
Environmental Modelling and Software 168 (2023) 105790

Available online 16 August 2023
1364-8152/© 2023 Published by Elsevier Ltd.

Crop modeling frameworks interoperability through bidirectional source
code transformation

Cyrille Ahmed Midingoyi a,1, Christophe Pradal b,c,**, Andreas Enders d, Davide Fumagalli e,
Patrice Lecharpentier f, Hélène Raynal g, Marcello Donatelli h, Davide Fanchini h,
Ioannis N. Athanasiadis i, Cheryl Porter j, Gerrit Hoogenboom j,k, F.A.A. Oliveira j,
Dean Holzworth l, Pierre Martre a,*

a LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
b CIRAD, UMR AGAP Institut, Montpellier, France
c LIRMM, Univ Montpellier, Inria, CNRS, Montpellier, France
d Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
e Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
f AgroClim, INRAE, Avignon, France
g AGIR, INRAE, Université de Toulouse, Castanet-Tolosan, France
h Centro Ricerca Ingegneria e Trasformazioni Agro-alimentari, CREA, Milano, Italy
i Wageningen University, Wageningen, the Netherlands
j Department of Agricultural & Biological Engineering, University of Florida, Gainesville, USA
k Global Food Systems Institute, University of Florida, Gainesville, USA
l CSIRO Agriculture and Food, Toowoomba, Australia

A R T I C L E I N F O

Handling editor: Daniel P Ames

Keywords:
Crop model
Crop2ML
Model exchange and reuse
One-to-many transformation

A B S T R A C T

Recently, we proposed Crop2ML, an open-source modeling framework for exchanging and reusing crop model
components between modeling platforms. Here, we present an approach based on reverse engineering to
automatically extract and transform meta-information and algorithms of existing crop biophysical models into a
platform-independent model component. A search algorithm using Crop2ML concepts, and a many-to-one
transformation system were used for producing high-level models. The system consists of parsing the code-
base of model components written in different languages using the ANother Tool for Language Recognition
(ANTLR) parser generator and processing the generated syntax trees to produce various model implementations.
The system was evaluated for three crop model components provided by the BioMA, SIMPLACE, and DSSAT
platforms. We demonstrated the extensibility of our approach with the STICS, OpenAlea, and SiriusQuality
modeling platforms. CyMLTx is a significant contribution towards the interoperability of crop modeling plat-
forms and the reuse of model components beyond programming languages.

1. Software availability

Software name: PyCrop2ML
Contact: Dr. Pierre Martre (pierre.martre@inrae.fr) or Dr. Chris-
tophe Pradal (christophe.pradal@cirad.fr)

Year first available: 2022
Hardware required: IBM compatible PC or Apple;
Operation System required: Windows 10 or above, Mac OS X or
above, or Linux
Program languages: CyML, Python

* Corresponding author.
** Corresponding author. CIRAD, UMR AGAP Institut, Montpellier, France.

E-mail addresses: cyrille_ahmed.midingoyi@cirad.fr (C.A. Midingoyi), christophe.pradal@cirad.fr (C. Pradal), aenders@uni-bonn.de (A. Enders), davide.
fumagalli@ext.ec.europa.eu (D. Fumagalli), patrice.lecharpentier@inrae.fr (P. Lecharpentier), helene.raynal@inrae.fr (H. Raynal), marcello.donatelli@crea.gov.it
(M. Donatelli), davide.fanchini@crea.gov.it (D. Fanchini), ioannis.athanasiadis@wur.nl (I.N. Athanasiadis), cporter@ufl.edu (C. Porter), gerrit@ufl.edu
(G. Hoogenboom), fabioaug.antunes@ufl.edu (F.A.A. Oliveira), dean.holzworth@csiro.au (D. Holzworth), pierre.martre@inrae.fr (P. Martre).

1 Current address: AIDA, Univ Montpellier, CIRAD, Montpellier, France.

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2023.105790
Received 7 July 2023; Accepted 1 August 2023

mailto:pierre.martre@inrae.fr
mailto:christophe.pradal@cirad.fr
mailto:cyrille_ahmed.midingoyi@cirad.fr
mailto:christophe.pradal@cirad.fr
mailto:aenders@uni-bonn.de
mailto:davide.fumagalli@ext.ec.europa.eu
mailto:davide.fumagalli@ext.ec.europa.eu
mailto:patrice.lecharpentier@inrae.fr
mailto:helene.raynal@inrae.fr
mailto:marcello.donatelli@crea.gov.it
mailto:davide.fanchini@crea.gov.it
mailto:ioannis.athanasiadis@wur.nl
mailto:cporter@ufl.edu
mailto:gerrit@ufl.edu
mailto:fabioaug.antunes@ufl.edu
mailto:dean.holzworth@csiro.au
mailto:pierre.martre@inrae.fr
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2023.105790
https://doi.org/10.1016/j.envsoft.2023.105790
https://doi.org/10.1016/j.envsoft.2023.105790
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2023.105790&domain=pdf

Environmental Modelling and Software 168 (2023) 105790

2

Availability:

2. Introduction

Crop models provide a scientific understanding of biophysical pro-
cesses involved in crop growth and development. They have been
increasingly developed and continuously expanded to meet a wide range
of needs and applications (Jones et al., 2017). Crop growth models are
commonly decomposed into software components implementing the
biophysical and ecophysiological functions (e.g., phenology, morpho-
genesis, resource acquisition, pests, and disease impact) that occur
within the plant-soil-atmosphere interactions. Most crop model devel-
opment teams have adopted crop modeling and simulation platforms to
avoid building components from scratch and to rely on good practices in
software engineering. These platforms are aimed at a specific commu-
nity of cropping and farming systems modelers (Argent et al., 2006).
However, there is an increasing need for the exchange and reuse of
model components from different communities to simulate and model
new assumptions and processes in cropping systems (Holzworth et al.,
2014). However, the difference between modeling platforms is a tech-
nical barrier for reusing a crop model component in other platforms
(Muller and Martre, 2019). In addition, building models from legacy
model components written in different programming languages and
provided by different crop modeling platforms remains challenging
(Midingoyi et al., 2020).

Different modeling communities and networks adopt and support
different standards to enable the reuse and the interoperability of
multilingual models. For instance, in the plant science community, the
Crops in Silico (Cis) community (Marshall-Colon et al., 2017) provides a
multilanguage and integrated modeling framework through interfaces
in the supported languages (Lang, 2019). In the environmental modeling
community, web-service approaches are also used to couple components
(Gao et al., 2019). Others use service-oriented wrapper systems for
adapting components with their software design constraints (Hutton
et al., 2020; Jiang et al., 2017; Peckham et al., 2013).

Other communities, such as the system biology community, have
developed domain specific languages (DSLs) as standard languages for
model representation and exchange (Cuellar et al., 2003; Gleeson et al.,
2010; Hucka et al., 2003). Likewise, in the crop modeling community
there is an increasing need for a seamless model component exchange
and reuse mechanism (Athanasiadis et al., 2011; Holzworth et al., 2014;
Martre et al., 2018). Recently, the Agricultural Modeling Exchange
Initiative (AMEI) proposed Crop2ML, an open-source modeling frame-
work for exchanging and reusing crop model components between
modeling platforms (Midingoyi et al., 2021). Crop2ML is shared and can
be retrieved on an open-source format through an accessible online
model repository (http://crop2ml.org). Crop2ML follows the Minimum
Information Required in the Annotation of Models (MIRIAM (Le Novère
et al., 2005) and the Open Modeling Foundation (OMF,Barton et al.,
2022a,b) sets of guidelines that define how a model should be encoded.

The Crop2ML framework provides a unified description of model
components specification at a high-level of abstraction based on shared
concepts, lifting constraints of modeling platforms, and a minimal
domain language, called CyML, for the description of associated algo-
rithms (Midingoyi et al., 2020). CyML is a subset of the Cython language
representing the common language constructs used for crop model
implementation in crop modeling platforms. A transformation system
(CyMLT) has been implemented to transform Crop2ML models into
model components in different languages and is targeted either at a
specific platform, or to components with no dependency to a specific
platform. However, existing components should first be re-written in
Crop2ML before they can be automatically transformed using CyMLT.
This rewriting process can be cumbersome, error-prone, and may
require significant efforts in the case of large model components.
Therefore, the goal of this project was to extend the Crop2ML framework
and the CyMLT transformation system by providing an automatic system

(CyMLTx) which generates automatically Crop2ML model components
from existing platform-specific crop model components written in
different languages.

