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Summary. This chapter introduces a rule-based perspective on the framework of
fuzzy lattices, and the Fuzzy Lattice Reasoning (FLR) classifier. The notion of fuzzy
lattice rules is introduced, and a training algorithm for inducing a fuzzy lattice rule
engine from data is specified. The role of positive valuation functions for specifying
fuzzy lattices is underlined and non-linear (sigmoid) positive valuation functions are
proposed, that is an additional novelty of the chapter. The capacities for learning
of the FLR classifier using both linear and sigmoid functions are demonstrated in
a real-world application domain, that of air quality assessment. To tackle common
problems related to ambient air quality, a machine learning approach is demon-
strated in two applications. The first one is for the prediction of the daily vegetation
index, using a dataset from Athens, Greece. The second concerns with the estimation
of quartely ozone concentration levels, using a dataset from Valencia, Spain.

9.1 Introduction

The framework of fuzzy lattices has been utilized lately in machine learning
applications, mainly by utilizing artificial neural network architectures, i.e.
as in [9, 10, 11, 12, 14, 15]. In this chapter, the fuzzy lattice framework is
approached from a rule-based, reasoning perspective. Two issues related to
fuzzy lattice reasoning are discussed here. The first one is the foundation of
the fuzzy lattice rule engines, as a remedy for classification problems. The
notion of fuzzy lattice rule is introduced, which employes fuzzy lattice ele-
ments as the rule antecedents, while the fuzzy inclusion measure serves as a
truth function for deriving to rule consequences (conclusions). On top of the
fuzzy lattice rule, a fuzzy lattice rule engine is specified, with which classifica-
tion tasks can be performed. A fuzzy lattice rule engine induction algorithm
is presented in this chapter as well. The second issue deals with the posi-
tive valuation functions for defining fuzzy lattices from partially ordered sets.
Previous works have employed only linear positive valuation functions for
defining fuzzy lattices. In this work, non-linear positive valuation functions
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are investigated and a sigmoid one is introduced. The sigmoid positive valu-
ation functions are immidiately applicable to the framework of fuzzy lattices,
and its variety of applications. Non-linear positive valuation functions can be
considered as an extention to existing artificial neural network architectures
based on fuzzy lattices, as the Fuzzy Lattice Neural Networks (FLNN) [14],
and the Fuzzy Lattice Neurocomputing models (FLN) [11]. In this chapter,
the employment of non-linear positive valuation functions is demonstrated in
the context of the Fuzzy Lattice Reasoning classifier presented. Specifically,
the Fuzzy Lattice Reasoning classifier is used for addressing classification tasks
related to ambient air quality, is comparison with other rule-based classifiers.
In conclusion, the FLR classifier turned out with credible models both for the
prediction of the daily vegetation index in the metropolitan area of Athens,
Greece, and the estimation of quartely ozone concentration levels in the region
of Valencia, Spain. In both cases the use of sigmoid positive valuation func-
tions improved the performance of the classifier, while it didn’t increase the
complexity of model. Actually, in one of the cases it was reduced significantly.

The rest of the chapter is organized as follows. Section 9.2 summarizes
briefly the required mathematics, and is provided for the reader of the stand
alone chapter. Readers who are are comfortable with the terms and notations
of the book and can proceed to section 9.3, where the Fuzzy Lattice Reason-
ing classifier is presented. The introduction of a sigmoid positive valuation
function is detailed in section 9.4. Section 9.5 demonstrates the two test-cases
and presents comparative results with other classification methods. The main
findings of this chapter are discussed in the last section 9.6.

9.2 Mathematical Background

A lattice L is a partially ordered set (poset), so that any two of its elements
a,b € L have a greatest lower bound (or meet) denoted by a A b := inf{a,b}
and a least upper bound (or join) denoted by a V b := sup{a,b}. A lattice
L is called complete when each of its subsets has a least upper bound and a
greatest lower bound in L. A non-void complete lattice has a least element
and a greatest element denoted by O and I, respectively.

The Cartesian product L = Ly X...x Ly of N constituent lattices Ly ...Ly
(product lattice) is a lattice [7]. In a product lattice L = L; x ... X Ly
inclusion can be defined as:

(1, ,2n) < (y1,...,yn) <= (21 <y1)&... &(zn <yn) (9.1)

The meet in a product lattice L = L; x Ly is given by (x1,...,zx) A
(y1,-.-,yn) = (£1AY1, ..., xNAYN), whereas the join is given by (z1,...,25)V
(Y1, yn) = (@1 Vyr,...,on Vyn) [7, 8].

