

AYT, Advanced Yield Trial; EYT, Elite Yield Trial

Table 2. User CPU time in seconds for simulating the inbred schema

from Gaynor et al. (2020) as a function of the population size on different

hardware.a

Scaling factor

1� 5� 20�

AlphaSimR CPU 3.37 6 0.18 26.59 6 0.34 95.71 6 0.44
ChromaX CPU 1.28 6 0.02 6.36 6 0.06 24.08 6 0.31
ChromaX GPU 0.02 6 0.00 0.05 6 0.00 0.15 6 0.00

a Mean values 6 standard deviation over 100 simulations are reported.

ChromaX: a fast and scalable breeding program simulator 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/12/btad691/7441500 by W
ageningen U

niversity and R
esearch – Library user on 15 January 2024



groups, or monoecious/dioecious reproductive systems are
not supported. Addressing these limitations will enable wide-
spread use in a wider community.

Acknowledgements

The authors thank the anonymous reviewers for their valu-
able suggestions.

Conflict of interest

None declared.

Funding

This work was supported by the Wageningen University and
Research research theme “Data Driven Discoveries in a
Changing Climate”, reference 531/AQ5541.

Data availability

No new data were generated or analysed in support of this
research.

References

Bradbury J, Frostig R, Hawkins P et al. JAX: Composable
Transformations of PythonþNumPy Programs. 2018.

Broman KW, Wu H, Sen �S et al. R/qtl: QTL mapping in experimental
crosses. Bioinformatics 2003;19:889–90.

Browning BL, Tian X, Zhou Y et al. Fast two-stage phasing of large-
scale sequence data. Am J Hum Genet 2021;108:1880–90.

Chen CJ, Garrick D, Fernando R et al. XSim version 2: simulation of
modern breeding programs. G3 Genes Genomes Genet 2022;12:
jkac032.

Crossa J, Pérez-Rodr�ıguez P, Cuevas J et al. Genomic selection in plant
breeding: methods, models, and perspectives. Trends Plant Sci 2017;
22:961–75.

Daetwyler HD, Hayden MJ, Spangenberg GC et al. Selection on optimal
haploid value increases genetic gain and preserves more genetic di-
versity relative to genomic selection. Genetics 2015;200:1341–8.

Faux A-M, Gorjanc G, Gaynor RC et al. Alphasim: software for breed-
ing program simulation. Plant Genome 2016;9:0013.

Gaynor RC, Gorjanc G, Hickey JM. AlphaSimR: an R package for
breeding program simulations. G3 Genes Genomes Genet 2020;11:
jkaa017.

Harris CR, Millman KJ, van der Walt SJ et al. Array programming with
NumPy. Nature 2020;585:357–62.

Kim KD, Kang Y, Kim C. Application of genomic big data in plant
breeding: past, present, and future. Plants 2020;9:1454.

Lande R, Thompson R. Efficiency of marker-assisted selection in the im-
provement of quantitative traits. Genetics 1990;124:743–56.

McKinney W et al. 2010. Data structures for statistical computing in py-
thon. In: Proceedings of the 9th Python in Science Conference, Vol.
445. Austin, TX, 51–6.

McPeek MS, Speed TP. Modeling interference in genetic recombination.
Genetics 1995;139:1031–44.

Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic
value using genome-wide dense marker maps. Genetics 2001;157:
1819–29.

Mohammadi M, Tiede T, Smith KP. Popvar: a genome-wide procedure
for predicting genetic variance and correlated response in biparental
breeding populations. Crop Sci 2015;55:2068–77.

Paszke A, Gross S, Massa F et al. Pytorch: an imperative style, high-
performance deep learning library. Adv Neural Inf Process Syst
2019;32:8024–35.

Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: machine
learning in python. J Mach Learn Res 2011;12:2825–30.

Polak E. Optimization: Algorithms and Consistent Approximations,
Vol. 124. New York: Springer Science & Business Media, 2012.

Pook T, Schlather M, Simianer H. MoBPS – modular breeding program
simulator. G3 (Bethesda) 2020;10:1915–8.

Qaim M. Role of new plant breeding technologies for food security and
sustainable agricultural development. Applied Eco Perspectives Pol
2020;42:129–50.

Sabne A. XLA: Compiling Machine Learning for Peak Performance.
2020.

Schön CC, Simianer H. Resemblance between two relatives – animal
and plant breeding. J Anim Breed Genet 2015;132:1–2.

Virtanen P, Gommers R, Oliphant TE et al.; SciPy 1.0 Contributors.
SciPy 1.0: fundamental algorithms for scientific computing in py-
thon. Nat Methods 2020;17:352.

Table 3. Device peak memory usage in gigabytes for simulating the

inbred schema from Gaynor et al. (2020) as a function of the population

size on different hardware.a

Scaling factor

1� 5� 20�

AlphaSimR CPU 0.14 0.40 2.14
ChromaX CPU 0.21 0.64 14.97
ChromaX GPU 1.38 8.79 24.71

a We report the mean across 10 runs. We do not report the standard
deviation as it is below the reported resolution for every entry of the table.

4 Younis et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/12/btad691/7441500 by W
ageningen U

niversity and R
esearch – Library user on 15 January 2024


	Active Content List
	2 Software description
	3 Performance
	5 Limitations
	Acknowledgements
	Data availability
	References