Crop modeling platforms offer different capabilities for implement-
ing and specifying model components based on the patterns they share
with the model developers who use them. These two aspects of a
component (implementation and specification) are useful to address
transformation into another platform (Holzworth et al., 2010). The
description and accessibility of component meta-information (variables
and parameters description, domain of validity, measurement units, …)
depend on the language capabilities, as well as the modeling platform
specifications, which use either the procedural or the object-oriented
programming paradigms. The former is historically well suited to
represent biophysical processes in simple functions. For instance, in the
Fortran language, used in DSSAT (Hoogenboom et al., 2019) and STICS
(Brisson et al., 2009), the meta-information for model components is
provided as comments in the code, with no specific format and con-
ventions that model developers must implement. On the other hand,
platforms that use the object-oriented paradigm benefit from the
encapsulation property which allow separation of specification from
implementation. Components are implemented with standard class
methods that could facilitate code understanding and the discovery of
meta-information.

It is a great challenge to automatically generate platform-
independent model specifications. A reverse engineering approach has
been used to extract information from model documentation and source
code. For instance, some crop modeling platforms (e.g., BioMA, SIM-
PLACE) facilitate the discovery of types and properties via reflection
operating at runtime (Villa et al., 2006). Most of the extraction methods
allowing to generate model specifications are based on concepts derived
from a specific domain knowledge (Gyori et al., 2017; Nigam et al.,
2015). Bidirectional source-to-source transformation systems between
multiple languages require using subset languages and to convert them
to the same intermediate representation (Plaisted, 2013). Inspired by
these projects, we hypothesize that the CyML language, which repre-
sents the intersection of several high-level language constructs, can be
leveraged to enable bidirectional transformation between several pro-
gramming languages. CyMLTx combines extraction methods and
source-to-source transformation that lower barriers in both platforms
and languages barriers. This new system complements CyMLT by adding
transformation from multi-platforms and languages to Crop2ML lan-
guage transformation. It thus leads to platform interoperability using
Crop2ML as a bridge. Consequently, CyMLTx and the Crop2ML frame-
work, can be used to automatically import and export model compo-
nents from several crop modeling platforms. CyMLTx was designed to
transform model components developed in various platforms into
high-level abstractions, thus promoting model reuse, augmentation, and
collaboration between different modeler groups. It allows abstracting a
component into a comprehensible representation through which any
modeler is driven to work on without knowing platform specificities.

In this paper, we first present the approach and the implementation
of CyMLTx. Then, we demonstrate the interoperability between three
different crop modeling platforms (BioMA, (Donatelli and Rizzoli,
2008); SIMPLACE, (Enders et al., 2010, 2023), and DSSAT (Hoo-
genboom et al., 2019),) with the use of CyMLTx on three components: an
energy balance model component provided by the BioMA platform and
two soil temperature model components provided by SIMPLACE and
DSSAT. Finally, we illustrate the extensibility of CyMLTx to other crop
modeling platforms with two other crop modeling platforms (STICS,
(Brisson et al., 2009); and SiriusQuality (Martre et al., 2006), and the
plant modeling platform OpenAlea (Pradal et al., 2008, 2015). Finally,
we discuss our results and present some perspectives.

C.A. Midingoyi et al.

http://crop2ml.org

Environmental Modelling and Software 168 (2023) 105790

3

3. Methods

3.1. CyMLTx transformation workflow

CyMLTx extends the capability of CyMLT. It takes the source code of
a model component (M1) from a modeling platform as input and
transform it into a Crop2ML model component (M2) at the same level of
granularity. M2 is an abstract model that can either be a Crop2ML
ModelUnit with a fine granularity or a Crop2ML ModelComposite rep-
resented as a graph of ModelUnits connected by their inputs and outputs
to manage model complexity (Midingoyi et al., 2021). Each ModelUnit
consists of a model specification and an associated model algorithm.
Model specifications contain formal descriptions of the model, its inputs
and outputs, a link to an initialization function of its state variables, and
a set of parameters and unit tests. Model algorithms, auxiliary functions,
and state variable initialization functions are expressed in the CyML
language (Midingoyi et al., 2020). Hence, the CyMLTx approach is
designed to capture these concepts from the M1 source code and to
generate the corresponding Crop2ML model M2.

The main processes of the CyMLTx transformation workflow are (1)
the extraction of meta-information from the source code of M1 to build
the specifications of M2; (2) the pre-processing of the Abstract Syntax
Tree of M1 and the generation of the Abstract Semantic Graph of the
different parts of M1 that represent the algorithms, initialization, and
auxiliary functions; (3) and the transformations of these parts into the
CyML language and their merging with model specification to generate
M2 (Fig. 1).

The workflow starts with parsing of the source code of M1 that

consists of finding the syntactic structure of the codebase to generate the
parse trees called Concrete Syntax Trees (CST). The parse tree is then
transformed into an Abstract Syntax Tree (AST) as an annotated graph to
improve the average access time of information. It is a refinement of the
parse tree, with some non-terminals, keywords, and punctuations
removed while maintaining the meaning of the program. A data struc-
ture model is designed for each language to represent AST in such a way
that the AST of any source provided by different platforms using the
same language will be represented by the same model. Comments are
also extracted and are added directly to the correct nodes in the AST.
Meta-information is extracted from the code to recover the values of the
concepts of Crop2ML model specifications related both to the descrip-
tion of the component (authors, names, version, etc.) and to variables
and parameters information (names, description, types, units, …). These
values can be retrieved either from text pattern matching applied on the
code comments or directly from the AST analysis (step 1).

Step 2 is to first extract the model algorithms and the initialization of
the state variables based on the code annotations or design provided by
the modeling platform. If some algorithms depend on auxiliary func-
tions, their ASTs are extracted. Then, the ASTs of the algorithms, and
initialization and auxiliary functions are modified to remove platform-
specific features. Finally, each modified AST is transformed to an Ab-
stract Semantic Graph (ASG; Midingoyi et al., 2020), which is a
self-contained representation of the source code. The ASGs are inde-
pendent of the source language and their nodes are only based on CyML
constructs.

In Step 3, the CyML code is produced based on ASGs traversal and
predefined rules mapping each node type to a corresponding code. Since
the ASG design is independent of any language and platform, this step is
unique whatever the language and the platform. Then, the model
specifications are inferred to generate the Crop2ML model component
and reference the auxiliary and initialization functions, if they exist.

3.2. Requirements for a crop model component

In our context of model reuse and exchange, the code of the source
model should meet some criteria:

- A model component should be self-contained, adaptable, and reus-
able for different purposes by third parties. All functions level de-
pendencies should be explicit, i.e., the model component codebase
should have a direct access to native code of all dependencies written
in the language of the platform.

- Components should explicitly define their inputs and outputs and
without side effects. They should be decoupled from the data storage.
The main challenge for the compositional approach is that compo-
nents must be divided into independent fine-grained models that can
be coupled through their inputs-outputs and run sequentially. Thus,
model components should provide a well-defined interface contain-
ing all required information to ensure their extraction. Similar to
Javadoc (Kramer, 1999) and Doxygen (Laramee, 2011), some an-
notations relating to Crop2ML concepts are provided for model
description in the case where the modeling platform does not provide
an interface for the model description such as @author, @timestep,
@shortDescription, etc. Besides, this meta-information can be pro-
vided as code comments or docstring that allow extraction of the
required information using a search algorithm. This minimizes the
need to embed markup and maintains the overall readability of the
comments in the code. Most object-oriented platforms provide a
design of components that make it possible to know exactly where
algorithms and initialization methods are implemented, and to infer
them. However, for non-object-oriented platforms that do not pro-
vide a fixed design, components should include additional informa-
tion based on specific annotations within comments to indicate
algorithms and state initialization parts.

Fig. 1. Schema of the main steps of the CyMLTx transformation workflow for
Crop2ML model generation from platform model components. Green arrows
show the three main steps of the transformation process: (1) generation of the
Concrete Syntax tree (CST) and extraction of meta-information from the Ab-
stract Syntax Trees (ASTs) of the source code; (2) pre-processing of the ASTs
and generation of the Abstract Semantic Graphs (ASGs) of the source of the
algorithms, initialization and auxiliary functions; and (3) transformation of the
ASGs into the CyML language and merging with model specifications to
generate a Crop2ML model component. Intermediate results are highlighted
in grey.

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

4

- The current version of CyML does not support exception handling,
events, generators, and unconditional branching; therefore, the code
of the source model should be modified to remove these constructs.

3.3. Design and architecture of CyMLTx

The design and some implementation details of the core of CyMLTx
are presented below. The transformation rules that have been defined in
CyMLT associate a CyML construct to one construct of each target lan-
guage. We place the restriction on this forward transformation by
limiting the CyML constructs with a set of constructs shared by the target
languages, which consequently limits the target language constructs.
The backward transformation rules can be either generated from the
forward transformation or explicitly defined from a new set of language
constructs that have their equivalence in CyML.