A product lattice could combine diverse constituent lattices thus implying
the potential to deal either separately and/or jointly, in any combination, with
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disparate types of data such as vectors of real numbers, propositions, (fuzzy)
sets, events in a probability space, symbols, graphs, etc.

A fuzzy lattice is a pair (L, ), where L is a lattice and (L x L, u) is a
fuzzy set with membership function g : L x L — [0,1] such that u(a,b) =
1 < a<b[l1].

The set of all fuzzy lattices (L, u) is called framework of fuzzy lattices
and has been used for decision-making in various applications [10, 11]. This
paper approaches the fuzzy lattice framework from a rule-based perspective
as presented in Section 9.3 below. Some more usefull instruments of the fuzzy
lattice framework are the followings.

A valuation function v : L — R is defined on a lattice L as any real
function that satisfies: v(a) 4+ v(b) = v(a Ab) +v(a V b),Va,b € L. A valuation
function is called positive if and only if a < b <= wv(a) < v(b) [7]. Linear
positive valuations function have been used in previous works [10] for defining
an inclusion measure (o) in a complete lattice L.

In general, an inclusion measure on a complete lattice L is defined as a
real mapping function o : L x L — [0,1], such that for each a,b,z € L the
following conditions are satisfied:

o(a,0) =0,Ya # O (9.2)
ola,a) =1 (9.3)
a<b=o(x,a) <o(zb) (9.4)
ahNb<a=o(ab) <1 (9.5)

Given a lattice L and an inclusion measure o : L x L — [0, 1] it turns out
that (L, o) is a fuzzy lattice, with ¢ the membership function.

Another useful tool implied by a positive valuation in a general lattice L is
a metric distance function d : LxL — R defined as d(z,y) = v(zVy)—v(xAy).

A positive valuation function v : L — R in a lattice L with v(O) =0 is a
sufficient condition for two inclusion measures [10]:

_ (b
Kab) = o0 (9.6)
s(a,b) = 2OAY) (9.7)

v(a)

Ultimately, given a lattice L, for which a positive valuation function v : L —
R can be defined with v(O) = 0, then both (L, k) and (L, s) are fuzzy lattices.
It becomes apparent that the only requirement for specifing a fuzzy lattice on
a lattice L is the selection of an appropriate positive valuation function v(- ).
Based on this remark, any kind of partially ordered data, as numbers, sets,
graphs, etc that can define a lattice, to which if a positive valuation function
is ascribed, then it becomes available in the framework of fuzzy lattices.
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The framework of fuzzy lattices has been extended to lattices of closed
intervals [11], which are of particular interest for the introduction of fuzzy
lattice rules in Section 9.3. In a complete lattice L, a closed interval of lattice
elements is defined as

la,8] = {ala < o < y} (9.8)

A singleton interval is defined as [a,a] = a,Va € L. The set 7(L) of all closed
interval of lattice elements in L (including singletons) is also a complete lattice
with upper bound [0, I] and lower bound [I,O]. In 7(L) an ordering relation
is defined as:

[a,b) <[e,d|={c<a & b<d} (9.9)
Join of two 7(L) elements [a,b] and [c,d] is defined as:
[a,b] V[c,d] =[aAec,bVd] (join) (9.10)
And meet of two 7(L) elements [a, b] and [c, d] is defined as:

[aVe,bad], if aVe<bAd

t 9.11
0, otherwise (meet) ( )

[a,b] A [e,d] = {

The definition of a valuation function v, for the lattice of closed intervals

7(L) has been discussed in [11, 15]. Based on the positive valuation function

v : L — R of lattice L and an isomorphic function 6 : L — L, a valuation
function in 7(L) is defined as:

vr([a,b]) = v(0(a)) + v(b) (9.12)

Both inclusion measures defined in equations (9.6), (9.7) using v, can be
applied on 7(L):

_vlled)
k- (la, 0], [e, d]) = o (@bl v e d)) (9.13)
selfat e d) = 2= e ) (9.14)

As a result it turns out that (r(L), k;), (r(L), s,) are fuzzy lattices. Note
that the inclusion measure k., is more usable compared to s, due to the
conditional definition of the meet in 7(L), which appears in the nominator of
Eq. (9.14). In the contrary, k. is unconditionally defined as:

vr([e, d])
kr(la,b],[c,d]) = —————— 9.15

vr([e, d])
vr([aNe, bV d])

v(0(c)) + v(d)
v(@(aAc))+ov(dVd)
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9.3 Fuzzy Lattice Reasoning (FLR) Classifier

Many data structures of practical interest are lattice ordered. The objective
here is to present a classifier for inducing a rule-based inference engine from
data, based on the instruments of the fuzzy lattice framework presented in
the previous section.