3.3.1. Code transformation principles
Let us consider CyMLT as the forward transformation φ : C→ Pi,

where C and Pi are the set of constructs of the CyML language and a
language used by a platform, respectively. C is the common set of con-
structs in the implementation of components in crop modeling plat-
forms. In this context, a total mapping means that the function is defined
for all possible constructs in the CyML language, so whatever the
construct inputted into the function, a corresponding construct in the
target platform’s language will always be produced. Therefore, the
function φ is considered a total mapping because it maps every possible
input to a corresponding output. Furthermore, Pi is a restriction of the
corresponding language so that the sets C and Pi are semantically
equivalent. Thus, CyMLT provides a base of constructs for each
restricted platform language, and for each p in Pi, there is one c in C such
that φ(c) = p and φ is a bijection mapping between C and Pi. It is also
possible to find the inverse transformation φ− 1 so that φoφ− 1 = Identity.
However, this consideration using the same restricted set Pi for the in-
verse transformation makes the mapping system too restrictive. There
are other constructs in the platform not included in Pi that can have an
equivalence in C. These constructs were not included in Pi because φ is
an application since in CyMLT there is only one construct in Pi associated
to a construct in C. To consider these constructs in the inverse trans-
formation, we need to define a backward transformation μ : Qi→ C
distinct from the forward transformation so that Qi is an extension of Pi.
The set of constructs of CyML does not change. The main new constructs
included in Qi are composite variables and other constructs equivalent to
conditional branching statements, such as switch, select case, etc.
Depending on the language of the platform.

These new constructs need to be integrated in Pi in order to increase
the capacity of the transformation system so that it is able to transform
many components. Indeed, the use of composite variables is a common
practice in crop model development. For example, in the DSSAT plat-
form, a single variable related to weather can include different types of
information such as day length, precipitation, maximum and minimum
air temperature, and wind speed. A composite data structure is used to
instantiate composite variables. Composite variables are automatically
decomposed into several individual variables according to the CyML
data structures. Thereby, for q in Q,φ(μ(q)) = q′ q′ ∈ Pi⊂Qi. q′ ∕= q but q′

and q′ are semantically equivalent. Consequently, the implementation of
CyMLTx provides a set of transformation definition rules that are
distinct from those of CyMLT to take into account constructs provided by
the modeling platforms that are defined in CyML.

3.3.2. CyMLTx implementation
CyMLTx has a modular architecture based on the technical design

that underly the different steps that are defined in the transformation
workflow (Fig. 1). Similar to CyMLT, we implemented it in the Python
language to provide an interactive mode in which users have access to
the intermediates results of the workflow.

It is cumbersome to implement a parser for each language for a
scalable system in the context of multiple languages. To reduce imple-
mentation efforts, particularly the programming time for the imple-
mentation of parsers and considering the extensibility and efficiency
requirements, we used the ANTLR (ANother Tool for Language Recog-
nition) parser generator (Parr, 2013) that produces lexical and syntactic
parsers for different grammars of programming languages. The ANTLR
provides a collection of grammars for many popular programming lan-
guages, including C, C++, Java, C#, Fortran 77, and Python. It aug-
ments the grammar with tree operators and rewrites rules and actions. In
the case where the grammar database does not contain an input lan-
guage, its grammar can be expressed based on the ANTLR syntax, as we
did in this work for Fortan 90 based on Fortran 77. This new grammar
has been reviewed and approved by the ANTLR community and is
available at https://github.com/antlr/grammars-v4/tree/master/fortr
an/fortran90.

The relationships of the main classes of CyMLTx are illustrated in
Fig. 2. The generated parsers (LanguageParser) were used to generate
CST from the model components. A set of classes (LanguageTransformer)
whose names are suffixed by “Transformer” were implemented for the
transformation of the CST to the AST for each language of the supported
platforms, for instance CsharpTransformer class for the C# language that
is supported by BioMA. Each class implements visitor methods based on
the grammar constructs. Each visitor method name is composed of
“visit_” followed by the type of the constructs and emits a new node.

A MetaExtraction class is an abstract class that implements methods
that allow for extracting information from the AST or the code com-
ments. It provides four main methods:

• Get Node from its Type (getTypeNode) that takes as input a tree and a
type of node T and returns a subtree or list of subtrees of Nodes of
type T.

• Get Node from its Attributes (getAttNode) that takes as input a tree and
the values of node attributes and returns the nodes that have these
attribute values.

• Get Method (getMethod) that takes as input a tree and a function or
method name and returns a list of subtrees of the function or method
that has this name. It is a particular method of getAttNode.

• Get From Comments (getFromComments) that allows extracting meta-
information from code comments.

An Extraction class embedding the specificities of the modeling
platforms (such as model design) is implemented for each platform
(PlatformExtraction). It specializes the MetaExtraction class and is used
to capture some required information, in particular model meta-
information, by generating a Model (ModelUnit or ModelComposition)
object. The Model object is then translated into Model Specification in
an XML format validated with the Crop2ML Document Type Definition
(DTD). The methods of the “MetaExtraction” class are also used to
analyze the AST and to extract the model dynamics, initialization
functions, and external functions as subtrees. These subtrees are then
procedurally manipulated with incremental and iterative processes ac-
cording to the types of the nodes (Preprocessing). No formal grammar is
used to describe the part of the platform specification on the language.
Thereby, the regular constructs (patterns) of platforms are embedded in
the implementation process. The number of processes depends on the
invasiveness of the modeling platform.

A class corresponding to a node type is implemented and inherits the
Transformer abstract class that implements a method to capture all the
nodes of the desired type on which the processes are applied. A set of
classes named Language_CyML (for example java_cyml) are used to
operate the transformation of the processed AST to the ASG whose nodes
are only based on CyML constructs that are provided from the inter-
section of the framework languages.

Lastly, the CyMLGenerator class implements a method (write()) to
generate CyML code from the ASG. It is based on the Visitor design

C.A. Midingoyi et al.

https://github.com/antlr/grammars-v4/tree/master/fortran/fortran90
https://github.com/antlr/grammars-v4/tree/master/fortran/fortran90

Environmental Modelling and Software 168 (2023) 105790

5

pattern (Gamma et al., 1995) to avoid a procedural implementation
approach. NodeVisitor contains a dispatch method that enables recursive
tree traversal through the nodes of the ASG. The appropriate visitor
method corresponding to the type of the current node is called and the
associated code fragment is emitted. Since all the required built-in
methods provided from the languages and their mapping with CyML
methods are listed in the system database, any other methods called in
the algorithm part are considered external or auxiliary functions. The
names of these functions help to extract their AST and to perform all the
above transformation processes to generate their ASG and then the
corresponding CyML code.

CyMLTx generates a Crop2ML ModelComposite as a graph of com-
ponents from a composite expressed in a declarative form or using a
procedural approach. In the latter case, the composite must be imple-
mented as sequential calls of the unit components. Although an algo-
rithm can be expressed in the Crop2ML ModelComposite, the current
version of CyMLTx does not support an automatic transformation of a
composite expressed with control structures.

To ensure modularity and extensibility, the generation of Crop2ML
ModelComposite consists of two stages: the processing of the platform
component to generate an instance of the ModelComposition class based
on the concepts of Crop2ML ModelComposite, and the transformation of
this object in XML format that can be visualized as a graph of unit
components. The last process is implemented through the Pl2Crop2ML
(Platform to Crop2ML) class that contains two methods run_unit() and
run_compo() methods for ModelUnit specification and ModelComposite
specification file generation.

3.4. Use cases

We demonstrate our approach with three widely used crop modeling
platforms: BioMA (Donatelli and Rizzoli, 2008), SIMPLACE (Enders
et al., 2010), and DSSAT (Hoogenboom et al., 2019a,b; Jones et al.,
2003). These platforms raise different challenges: i) they use different
programming languages (DSSAT uses Fortran 90, BioMA uses C#, and
SIMPLACE uses Java); ii) they use object-oriented (SIMPLACE and
BioMA) or procedural (DSSAT) programming paradigms; and iii) their
components are specified through explicit interfaces (BioMA and Sim-
Place) or code comments (DSSAT).

We provide one use case model component for each of the three
platforms to highlight the challenges of the automatic transformation
from programming language and modeling platform to Crop2ML.
Specificities of each transformation are summarized in Table 1.

Use case 1: The first use case is the energy balance model component
of the Sirius wheat model (Jamieson et al., 1995) implemented in the
BioMA framework (Manceau et al., 2023). It includes eleven simple
strategies (ModelUnits) executed sequentially to estimate canopy tem-
perature, soil evaporation, and crop transpiration. BioMA adopts the
strategy design pattern (Gamma et al., 1995) to make available a set of
models that represent biophysical processes in a component through the
same interface (IStrategy). Such models are called “simple strategies”.
They encapsulate model specifications (inputs, outputs variables, algo-
rithms), parameters, and pre- and post-conditions tests, and are trans-
lated to Crop2ML ModelUnits (Midingoyi et al., 2021). Simple strategies
are embedded in a composite strategy that is mapped to Crop2ML
ModelComposite.

Use case 2: The second use case is the soil temperature component
implemented in SIMPLACE. This component simulates the daily average
soil temperature at the center of each soil layer. Soil temperature fluc-
tuations in each soil layer depend on the soil surface temperature
(including the effect of snow cover or crop cover), the distance of the
layer from the soil surface, and the damping depth where the soil tem-
perature is equal to the annual average air temperature (Williams and
Izaurralde, 2005). SIMPLACE is designed to encapsulate the solution of a
modeling problem through discrete, replaceable, and interchangeable
software units called SimComponents (Enders et al., 2010). Different
approaches for the simulation of biophysical processes can be used via
alternate mathematical formulations. SimComponents are the smallest
building blocks.

The specification of SimComponents has been mapped to Crop2ML
ModelUnit specification (Midingoyi et al., 2021). Group Components
combine SimComponents into logical structures of components that
belong together and map to Crop2ML ModelComposite.

Use case 3: The third use case is the DSSAT soil temperature
component, originally based on the EPIC soil temperature model (Wil-
liams et al., 1989) and further improved by the DSSAT community.
DSSAT has a modular structure in which the different components are
structured to allow easy replacement or addition of new modules. The

Fig. 2. Class diagram illustrating the implementation of the platform to Crop2ML transformation system (CyMLTx). The classes contain attributes and methods.

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

6

core of the DSSAT platform is the Cropping System Model (CSM)
designed with a modular architecture in which components are sepa-
rated along scientific domains (crop, soil, soil and land management,
weather) and use interfaces to replace or add modules (Jones et al.,
2003). The CSM is divided into five primary modules including weather,
management, soil, plant, and energy balance. Each primary module is
further subdivided into secondary modules and finer delineations. Each
module is called to perform initialization of state variables at the
beginning of a simulation, and at each iteration to calculate daily rates
and perform daily integration of state variables, while output is gener-
ated at different times during the simulation.

3.5. Extension of CyMLTx to new platforms

The modular architecture of CyMLTx has been designed to allow its
extensibility to a platform that is currently not supported. It presents
three levels of processes: the first relates to the language that produces
the AST, the second relates to the platform component design allowing
the ASG generation and meta-information extraction, and the third
generates the Crop2ML component. The last step of ASG transformations
into the CyML language can be reuse in any new platform since, as stated
previously, is implemented regardless of the platform and language
specificities that transform the ASG and Model object to the Crop2ML
model.

Therefore, the addition of a new platform involves:

• Providing the parser of the programming language of the platform.
This step could be skipped if it has already been included in the

CyMLTx language parsers repository, which is currently the case for
C++, C#, Java, Fortran, Python, and R. Many platforms can share
the same programming language, and in this case the same language
parser will be used. Language grammars could also be provided from
the ANTLR repository (https://github.com/antlr/grammars-v4).
Otherwise, a new language parser in Python should be integrated in
the CyMLTx parser repository.

• Defining the transformation rules between the new language and
CyML. These mapping rules are only be based on the language con-
structs used to express the compute function of components outputs,
initialization, and auxiliary functions. At this level, it requires
considering the shared constructs identified to express model algo-
rithms. The set of model components or platform that can be trans-
latable in Crop2ML is limited by the constructs defined in CyML but
it can be extended.

• Describing the processes of meta-information extraction and plat-
form specificities handling. It requires a series of defined actions that
extract, transform, and remove specificities of the new platform to
generate intermediate tree or object with no platform dependency.
The complexity of this step depends on the distance between the
platform specificities and Crop2ML/CyML concepts.

To evaluate the extensibility of the system, OpenAlea (Pradal et al.,
2015), STICS (Brisson et al., 2009), and SiriusQuality (Martre et al.,
2006) were added to the system. OpenAlea is an open-source modular
and component-based framework that addresses the modeling needs of
the plant biology research community. OpenAlea model components are
commonly written in the Python language and are represented as Nodes

Table 1
Transformation specificities of the crop modeling platforms that have been analyzed in this project.

BioMA SIMPLACE DSSAT STICS OpenAlea

Metadata description BioMA provides a user
interface (DCC, Domain Class
Coder) to generate model
variable information in XML
file and in C# code with
BioMA classes

A SimComponent class implements a
method “createVariables” that
specifies variable information as
arguments. Other information is
provided through annotation such as
Authors’ names and reference

Model metadata is described as code
comments

Metadata is associated explicitly
to each package and component
(e.g. authors, description,
version).It can also be provided
inside the node function as code
comments

Element used to create
Crop2ML ModelUnit
specifications

Strategy and Variable
information classes (VarInfo
class)

Arguments order of the method
createVariables()

Regular expression in code comments
that matches specified patterns

Regular expressions and code
analysis

Missing Crop2ML
ModelUnit
specifications

Reference, strategy version,
extended description, time
step, parameter category

Extended description, author
institution, version, timestep,
parameter category

Units, Categories, if not provided
in code comments

Model composition Procedural approach using a
Composite strategy class I that
implements a sequential calls
of unit components and can
contain control structure

Declarative approach using XML
format (GroupComponent DTD)

Procedural approach using a subroutine
that sequentially calls other subroutines
considered as a unit component

A composite node encapsulates
others nodes defining a
hierarchy of components

Transformation of a
model composite

From code to components
graph (control structures are
not handled)

Graphs transformation
(SimComponent [inputs and outputs]
in the concepts of the
GroupComponent DTD are not
considered)

From code to component graph: the
composite implements a sequential calls
of unit components

Graph transformation

Test-driven
development

Pre and post condition tests.
Unit tests defined at
composite level

Unit test defined inside the code in
declarative format

No unit test

Transformation of unit-
test

Not handled (requires
completing the generated
Crop2ML specifications)

Language in which the
component behavior
is implemented in
the platform

C# Java Fortran Python

Transformation of the
model algorithm

Yes, but language constructs are limited to the (extensible) CyML grammar
Utility functions are not handled

Transformation of the
platform language
into CyML

In the limit of the platform
requirements

Annotation could be added to remove
some parts of code

Platform
specificities (e.g.
control variable)
are handled
through
annotations

Pure Fortran
code without
platform
specificities

Annotations used to identify the
initialization function and other
parts of code

C.A. Midingoyi et al.

https://github.com/antlr/grammars-v4

Environmental Modelling and Software 168 (2023) 105790

7

that expose their inputs and outputs ports. The composition of a model
component is represented as a graph of Nodes that allows for defining
the hierarchy of components. In STICS, a model is organized into
modules commonly implemented in the Fortran language. Each module
can be subdivided into sub-modules that can be called sequentially to
define a composition. In SiriusQuality, most of the processes were
implemented as BioMA Components. The main principles of the exten-
sion of CyMLTx with each platform are provided in the Results section.

4. Results

The evaluation of CyMLTx aims to show that the system can convert
model components of diverse crop modeling platforms into Crop2ML
models. The generated models can be reused, modified, and composed
with other model components by modelers seeking alternative modeling
assumptions or formalisms, or models of new processes to tackle real-
world system modeling issues. Here, we present some implementation
elements for the three crop modeling platforms and the three test cases
described above.

4.1. Generation of Crop2ML ModelUnit specifications

One class is implemented for each platform to achieve the meta-
information extraction (e.g. biomaExtraction or simplaceExtraction),
which can then be used to build the Crop2ML ModelUnit specifications.
Each class implements an extraction method based on the pattern pro-
vided by each platform for meta-information description.

The biomaExtraction class implements a method that generates
Crop2ML model specifications from the processing of both the VarInfo
and Strategy classes (Fig. 3). The pattern used to identify the meta-
information is defined as follows: (1) the meta-information of the pa-
rameters and the name and category (states, rates, …) of the variables
are retrieved from the attribute PropertyName of one instance of the
PropertyDescription class defined in the constructor of the Strategy class;
(2) the retrieved variable names are then used to get their attribute
values in the DescribeVariables() method of the corresponding VarInfo
class; and (3) other meta-information such as description (in the
Description property) and authors’ names (in the SetPublisherData()
method) are retrieved in each strategy class (see Fig. 4).

The simplaceExtraction class produces Crop2ML ModelUnit

specifications from the SIMPLACE SimComponent (Erreur ! Source du
renvoi introuvable.). It extracts the variables and parameters meta-
information from the createVariables() method implemented by any
SimComponent. Using the CyMLTx core method getAttNode(AST, crea-
teVariables()), the subtree corresponding to the createVariables.) method
of the component is filtered. Each Call node (node of type “Call” cor-
responding to the call of a method) of the CreateSimVariable() method
inside this subtree is accessed. So, the SimplaceExtraction method con-
sists in retrieving the arguments of each CreateSimVariable() call node to
infer the Crop2ML model specifications based on the order of the
arguments.