9.3.1 Fuzzy lattice rule engine

A fuzzy lattice rule engine is based on fuzzy lattice rules. A fuzzy lattice
rule employes a fuzzy lattice element as the rule antecedent, while the fuzzy
inclusion measure serves as a truth function for deriving to rule consequences
(conclusions).

A fuzzy lattice rule is a pair (a, ¢) where a is an element in a fuzzy lattice
(L, ) and ¢ € C is a categorical label. Note that this definition applies to the
whole framework of fuzzy lattices, including product lattices and lattices of
closed intervals. A fuzzy lattice rule can be considered as the mapping a — ¢
of a fuzzy lattice (L, u) element a to a categorical label ¢, where a is the rule
antecedent and c is the consequence of the rule.

Let a and b be two lattice L elements, ¢ a categorical label in C and function
k, as defined in Eq. (9.6) be a fuzzy membership function in L. We define the
degree of truth of the fuzzy lattice rule a — ¢ against the perception b to
be defined by the fuzzy membership function of the fuzzy lattice (L, i), as:

p(b.a) = k(b.a) =

v (9.16)

Similarly holds for 7(L) using k, as defined in equation (9.13).
A fuzzy lattice rule engine & ,) c can be considered as a set of N
fuzzy lattice rules that are commonly activated:

5(L7H)7C = {ai — Ci},al‘ S <L,[L>,Ci eCi=1...N (917)

Reasoning with a fuzzy lattice rule engine implies the calculation of the

degree of truth for each one of engines rules. For example consider the follow-
ing engine that consists of three rules:
Epy,c = {a1 — c1,a2 — c2,a3 — c3}, where a1, ag, ag, are elements of a
fuzzy lattice (L, u) and ¢1, ca, ¢z a set of predifined labels. Against an input
element ag, the engine will result with the following table of degree of truth for
each consequence: ¢; = o(ag, a1), ca = o(ag, az), and ¢z = o(ag, az). The fuzzy
lattice reasoning engine will respond with the class ¢ = argmax(o(aop,a;)). In
K3
another mode of generalization, £ may respond with the label that is addi-
tively included the most. In this way, a fuzzy lattice reasoning engine can be
used for generalization.
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9.3.2 Fuzzy lattice rule induction (training)

The task of inducing a fuzzy lattice rule engine can be described as follows:
Let a training set of M partially ordered objects {u1,us,...,up} € U, each
one of which is associated with a class label ¢ € C, where C = {¢1, ¢, ..., ¢k}
is a set of K predefined labels (classes). The objective is to induce a set of
fuzzy lattice rules that implement a function h : U — C, associating any object
u € U with a classification label ¢ € C.

In general, the universe U of the training objects can include any type of
complex data structures, as vectors of real numbers, graphs or sets. Obviously,
U is a complete lattice. Given a positive valuation function v : U — R, an
inclusion measure o : U x U — [0,1] can be defined in U, as denoted above
in Eq. (9.6), (9.7), (9.13), (9.14), which implies a fuzzy membership function
w:Ux U —[0,1]. In this respect, it turns out that (U, u) is a fuzzy lattice.
The classifier to be built is equivalent to a map h’ : (U, u) — C, which is a set
of fuzzy lattice rules, i.e. a fuzzy lattice rule engine: h = h' = Ey .y c.

Each object u of the training set is an element of U and each training pair
(u,c) can be expressed as a fuzzy lattice rule u — ¢, where u is an element
of the fuzzy lattice (U,p) and ¢ the corresponding class. This means that
the instances of a training set could be treated as fuzzy lattice rules. For
example consider the simple case where the universe of the training instances
is a closed interval of real numbers [O, I]. Then any training pair (x,c) where
x € [0,1I] and ¢ € C can be expressed as a fuzzy lattice rule consisted from
a lattice interval singleton mapped to class ¢, as: (x,¢) = ([z,z], ¢). Likewise
for alternative universes of discourse.