The dssatExtraction class uses the meta-information of subroutines
provided as code comments and code statements (e.g. variable type and
datatype) to generate Crop2ML ModelUnit specification (Fig. 5).
CyMLTx detects composite variables or parameters with derived types
used in the subroutine and retrieves the unit variable or parameter with
built-in types required by the component. In the third use case, the Soil
Temperature Subroutine contains SOILPROP and WEATHER composite
arguments that encapsulate 59 soil properties and 43 weather variables,
respectively.

Only six soil properties and two variable parameters are used in this
subroutine. They are automatically detected, extracted, and explicitly
used to generate the model specification. Other arguments that are
specific to the DSSAT execution environment, such as control variables
that are not useful to be represented as component inputs in Crop2ML
ModelUnit, are automatically removed.

4.2. Automatic transformation of the source code of the platform’s
algorithm into CyML

CyMLTx generates Crop2ML ModelUnit algorithms from each
component (i.e. Simple Strategy, sub-routine, or SimComponent of the
BioMA, DSSAT, and SIMPLACE platforms.

In BioMA the algorithm of each Simple Strategy is extracted from the
algorithm method defined by the component’s IStrategy implementa-
tion. In this particular case, this method is “CalculateModel()” called by
an “Estimate()” method. The query on the AST of each simple strategy
class using the name of the method allows recovering the sub-AST cor-
responding to the strategy algorithm (computation process), which is
transformed in CyML code. The processing of the major specificity of

Fig. 3. Transformation of the BioMA strategy and VarInfo classes to Crop2ML model specifications: variable description in a VarInfo class (a), parameter description
and variable names accessible in a simple strategy (b)and part of the generated Crop2ML model specifications (b).

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

8

BioMA component, i.e., the use of the instances of the domain classes to
implement the computation process, made it possible to move from the
object-oriented approach to a procedural approach. Fig. 6a shows the
computation process of the Priestley-Taylor strategy of the Energy Bal-
ance component implemented in BioMA. The access to variables through

domain classes instances is removed and only variables and parameters
are used to express the generated algorithm in CyML (Fig. 6). If two
instances of the state domain class encapsulating state variables manage
the current and previous time steps, the generated CyML code has two
variables to emulate the two states of the same state variable. Moreover,

Fig. 4. From SIMPLACE SimComponent to Crop2ML model specifications: variable and parameter description in the createVariables method of SimComponent class
(a) and part of the generated Crop2ML model specifications (b).

Fig. 5. From DSSAT subroutine to Crop2ML Mod-
elUnit specifications:part of Soil Temperature sub-
routine which uses a derived type (SoilType) to
declare a composite variable SOILPROP. DS variable
is a member of this variable that can be retrieved by
the dssatExtraction class through the assignment. The
meta-information are enclosed in two tags with a
well-defined format (%%CyML Description Begin/
End%%) (a) and part of Soil Temperature Crop2ML
ModelUnit specification (b). Although the input DS is
not defined as the subroutine argument, it is a
parameter of the component extracted from the
derived type.

Fig. 6. Computation of Priestley-Taylor evapotranspiration in the Energy Balance component: BioMA code (a). EBState, EBRate, EBAuxiliary and EBExogenous
encapsulate the state, rate, auxiliary and exogenous variables, respectively; Crop2ML ModelUnit algorithm generated by CyMLTx (b).

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

9

the CalculateModel() method of a simple strategy class may depend on a
method whose arguments can be the instance of domain classes and
without explicit return values. Thus, CyMLTx implements in the pre-
processing module the function that analyzes the calling method to
extract the actual inputs and outputs. Inputs are fields of the domain
class on which the method actually depends. They are used to calculate
other variables and outputs corresponding to the modified variables of
domain classes in the body of the called method.

For SIMPLACE, CyMLTx identifies Erreur ! Source du renvoi
introuvable. the computation and initialization code parts of the Sim-
Component. Any model component in SIMPLACE implements a Compute
() method to express the model algorithms and an init() method for the
initialization of the Erreur ! Source du renvoi introuvable. state
variablesErreur ! Source du renvoi introuvable. This information
makes it possible to extract the sub-ASTs of the model algorithm and
initialization part. These subtrees are transformed to generate the model
algorithm and initialization function in CyML. One specificity of SIM-
PLACE is its custom data type FWSimVariable that encapsulates variables
and parameters and implements the getter and setter methods to access
and update their values, respectively (Fig. 7). The accessor method is
removed and only the member corresponding to the model variables or
parameters are used. The setter method is emulated to an assignment
statement (Fig. 7Erreur ! Source du renvoi introuvable.). The Soil
Temperature component provides an initialization function that esti-
mates the number of soil layers, the depth of each layer, and initializes
the temperature of each layer (Fig. 8a). The member variables (e.g,
SoilTempArray) that are defined within the class of the component
outside of any method are either inputs or outputs of the SimCompo-
nent. Consequently, they are also not declared in the generated CyML
code (Erreur ! Source du renvoi introuvable. b) since they are defined
in the generated model specifications. Only the local variables are
declared and the difference of variable scope between the source and
target language are handled.

CyMLT annotations were inserted into the DSSAT sub-routines to
allow the transformation system to identify the initialization and algo-
rithm parts. The algorithm may be composed of rate calculations and
integration processes. Some statements were ignored through annota-
tions, including the input and output operations and the calls of

functions that do not impact output computations such as formatting.
CyMLTx implements a mechanism to parse imported modules through
the USE statement and extract the information required by the compu-
tation of the outputs. For example, the ModuleDefs module imported in
the SoilTemp sub-routine defines the complex variable Weather, the
variable Soil and the parameters Soil. Most of the DSSAT sub-routines use
this module, which contains definitions of variables that are not used in
this sub-routine. One of the main patterns of DSSAT is the use of a
control variable that separates the state variables initialization, rates
calculation, and integration. With this design, the system generates an
algorithm for rate calculation and integration processes. A model spec-
ification is associated with each algorithm. This design implies that all
rates are calculated before the integration process. The soil temperature
sub-routine calls a subroutine (SOILT_EPIC) that calculates, among
others, the surface temperature (SRFTEMP) and soil temperature (ST) in
each soil layer. In CyMLTx, the called sub-routine is transformed into a
CyML function, which requires the inputs and outputs to be made
explicit by the Fortran INTENT argument. The Call expression is then
transformed in an assignment expression based on the position of the
inputs and outputs arguments of the called sub-routine (Fig. 9). How-
ever, an analysis needs to be performed in the caller sub-routine to
detect parameters provided through the import statements. These pa-
rameters are used as arguments of the generated CyML function.

4.3. Generation of Crop2ML ModelComposite

Crop2ML ModelComposite has been generated from declaratively
written model composite in the case of SIMPLACE or from model com-
posite implemented with a procedural approach in the case of BioMA
and DSSAT. The declarative approach states the list of the model units
and their links through their inputs and outputs while the procedural
approach allows to express the model composite as a sequence of model
units calls that are implemented in an imperative language.

The declarative approach simplifies the generation of Mod-
elComposite since it provides the same level of abstraction than
Crop2ML. The SIMPLACE composite components called Group-
Component are expressed in an XML format following a DTD. Here, the
transformation consists in mapping the DTD concepts of Crop2ML and

Fig. 7. Transformation of the SIMPLACE algorithm to Cro2ML ModelUnit algorithm: Snippet of SIMPLACE Soil temperature code showing the update of Soil-
TempArrayusing the setArrayValue method (a) and code of the snippet of SIMPLACE Soil temperature process method generated by CyMLTx (b).

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

10

SIMPLACE allowing to extract the XML elements, attributes and values
of a GroupComponent and to set the fields of the ModelComposition
object (Fig. 10).

An instance of the biomaExtraction class allows to automatically
generate the corresponding Crop2ML ModelComposite specification
based on the source code of the composite. The extraction method

Fig. 8. Transformation of the initialization and process methods of the Soil temperature SimComponent of SIMPLACE to Crop2ML model initialization and algo-
rithms generated by CyMLTx, respectively: Initialization in the CyML language (a) and process in the CyML language (b).

Fig. 9. Transformation in CyML of a DSSAT call subroutine to assignment statement: DSSAT Fortran code (a) and CyML code (b).

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

11

implemented in the biomaExtraction class consists in retrieving the
subtrees of the called methods Estimate() of each Simple Strategy in the
body of the EstmatedOfAssociatedClasses() method implemented in any
BioMA composite strategy (Fig. 11a). The ordered list of the subtrees
gives the order of the instances of the Simple Strategy classes which
allows for establishing the links between them based on their inputs and
outputs. The internal links of the generated Crop2ML ModelComposite
(Fig. 11b) are used to automatically produce a model graph by using
Graphviz library (Ellson et al., 2002) that represents the behavior of
component execution (Midingoyi et al., 2021). The ModelComposite
inputs derived from the difference between the set of inputs and outputs
of all simple strategies, and the Crop2ML ModelComposite outputs
derived from all the simple strategies outputs that are not recalculated
internally For DSSAT model composites represented as a sequence of
calls of subroutines, the same process is applied to identify Crop2ML
Model Links and to generate Crop2ML ModelComposite.

4.4. Interoperability between modeling platforms

CyMLTx addresses the challenge of modeling platform interopera-
bility by automatically transforming with CyMLT the generated
Crop2ML models into other modeling platforms. Based on these two
systems, all the components used in the use cases have been made
available for the platforms supported by Crop2ML (Table 2). Compo-
nents have also been made available for non-specific platform in the

language supported by CyMLT. In Table 2, we illustrate the interoper-
ability of BioMA, SIMPLACE and DSSAT with 6 platforms and 6 pro-
gramming languages. The code of the initial component and of the
resulting transformation is available on GitHub.

4.5. Extension of CyMLTx to new modeling platforms

We extended CyMLTx to three very different modeling platforms,
OpenAlea, SiriusQuality, and STICS. The transformation of an OpenAlea
CompositeNode to Crop2ML ModelComposite is straightforward since
the two platforms express a composite as a workflow defined as a
directed graph of Nodes. However, the source components are limited to
workflows without algebraic operators. The transformation approach is
then similar to Simplace-Crop2ML. Each Node and the specification of
its inputs and outputs are mapped with a Crop2ML ModelUnit but some
concepts are missed such as the units of inputs/outputs, their category
(state, rate, …), and their type (variable or parameter). This limitation is
removed by describing meta-information as code comments in the
function associated to each node. The CyML and Python languages are
very close and only few actions need to be expressed to obtain the ASG.
However, it requires to annotate Python functions with type hints before
the transformation. The Python grammar written in ANTLR, available in
the ANTLR Github repository, and the Python parser generated are in-
tegrated in the CyMLTx grammars repository. CyMLTx is limited to
OpenAlea Node associated to pure Python function which allows to

Fig. 10. From SIMPLACE GroupComponent to
Crop2ML ModelComposite: Part of Soil Temperature
SIMPLACE component with two SimComponents (a).
They are listed in order of calls, and each contain a
list of input and output XML elements. Their source
and destination XML attributes indicate the links be-
tween SimComponents; and 0art of the generated Soil
Temperature Crop2ML ModelComposite (b). The in-
ternal links provide information on the order of
ModelUnits. Unlike Simplace, state variables (e.g.
AgeofSnow) are exposed as inputs of the Mod-
elComposite, as the private SimComponent variables
(pSoilLayerDepth).

Fig. 11. From the BioMA composite strategy to Crop2ML ModelComposite: part of BioMA Energy balance composite strategy class showing the sequence of calls (a)
and part of automatically generated Crop2ML ModelComposite (b).

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

12

generate the Crop2ML ModelUnit algorithm.
For STICS transformation, the Fortran 90 grammar expressed in

ANTLR and its parser used for DSSAT transformation are reused since
STICS components are also implemented in Fortran 90. Likewise, the
fact to handle DSSAT artifacts (Control variables, IO operations) through
annotations make the ASG generation reusable in STICS case. The dif-
ference of the two transformations comes from the identification and
extraction of the initialization and algorithm parts. Unlike DSSAT,
where initialization and algorithm are defined in the body of the sub-
routine through the use of DSSAT control variables, initialization and
algorithm can be expressed in different subroutines in STICS. Thus,
annotations are provided to make difference of the two subroutines
during extraction. The composite is also implemented as the sequential
calls of subroutines and the procedure of transformation is similar to
DSSAT and BioMA.

Most of the SiriusQuality components were implemented in BioMA.
They can also be coded as framework-independent components in the
C# language. Meta-information is provided as code comments from
annotations. This allows to reuse the same meta-information extraction
method (getFromComments ()), as was the case with STICS and DSSAT,
to produce Crop2ML ModelUnits specifications, instead of implementing
another method based on a specific pattern like BioMA and Simplace.
The C# parser used for BioMA models is reused to parse the source code.
Likewise, the approach to generate Crop2ML ModelComposite from
BioMA is reused since the composite is also expressed as sequential calls
of model units.

5. Discussion

In this project we extended the CyMLT transformation system
(Midingoyi et al., 2020) to automatically transform model components
implemented in crop modeling platforms into Crop2ML. The proposed
system is based on the analysis and translation of fragments of the source
code of model components through the recognition of shared concepts.
The main contributions of this project are: (1) the proposal of an ar-
chitecture for model specification extraction using code comments and
codebase of components provided by different crop modeling platforms;
(2) the combination of source code analysis and search algorithm to
interpret source code and extract information; (3) the implementation of
a many-to-one transformation system (CyMLTx); and (4) the demon-
stration of its applicability to three platforms that use different concepts
and languages (DSSAT, BioMA, and SIMPLACE), and its extension to
three other platforms (STICS, OpenAlea, and SiriusQuality).

5.1. Advantages of the CyMLTx approach

This work has been motivated by the increasing need of crop model
components exchange and reuse (Holzworth et al., 2014; Martre et al.,
2018). CyMLTx allows porting a model component outside of its crop
modeling platform where it has been implemented, and transforming it
in the Crop2ML exchangeable format. With the CyMLTx system, com-
ponents can be reused in various languages and modeling platforms.
Thus, making alternative components available for different crop
modeling groups, CyMLTx can contribute to the strengthening of the
Agricultural Model Intercomparison and Improvement Project (AgMIP;

Rosenzweig et al., 2013) efforts of crop model intercomparison and
especially crop model improvement.

Instead of rewriting existing components in a new language or to
develop wrappers to adapt them to the specificities of the target plat-
forms, CyMLTx reduces the cost of reusing legacy components through
automatic transformation to Crop2ML. Crop model components are
codebase and are highly dependent on the modeling platforms in which
they are implemented. The CyMLTx approach is based on reverse en-
gineering to support identifying and extract component meta-
information. It relies on the Crop2ML concepts to generate Crop2ML
models specifications through source code analysis. CyMLTx captures
the dynamics of model components represented as a pseudo-code that
describes a sequential order of statements defining outputs computation
at a given time step. Whatever the artifacts of the modeling platforms,
the dynamic of the component can be expressed uniquely, close to its
mathematical expressions. The philosophy of each modeling language
and platform is well integrated into the transformation system.

The CyMLTx approach is flexible and can be extended to support
other languages and crop modeling platforms. Core modules facilitate
the extension of CyMLTx to new platforms. The level of difficulty to
extend CyMLTx to a new platform depends on both the level of inva-
siveness of the platform and the ability to retrieve meta-information. For
example, extracting meta-information requires less processing in SIM-
PLACE than BioMA. As stated above, BioMA includes meta-information
in both the VarInfo files and in the strategy class while SIMPLACE
provides them as arguments of a specific method that SimComponents
implement. Crop2ML provides a set of guidelines for each platform to be
in line with the formalisms and concepts used and allow automatic
bidirectional code transformation (from platform-to-platform).

The annotation of codes to extract information or parts of code
provides a robust transformation system. For instance, the use of control
variables in the DSSAT components can help to identify the different
concepts such as the initialization algorithm that are translated. How-
ever, they may vary from one component to another or evolve with
changes in the DSSAT component design. This justifies the use of an-
notations that remain unchanged. In the cases of BioMA and SIMPLACE,
modifying the component description interfaces or model design will
cause a failure of the transformation system. CyMLTx recognizes plat-
forms patterns to extract information and translate those patterns into
their equivalent in Crop2ML. A recent line of research has focused on the
use of machine learning (Lachaux et al., 2020) and natural language
processing (Galanis et al., 2020) on source code. It could also potentially
be beneficial to explore this domain to make CyMLTx more flexible.

Based on Crop2ML concepts and languages intersection, CyMLTx
provides two transformation definitions: from Crop2ML to modeling
platforms (one-to-many) and from modeling platforms to Crop2ML
(many-to-one), all based on a shared representation of abstract semantic
graph (ASG) and transformation rules. These two definitions lead to an
interoperable system between crop modeling platforms. This approach
of transformation based on Crop2ML reduces the complexity of the
transformation of algorithms. Let us consider n platforms. A direct side-
by-side transformation system gives A2

n = n(n − 1) transformation defi-
nitions, while our transformation system provides 2n transformation
definitions. As the number of platforms increases, the complexity of the
direct transformation increases exponentially unlike in our approach.

Table 2
List of model components, language in which they are available, and links.