A naive fuzzy lattice reasoning classifier that can be induced di-
rectly from a set of M training pairs (ui,c1),..., (un,car), u; € U, and
¢; € C, is the one that memorizes all training instances as fuzzy lattice
rules. Given a positive valuation function v, each training element u; is an
element of the fuzzy lattice (U,o), where ¢ is an inclusion measure de-
fined in Eq. (9.6), (9.7), (9.13). In this way, the most simple fuzzy lat-
tice rule engine will consist at most out of M (trivial) rules and will be:
E={u1 —c1,...;u; = ¢y...,upr — ey}, where u € (U, o) and ¢ € C.

A training process for inducing a fuzzy lattice rule engine is based on
joining lattice rules pointing to the same class for formulating lattice rules
of higher size, and potentially higher ability for generalization. The training
procedure for inducing the classifier h, through single pass iteration over all
training instances is presented below. Note that a simplified version of the
FLR algorithm was presented previously implemented as neural network o-
FLN architecture [10, 11].

FLR training algorithm

Step-0: Let a fuzzy lattice rule engine & y.c = {a1 — ¢1,...,ag — cr} of
size R.
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Note that £ ) c could be initially empty, i.e. R = 0, and a user-defined
threshold size D.,.;.

Step-1: Present the next training pair (u,c), in the form of a fuzzy lattice
rule u — ¢ to the initially set rules in £ 4 .c-

Step-2: If no more rules in £ are set then append input rule u — ¢ in £ and
go to Step-1.
Else, compute the fuzzy degree of inclusion o(u < a,), Vi=1... R of the
antecedent u to the antecedents of all the set rules in £.

Step-3: Competition among the set rules in £. Winner is the rule a; — ¢y,
where

J = argre?@ﬁ}.cﬂ}a(u <ay) (9.18)

Step-4: If both ¢ = ¢; and diag(uVay) < Dt (assimilation condition), then
replace the antecedent a; of the winner rule a; — cj by the join-lattice
uV ay, i.e. with the rule: u VvV a; — c;y. Go to Step-1.
Else, reset the winner rule a; — ¢y, and go to Step-2.

Previous works has employed for the algorithm tuning, instead of D,
the dimensionless vigilance parameter:

N(1- cri
o Dy = = perit)

crit — 9.19
Perit N -+ Dcrit Perit ( )

Note that peq¢+ varies in the interval [0.5, 1] for any number of dimensions
N as shown in [11]. In the following experiments p.;+ has been employed, as
its range is not related to the dimension of the lattice.

9.3.3 Decision making with fuzzy lattice rules (testing)

The decision making process (testing phase) of an (induced) fuzzy rule en-
gine & o,c of size R, involves the competition of its rules over a perception
x € U, of unknown label. The element z is presented to each rule of the en-
gine: a, — ¢, and the inclusion measure o(z < a,) = o(x,a,) is calculated.
Finally, x is assigned to the category cy, where

= < r 02
J argre{rrllﬁ??,R}a(x <a,) (9.20)

A second mode of reasoning for the an (induced) fuzzy rule engine £ o c
of size R may involve a contributing competition, where all rules pointing
to the same class ¢; will add-up their inclusion measures and the perception
x € U will be assigned to the class that additively includes it the most:

J = argmax Z oz <ay,) (9.21)
r={1,...,R/cr=c;}
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In principal, in any universe of partially ordered data, that can be for-
malized as lattices, product lattices or lattices of intervals a fuzzy lattice rea-
soning classifier can be induced. A similar lattice algorithm, namely Find-S
algorithm, has been presented in a machine learning context [13], but with-
out an employment of positive valuation functions. In the following section
the capacity of the algorithm is further broaden, by introducing non-linear
positive valuation functions.

9.4 Non-linear Positive Valuation Functions

The whole procedure for inducing an FLR classifier is related to the selection of
an appropriate valuation function in U, that implies the formation of the fuzzy
lattice (U, o), where o is an inclusion measure as those defined in Eq. (9.6),
(9.7), (9.13), (9.14). This remark holds also for other decision making schemes
built upon the framework of fuzzy lattices that map data to lattices. Typi-
cally, prior works within the Framework of Fuzzy Lattices [2, 10, 12, 14, 15]
have focused in forming fuzzy lattices from numerical datasets by employ-
ing linear valuation functions. In cases that data reside in the N-dimensional
unit hypercube IV = [0,1] x [0,1] x ... x [0,1], the positive valuation func-
tion selected for each consistuent lattice is the simple function v;(x) = z. In
other cases, where data reside in RY the training dataset can be formulated as
T =[01,11] X [O2,I3] x ... X [On, In], and the positive valuation function for
each constituent lattice is given by the following equation that which linearly
scales T to the N-dimensional unit hypercube 1V:
(z-0)
vi(x) = -0 (9.22)
In this paper, both linear and non-linear positive valuation functions are
considered for inducing an FLR classifier from a numerical dataset. The sig-
moid function is an example non-linear increasing function with range [0, 1]
that could be used as a positive valuation function for mapping an interval of
real numbers to a fuzzy lattice. In the particular case of lattice | a non-linear
positive valuation function is defined by:

1

In generic the case of data residing within the interval [O, I], a positive
valuation function can be defined by the sigmoid function:

1

] + e~ Ma—Tmed)’ (9-24)

ve ()

where
I1+0 S
2 7 I1-0’

Tmed =
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The single parameter ¢ can be used for tuning the slope of v (z). Fig. 9.1
plots function v (z) for various values of ¢, in contrast with a linear valuation
function v(x) = x.

The capacity of non-linear positive valuation functions to improve per-
formance has been demonstrated lately in classification and regression appli-
cations [1, 6]. In the following section, the capacity for learning of the FLR
classifier is evaluated in two air quality data sets, by employing both linear
and sigmoid positive valuation functions.

9.5 Application on Environmental Datasets

In this work, the problem of operational decision support related to air pollu-
tion is tackled by utilizing a machine learning approach. Specifically, the FLR
Classifier is demonstrated in comparison with other state-of the-art algorithms
in two application cases related to urban air quality assessment. The first one
concerns with the prediction of the daily vegetation index in the metropolitan
area of Athens, Greece, while the second one is for the estimation of ambient
ozone concentration levels, in a rural area in Valencia, Spain.

9.5.1 Air quality assessment

Ambient air quality assessment and management is characterized by complex-
ity and uncertainty mainly due to the difficulties of atmospheric chemistry
and physics and the stochastic processes involved in air pollutant generation.
These boundaries raise the major obstacles in building simple models for cred-
ible prediction. In most cases, decision making relies on human expertise, as
analytical models are too complex and slow for operational decision support.
Legislation in Europe, the US, and elsewhere, define environmental quality
indicators, which could be communicated to the public on-time (or even in
advance) for informing population about air quality, especially in urban areas.

In both application cases, focus is given on ambient ozone, which is a sec-
ondary pollutant formed as a result of catalytic reactions between pollutants
emitted from industrial sources and automobiles. In the presence of sunlight
(ultra-violet radiation) and under suitable meteorological conditions, the pre-
cursors react photo-chemically to produce ozone. Due to the chemical reaction
dynamics, the analytical models for describing ozone formation in ambient air
are very complex. As a consequence, simple, yet credible prediction models
are required for achieving both the requirements of accurate air quality assess-
ment and capabilities for fast decision making (in contrast with the analytical
complex models). These properties can be realized by learning from data, us-
ing knowledge discovery techniques as discussed in previous works [3, 4, 5],
and presented below.
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Fig. 9.1. Sigmoid positive valuation functions v¢(z) illustrated in the interval [O, I]
in contrast with the linear positive valuation function v;(z) for various values of the

normalized parameter .
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9.5.2 Daily vegetation index prediction in Athens, Greece

The first demonstration case concentrates in the metropolitan area of Athens,
Greece, that suffers from air-pollution problems, mainly due to the traffic and
industrial emission, but also because of the urban landscaping. A measure of
the impact of air pollution to human quality of life is the daily vegetation index
introduced by the European Commission with the Directive 92/72/EEC. It is
an early warning indicator of the overall air quality and specifies a threshold
on the ozone’s mean concentration (Os) over a 24 hours period. The same
directive sets the daily vegetation threshold at the limit of 65 ug/m?>.

The prediction of the daily vegetation index threshold (exceeded or not) is
the actual goal of the first demonstration case, where FLR has been employed.
Specifically, a dataset was available that contained daily observations from the
Maroussi station of the Ministry of Environment lined up with meteorological
data from the Athens National Observatory. The selection of the monitoring
station was based on the frequency of high exceedances of the selected index.
The dataset covers a 3.5 year period (January 1999 - June 2001) and has been
split in two parts: one for training (that corresponds to the period January
1999 - December 2001) and one for testing (January - June 2002). The pur-
pose of this selection was the ability to make comparisons with the statistical
methods used for the same test case as previously reported [3]. Tables 9.1, 9.2
present the dataset attributes and statistics.

Table 9.1. Athens dataset attributes.

Attribute Symbol  Datatype  Units
1 Carbon monoxide CO real number mg/m?
2 Nitrogen oxide NO real number pug/m?
3 Nitrogen dioxide NO» real number pg/m®
4 Nitrogen oxides NO; real number pg/ m>
5 Sulfur dioxide S0O2 real number pug/m?
6 Ozone 03 real number pg/m®
7 Air temperature Ta real number deg C
8 Soil temperature T's real number deg C
8 Relative humidity RH real number
9 Wind speed WS real number m/s
10 Wind direction WD real number rad

11 Mean temperature meantemp real number deg C
12 Max temperature maxtemp real number degC
13 Min temperature mintemp real number degC
14 Solar radiation ws real number Wm =2
16 Vegetation index Os alert class label Yes/No
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Table 9.2. Athens dataset statistics.

Records in class

Yes No
Training set 571 525
Testing set 62 120

9.5.3 Comparative results for the Athens dataset

A set of cross-evaluation experiments were conducted for the Athens test-case.
FLR with both linear and sigmoid valuation functions has been applied for
predicting the daily vegetation index, for a range of values for the parameters
p and ¢. For comparison purposes, results are presented in Table 9.3 along
with previous results obtained for the same test case with statistical meth-
ods (LRA, ARIMA and PCA) [16] and other ten classification algorithms
and neural networks (ADTree, C4.5, Conjunctive Rule, Decision Table, 1Bk,
KStar, NaiveBayes, Nnge, OneR, Voted Perceptron) [3]. Note that WEKA
platform [17] implementations of the algorithms have been used. The statis-
tical methods resulted low overall accuracy rates (less than 60%), with high
false positive rates, i.e. there are several alarms missed, but the confidence on
those identified is very high. On the contrary, classification techniques manage
higher classification accuracies, with the cost of a lower credibility on their
decisions.

The application of FLR with the linear valuation function resulted up to an
overall classification accuracy of 80.11% with a fuzzy lattice rule engine of 212
rules. The accuracy compared to the rest classification algorithms is relatively
good (ADTree and NaiveBayes performed better). Also, the false positive rates
of FLR with linear positive valuation function is the best achieved among
classification algorithms. In this terms FLR performance is competitive.

Next, the FLR with a sigmoid positive valuation function was employed,
resulting a Fuzzy Lattice Rule Engine of 123 rules. In this case, the overall
accuracy improved to 84.53%, while the false positive rate decreased signif-
icantly to 5.88%. Overall, the introduction of a sigmoid positive valuation
function achieved to decrease the number of extracted rules almost to half,
result an overall accuracy similar to that of ADTree, while arriving the op-
timal false positive rate. Based on these remarks, the FLR with a sigmoid
positive valuation function can be considered as the most credible model for
predicting the daily vegetation index in this particular application.

9.5.4 Ozone level estimation in Valencia, Spain

The second test-case concerns with the peri-urban area of Valencia, Spain
where ambient air quality is diminished due to industrial activities. The goal
here is to identify the level of ozone concentration, a critical photochemical
pollutant, which is commonly used as an indicator of the overall ambient
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Table 9.3. Results for the Athens dataset.

Model Accuracy (%) False positive rate (%)
LCA 53.37 0.37
PCA 21.47 0.55
ARIMA 31.58 2.94
FLR (sigmoid) 84.53 5.88
FLR (linear) 80.11 8.4
Nnge 59.68 8.4
Conjunctive Rule 64.52 10.92
OneR 70.97 11.76
Decision Table 69.35 12.61
1Bk 59.68 15.13
Voted Perceptron 80.65 15.97
ADTree 85.48 17.65
NaiveBayes 80.65 17.65
C4.5 (J48) 75.81 19.33
KStar 61.67 43.7

air quality. In this case, the objective is to estimate the ozone concentration
levels from the concurrent observations of other pollutants and meteorological
attributes, a task related with both quality assurance and control activities
and operational decision making.

In this case, data were available from a single metrological stations, that
monitors eight parameters, including both meteorological attributes and air-
pollutant concentrations, as shown in Table 9.4. Data are sampled on a
quarter-hourly basis during the year 2001. In total there are available 35,040
data vectors, out of which 565 records have the ozone label missing, and thus
where excluded in the analysis below. Values were missing in other attributes,
and in total there are 6,020 records (that is around 17% of the total) with
at least one missing value. In the following experiments, both the original
dataset with missing values and a preprocessed one that excluded all records
with missing values. Data collected from January 1, 2001 until mid June
have been used for training, whereas the remaining data until year end have
been used for testing. The corresponding numbers of data vectors available in
classes low and med(ium), respectively, are shown in Table 9.5.