Model
component

Source
Platform

Target Language Target platform Link

Energy Balance BioMA C#, R, C++, Java, Python,
Fortran

Record, DSSAT, SIMPLACE, OpenAlea, STICS,
SiriusQuality

https://github.com/Crop2ML-Catalog/SQ_Energ
y_Balance

Soil
Temperature

SIMPLACE C#, R, C++, Java, Python,
Fortran

DSSAT, OpenAlea, BioMA, STICS, SiriusQuality https://github.com/Crop2ML-Catalog/Simplace
_Soil_Temperature

Soil
Temperature

DSSAT C#, R, C++, Java, Python,
Fortran

SIMPLACE, OpenAlea, BioMA, STICS,
SiriusQuality

https://github.com/Crop2ML-Catalog/DSSA
T_EPICST_standalone

C.A. Midingoyi et al.

https://github.com/Crop2ML-Catalog/SQ_Energy_Balance
https://github.com/Crop2ML-Catalog/SQ_Energy_Balance
https://github.com/Crop2ML-Catalog/Simplace_Soil_Temperature
https://github.com/Crop2ML-Catalog/Simplace_Soil_Temperature
https://github.com/Crop2ML-Catalog/DSSAT_EPICST_standalone
https://github.com/Crop2ML-Catalog/DSSAT_EPICST_standalone

Environmental Modelling and Software 168 (2023) 105790

13

CyMLTx requires that platform developers incorporate model spec-
ifications into their model implementation. Automatic reuse is not
possible without model meta-information. Model specification and
source code should be more closely linked to infer the corresponding
Crop2ML model. CyMLTx enables users to focus on the scientific aspect
of their model rather than on the platform specificities. A model
component can be reused, improved, integrated, and simulated on
various platforms. Therefore, our system fosters the diffusion of models,
sharing them as software and scientific artifacts, thus, enhancing the
transparency and reproducibility of crop modeling activities.

5.2. Limitations of the CyMLTx approach

Although CyMLTx allows establishing transformation rules with
different languages and platforms, several limitations exist. They are
related to the CyML language limitations and Crop2ML concepts. One of
the main limitations is the restriction of the transformation to stateless
components. Implementing stateless or declarative components in some
platforms can be challenging.

A restricted set of constructs supported and shared by the different
platforms has been identified to describe the component algorithm and
are defined in the CyML grammar (Midingoyi et al., 2021). The use of
constructs not defined in the CyML grammar will cause the trans-
formation system to fail. This may be a limitation for implementing
complex algorithms or using composite data types. This limitation re-
quires adapting existing model components to use only the shared
constructs. The use of complex and composite variables (i.e. variables
made up of two or more variables or measures highly related to one
another conceptually or statistically (Ley, 1972)) is a common practice
in crop model development. Complex data types could be added in
future versions of Crop2ML, with some limitations related to language
interoperability (e.g. matrices are not defined in C++ while they are in
Fortran) and the platforms themselves (e.g. SIMPLACE does not support
natively dictionaries). as for composite variable, we addressed this
limitation of CyML by decomposing them into several individual vari-
ables according to Crop2ML data types. The decomposition of composite
variables leads to handle a high number of input and output variables in
Crop2ML, but it allows defining more explicitly the actual variables of a
component. This decomposition of complex variables requires also some
work to recompose the variables when integrating the component into a
platform that requires such a data structure. However, most often
platforms do not share the same composite variables. Adopting com-
posite variables in Crop2ML for reuse purpose can be a real challenge.

CyMLTx handles auxiliary functions that are implemented in model
components. However, for the need of modularity, several model com-
ponents can share libraries of functions used to express the model al-
gorithms and that are implemented outside them. These libraries could
also be provided as compiled format. The current version of CyMLTx
does not address the use of external libraries such as solver or compiled
libraries to implement components. There is no strategy to manage
compiled libraries since the goal of Crop2ML is to provide a white-box,
self-contained component. However, the transformation system could
be extended to support utility functions through the representation and
management of customized import system (other than built-in module).

Our system does not support computation based on event-driven
programming. The logic flow of this programming paradigm is driven
by events such as messages and actions and it may not always be possible
to explicitly identify the sequence of the event calls. Therefore, to ach-
ieve interoperability between heterogeneous platforms, it is necessary to
keep consensus in the representation of the model components through
AMEI.

5.3. CyMLTx supports model improvement, reuse and exchange

The reuse of model components requires that they are defined at a
level of abstraction that facilitates their refinement or integration with

other components. This challenge has been addressed in this project
through the CyMLTx, which facilitates the automatic transformation of
model components into Crop2ML. The generated Crop2ML models are
the input source of CyMLT that produces platform specific model com-
ponents. Although CyMLT and CyMLTx ensure the syntactic compos-
ability, the semantic composability and the selection of components are
essential to address the challenge of model reuse (Holzworth et al.,
2014). It is ultimately the modeler’s task to decide which functionalities
of its modeling solution or components can be exposed for sharing.
Model reuse constraints should be an integral part of the modeling
process, which implies that model reuse should be considered from the
beginning of the modeling process and model should be modular with
fine granularity to facilitate component transformation, extension, and
test.

6. Conclusions

Here we presented an approach for generating Crop2ML model
components from source model components implemented in different
languages and crop modeling platforms. Our approach provides
Crop2ML model components at a high level of abstraction that could be
transformed into platform-compliant model components. It extends the
Crop2ML framework and leads to an interoperable system using
Crop2ML as a bridge for the reuse and exchange of model components
between different crop modeling platforms. Crop2ML framework
development accommodates the software engineering skillsets of
framework users and handles constraints of the programming languages
and software architectures of various crop modeling platforms. It gives
modelers the freedom of choice of a modeling platform and the capacity
to minimize the efforts required in software development for the reuse or
improvement of a model component provided by another platform. The
Crop2ML framework is intended to support crop model improvements
and the reuse and exchange between crops models and modeling plat-
forms of model components notably in the frame of AgMIP and other
crop model intercomparison and improvement projects. Future work
will develop of a semantic representations of model component
composition and will also extend CyMLTx with other languages (R,
C++, etc.) and modeling platforms to integrate more crop modeling
groups.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

C.M. was supported through a PhD scholarship from the French
National Research Agency under the Investments for the Future Pro-
gram, referred as ANR-16-CONV-0004 and INRAE Divisions Agro-
EcoSystem and MathNum. P.M. acknowledges the support of INRAE
Division AgroEcoSystem through the Modélisation du fonctionnemnet des
Peuplements Cultivés (MFPC) network. C.P. received support from CIR-
AD’s MaCS4Plants network, initiated by the AGAP Institute and AMAP
joint research units, and from the EU’s Horizon 2020 research and
innovation program (IPM Decisions project No. 817617).

References

Argent, R.M., Voinov, A., Maxwell, T., Cuddy, S.M., Rahman, J.M., Seaton, S.,
Vertessy, R.A., Braddock, R.D., 2006. Comparing modelling frameworks - a

C.A. Midingoyi et al.

Environmental Modelling and Software 168 (2023) 105790

14

workshop approach. Environ. Model. Software 21 (7), 895–910. https://doi.org/
10.1016/j.envsoft.2005.05.004.

Athanasiadis, I.N., Rizzoli, A.E., Donatelli, M., Carlini, L., 2011. Enriching environmental
software model interfaces through ontology-based tools. Int. J. of Appl. Syst. Stud. 4,
94–105. https://doi.org/10.1504/IJASS.2011.042205.

Barton, C.M., Ames, D., Chen, M., Frank, K., Jagers, H.R.A., Lee, A., Reis, S., Swantek, L.,
2022a. Making modeling and software FAIR. Environ. Model. Software 156, 105496.
https://doi.org/10.1016/J.ENVSOFT.2022.105496.

Barton, C.M., Lee, A., Janssen, M.A., van der Leeuw, S., Tucker, G.E., Porter, C.,
Greenberg, J., Swantek, L., Frank, K., Chen, M., Albert Jagers, H.R., 2022b. How to
make models more useful. Proc. Natl. Acad. Sci. U.S.A. 119 (35) https://doi.org/
10.1073/PNAS.2202112119.

Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2009. Conceptual basis, formalisations
and parameterization of the stics crop model. Editons Quae.

Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.,
2003. An overview of CellML 1.1, a biological model description language.
Simulation 79 (12), 740–747. https://doi.org/10.1177/0037549703040939.

Donatelli, M., Rizzoli, A.E., 2008. A design for framework-independent model
components of biophysical systems, 2008. In: 4th Biennial Meeting of International
Congress on Environmental Modelling and Software: Integrating Sciences and
Information Technology for Environmental Assessment and Decision Making, vol. 2.
IEMSs, pp. 727–734. July.

Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G., 2002. Graphviz— open
source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (Eds.), Graph
Drawing. Springer Berlin Heidelberg, pp. 483–484.