9.5.5 Comparative results for the Valencia dataset

For estimating the ozone concentration level three classifiers were employed:
(a) The C4.5 classifier, (b) The FLR classifier, with a linear positive valuation
function, and (c¢) The FLR classifier, with a sigmoid positive valuation func-
tion. Two series of experiments have been carried out: first, using the dataset
without missing values and, second, the original set including the ones with
missing values.
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Table 9.4. Valencia dataset attributes.
Attribute Symbol Datatype  Units

1 Sulfur dioxide SO real number pug/m?>
2 Nitrogen oxide NO real number pg/m®
3 Nitrogen dioxide NO2  real number pg/ m>
4 Nitrogen oxides NO, real number pg/m?

5 Wind velocity VEL real number m/s

6 Temperature TEM real number deg C

7 Relative humidity HR real number %

8 Ozone level O3 class label low, med

Note: Class low corresponds to concentration levels in range 0 — 60 pg/m?>, and
class med (ium) to 60 — 100 pg/m>.

Table 9.5. Valencia dataset statistics for (a) the dataset without missing values,
and (b) the dataset with missing values (original).

Records in class Records in class

low medium low medium

Training set 6,865 4,761 Training set 9,472 6,074

Testing set 12,256 5,138 Testing set 13,483 5,446
@ ®)

First, the C4.5 classifier has been employed on a standard software plat-
form (WEKA platform [17]), for generating decision trees, in which the in-
ternal nodes specify inequalities for the values of environmental attributes,
moreover the tree leaves specify an output class. Initially, the C4.5 classi-
fier has been applied on the data without missing values, without pruning,
resulting in a decision tree with 1393 leaves (rules). The corresponding classi-
fication accuracy on the training set reached 94.8%, whereas on the testing set
it was only 64.85%. Similar results have been obtained for the dataset with
no missing values. Obviously, C4.5 over-fits the training data, therefore two
pruning methods have been employed: (1) Confidence Factor Pruning (CFP),
and (2) Reduced Error Pruning (REP). Results are shown in Tables 9.6 and
9.9 for selected pruning parameter values. The highest accuracy achieved on
the testing split was 73.74% and 77.56% respectively for each dataset.

The FLR classifier has been implemented on the same software platform
(WEKA) using both linear and sigmoid valuation functions. Initially, the FLR
Classifier has been employed using a linear valuation function. In this case, the
valuation function used was v;(z) = 8”%8;, where [O, I] are the minimum and
maximum values of the training data in each dimension. Results are presented
in Tables 9.7 and 9.10 for selected values of the vigilance parameter p. The
FLR Classifier achieved a classification accuracy of 83.23% with only three
rules for the dataset without missing values and 84.60% with 19 rules for the
dataset with missing values. Note that the FLR classifier outperforms C4.5.
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Then, experiments have been conducted for the FLR Classifier using the
sigmoid function of Eq. (9.24) on both datasets. In this case the FLR Classifier
has been tuned using two parameters: The vigilance parameter p and the
slope parameter ¢ of the sigmoid valuation function. Results obtained by FLR
with sigmoid valuation function are presented in Tables 9.8 and 9.11. For
the dataset without missing values the FLR with sigmoid positive valuation
function achieved a classification accuracy of 85.22% with three rules. Note
that using the sigmoid positive valuation function the best performance has
improved by 2% without increasing the number of induced rules. For the
dataset with missing values, the best accuracy improved by nearly 1%, again
without increasing the number of rules, as shown in Tables 9.8 and 9.11.

9.6 Discussion

This chapter introduced the Fuzzy Lattice Reasoning (FLR) classifier, by con-
sidering Fuzzy Lattices as the foundation for specifying rules, both for Fuzzy
Lattices and Fuzzy Lattices of intervals. Modes of generalization in a Fuzzy
Lattice Rule Engine have been identified and a training procedure was de-
tailed. Also, here non-linear positive valuation functions are introduced as
an instrument for further improving the capacity for decision-making within
the framework of Fuzzy Lattices. The FLR classifier was demonstrated for
assessing ambient air quality on two test-cases. Results obtained with FLR
Classifier for the case of the prediction of the daily vegetation index in Athens
have compared favorably with the results obtained by other state-of-the-art
classifiers and statistical approaches used in previous works. The FLR Clas-
sifier achieved the best performance in terms of false positive rates (5.88%),
while keeping the overall accuracy at very high levels (84%). The introduc-
tion of the non-linear positive valuation function in this case resulted to an
improvement of performance by 5%, while reducing the number of the model
complexity (induced rules) to half. In the case of the estimation of ozone level
concentrations in Valencia, the FLR Classifier resulted positively, with respect
to the performance achieved with C4.5 decision trees. The FLR classifier with
linear positive valuation function, compared to C4.5, improved classification
accuracy by 9.5% for the dataset without missing values and by 7% for the
dataset with missing values. Furthermore, the employment of a sigmoid pos-
itive valuation function by the FLR classifier achieved further improvement
without increasing the complexity (number of induced rules) of the model.
Finally, the approach presented here for tackling with the complexity and the
uncertainties of the air quality assessment by using machine-learning tech-
niques and in particular the FLR classifier rendered with trustworthy and
credible results with a great potential for the application domain.
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Table 9.6. Results with C4.5 for the Valencia dataset without missing values.

Parameter Classification accuracy (%) No. of Rules

value  Training set  Test set  (Tree leaves)
Unpruned
- 94.80 64.85 1393
Confidence factor pruning (parameter: CF)
0.1 91.33 67.31 575
0.2 92.87 66.71 823
0.3 93.92 67.40 1055
0.4 94.10 67.39 1101
0.5 94.31 67.19 1169
Reduced error pruning (parameter: no. of Folds)
2 89.31 63.71 507
10 89.01 71.85 465
50 85.05 60.62 251
100 83.33 73.74 131
300 81.55 69.98 75
500 77.73 72.48 31

Table 9.7. Results with FLR with linear valuation function for the Valencia dataset
without missing values.

Parameter Classification accuracy (%) No. of Rules

p Training set Test set (Tree leaves)
0.5 59.16 70.46 2

0.6 64.73 83.23 3

0.7 73.68 74.85 20

0.8 67.43 72.59 139

Table 9.8. Results with FLR with sigmoid valuation function for the Valencia
dataset without missing values.

Parameter Classification accuracy (%) No. of Rules
S p  Training set  Test set  (Tree leaves)

1 05 59.16 70.46 2
0.6 59.16 70.46 2
0.7 59.16 70.46 2
0.8 62.73 85.22 3
5 0.5 59.16 70.46 2
0.6 65.40 82.70 3
0.7 70.48 79.64 19
0.8 67.53 78.72 40
10 0.5 59.16 70.46 2
0.6 64.27 83.43 3
0.7 65.77 74.89 34
0.8 69.56 82.87 115
15 0.5 59.16 70.46 2
0.6 64.73 83.24 3
0.7 68.85 78.88 23

0.8 70.39 81.54 112
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Table 9.9. Results with C4.5 for the Valencia dataset with missing values.

Parameter Classification accuracy (%) No. of Rules

value  Training set  Test set  (Tree leaves)
Unpruned
- 94.80 64.85 1393
Confidence factor pruning (parameter: CF)
0.1 89.14 60.26 279
0.2 89.98 59.19 368
0.3 90.81 59.44 463
04 91.37 59.30 542
0.5 91.59 59.32 598
Reduced error pruning (parameter: no. of Folds)
2 88.14 64.91 318
10 88.28 59.19 288
50 85.44 60.17 144
100 84.01 61.36 84
300 82.48 77.56 44
500 81.33 70.19 32

Table 9.10. Results with FLR with linear valuation function for the Valencia
dataset with missing values.

Parameter Classification accuracy (%) No. of Rules

p Training set Test set (Tree leaves)
0.5 60.99 71.22 5
0.6 60.99 71.22 8
0.7 63.48 84.60 19
0.8 69.00 66.54 43

Table 9.11. Results with FLR with sigmoid valuation function for the Valencia
dataset with missing values.

Parameter Classification accuracy (%) No. of Rules
S p  Training set  Test set  (Tree leaves)

1 05 60.99 73.37 2
0.6 60.99 73.37 2
0.7 60.99 73.37 3
0.8 60.99 73.37 4
5 0.5 60.99 71.22 4
0.6 60.99 71.22 6
0.7 60.99 71.23 9
0.8 65.34 85.53 19
10 0.5 60.99 71.22 6
0.6 60.99 71.23 9
0.7 60.99 71.22 14
0.8 63.55 82.55 26
15 0.5 60.99 71.22 6
0.6 60.99 71.23 10
0.7 60.99 71.23 17

0.8 64.00 82.59 31
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