Enders, A., Diekkrüger, B., Laudien, R., Gaiser, T., Bareth, G., 2010. The IMPETUS spatial
decision support systems. In: Impacts of Global Change on the Hydrological Cycle in
West and Northwest Africa. Springer Berlin Heidelberg, pp. 360–393. https://doi.
org/10.1007/978-3-642-12957-5_11.

Enders, A., Vianna, M., Gaiser, T., Krauss, G., Webber, H., Srivastava, A.K., Seidel, S.J.,
Tewes, A., Rezaei, E.E., Ewert, F., 2023. Simplace - a versatile modelling and
simulation framework for sustainable crops and agroecosystems. Silico Plants.
https://doi.org/10.1093/insilicoplants/diad006.

Galanis, M., Dietrich, V., Kast, B., Fiegert, M., 2020. RTFM: towards understanding
source code using natural language processing. In: ICINCO 2020 - Proceedings of the
17th International Conference on Informatics in Control. Automation and Robotics,
Icinco, pp. 430–437. https://doi.org/10.5220/0009826604300437.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA.

Gao, F., Yue, P., Zhang, C., Wang, M., 2019. Coupling components and services for
integrated environmental modelling. Environ. Model. Software 118 (April), 14–22.
https://doi.org/10.1016/j.envsoft.2019.04.003.

Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse, T.
M., Davison, A.P., Ray, S., Bhalla, U.S., Barnes, S.R., Dimitrova, Y.D., Silver, R.A.,
2010. NeuroML: a language for describing data driven models of neurons and
networks with a high degree of biological detail. PLoS Comput. Biol. 6 (6), 1–19.
https://doi.org/10.1371/journal.pcbi.1000815.

Gyori, B.M., Bachman, J.A., Subramanian, K., Muhlich, J.L., Galescu, L., Sorger, P.K.,
2017. From word models to executable models of signaling networks using
automated assembly. Mol. Syst. Biol. 13 (11), 954. https://doi.org/10.15252/
msb.20177651.

Holzworth, D.P., Huth, N.I., de Voil, P.G., 2010. Simplifying environmental model reuse.
Environ. Model. Software 25 (2), 269–275. https://doi.org/10.1016/j.
envsoft.2008.10.018.

Holzworth, D.P., Snow, V., Janssen, S., Athanasiadis, I.N., Donatelli, M.,
Hoogenboom, G., White, J.W., Thorburn, P., 2014. Agricultural production systems
modelling and software: current status and future prospects. Environ. Model.
Software 72, 276–286. https://doi.org/10.1016/j.envsoft.2014.12.013.

Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, J.
W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, G.
Y., Jones, J.W., 2019a. The DSSAT crop modeling ecosystem. In: Boote, K.J. (Ed.),
Advances in Crop Modeling for a Sustainable Agriculture. Burleigh Dodds Science
Publishing, Cambridge, United Kingdom, pp. 173–216. https://doi.org/10.19103/
AS.2019.0061.10.

Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A.,
Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W.,
2019b. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5.
DSSAT.Net. DSSAT Foundation, Gainesville.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P.,
Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D.,
Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H.,
et al., 2003. The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19 (4),
524–531. https://doi.org/10.1093/bioinformatics/btg015.

Hutton, E., Piper, M., Tucker, G., 2020. The Basic Model Interface 2.0: a standard
interface for coupling numerical models in the geosciences. J. Open Source Softw. 5
(51), 2317. https://doi.org/10.21105/joss.02317.

Jamieson, P.D., Brooking, I.R., Porter, J.R., Wilson, D.R., 1995. Prediction of leaf
appearance in wheat: a question of temperature. Field Crops Res. 41 (1), 35–44.
https://doi.org/10.1016/0378-4290(94)00102-I.

Jiang, P., Elag, M., Kumar, P., Peckham, S.D., Marini, L., Rui, L., 2017. A service-oriented
architecture for coupling web service models using the Basic Model Interface (BMI).
Environ. Model. Software 92, 107–118. https://doi.org/10.1016/j.
envsoft.2017.01.021.

Jones, J.W., Antle, J., Basso, B., Boote, K., Conant, R., Foster, I., Godfray, H.C.J.,
Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.
H., Rosenzweig, C., Wheeler, T.R., 2017. Toward a new generation of agricultural
system data, models, and knowledge products: state of agricultural systems science.
Agric. Syst. 155, 269–288. https://doi.org/10.1016/j.agsy.2016.09.021.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A.,
Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping
system model. Eur. J. Agron. 18 (3–4) https://doi.org/10.1016/S1161-0301(02)
00107-7.

Kramer, D., 1999. API documentation from source code comments: a case study of
Javadoc. In: Proceedings of the 17th Annual International Conference on
Documentation, vol. 1999. SIGDOC, pp. 147–153. https://doi.org/10.1145/
318372.318577.

Lachaux, M.-A., Roziere, B., Chanussot, L., Lample, G., 2020. Unsupervised Translation of
Programming Languages.

Lang, M., 2019. yggdrasil: a Python package for integrating computational models across
languages and scales. Silico Plants 1 (1). https://doi.org/10.1093/insilicoplants/
diz001.

Laramee, R.S., 2011. Bob’s Concise Introduction to Doxygen.
Le Novère, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J.,

Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B.,
Snoep, J.L., Spence, H.D., Wanner, B.L., 2005. Minimum information requested in
the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23 (12),
1509–1515. https://doi.org/10.1038/nbt1156.

Ley, P., 1972. Quantitative Aspects of Psychological Assessment: Introduction.
Manceau, L., Martre, P., Midingoyi, C., 2023. Energy Balance Component of Sirius

Quality Model (V.0).
Marshall-Colon, A., Long, S.P., Allen, D.K., Allen, G., Beard, D.A., Benes, B., Von

Caemmerer, S., Christensen, A.J., Cox, D.J., Hart, J.C., Hirst, P.M., Kannan, K.,
Katz, D.S., Lynch, J.P., Millar, A.J., Panneerselvam, B., Price, N.D., Prusinkiewicz, P.,
Raila, D., et al., 2017. Crops in silico: generating virtual crops using an integrative
and multi-scale modeling platform. Front. Plant Sci. 8, 1–7. https://doi.org/
10.3389/fpls.2017.00786.

Martre, P., Jamieson, P.D., Semenov, M.A., Zyskowski, R.F., Porter, J.R., Triboi, E., 2006.
Modelling protein content and composition in relation to crop nitrogen dynamics for
wheat. Eur. J. Agron. 25 (2), 138–154. https://doi.org/10.1016/j.eja.2006.04.007.

Martre, P., Marcello, D., Pradal, C., Enders, A., Midingoyi, C.A., Athanasiadis, I.,
Fumagalli, D., Holzworth, D.P., Hoogenboom, G., Porter, C., Raynal, H., Rizzoli, A.
E., Thorburn, P., 2018. The agricultural model exchange initiative. In: IICA (Ed.), 7th
AgMIP Global Workshop.

Midingoyi, C.A., Pradal, C., Athanasiadis, I.N., Donatelli, M., Enders, A., Fumagalli, D.,
Garcia, F., Holzworth, D.P., Hoogenboom, G., Porter, C., Raynal, H., Thorburn, P.,
Martre, P., 2020. Reuse of process-based models: automatic transformation into
many programming languages and simulation platforms. In: Silico Plants. https://
doi.org/10.1093/insilicoplants/diaa007.

Midingoyi, C.A., Pradal, C., Enders, A., Fumagalli, D., Raynal, H., Donatelli, M.,
Athanasiadis, I.N., Porter, C., Hoogenboom, G., Holzworth, D., Garcia, F.,
Thorburn, P., Martre, P., 2021. Crop2ML: an open-source multi-language modeling
framework for the exchange and reuse of crop model components. Environ. Model.
Software 142, 105055. https://doi.org/10.1016/j.envsoft.2021.105055.

Muller, B., Martre, P., 2019. Plant and crop simulation models: powerful tools to link
physiology, genetics, and phenomics. J. Exp. Bot. 70 (9), 2339–2344. https://doi.
org/10.1093/jxb/erz175.

Nigam, V., Donaldson, R., Knapp, M., McCarthy, T., Talcott, C., 2015. Inferring
executable models from formalized experimental evidence. Lect. Notes Comput. Sci.
9308 (1), 90–103. https://doi.org/10.1007/978-3-319-23401-4_9.

Parr, T., 2013. The definite ANTLR 4 reference. In: The Pragmatic Programmers. https://
doi.org/10.1016/j.anbehav.2003.06.004.

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to
integrated modeling in the geosciences: the design of CSDMS. Comput. Geosci. 53,
3–12. https://doi.org/10.1016/j.cageo.2012.04.002.

Plaisted, D.A., 2013. Source-to-Source translation and software engineering. J. Software
Eng. Appl. 6 (4), 30–40. https://doi.org/10.4236/jsea.2013.64A005.

Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., Godin, C., 2008. OpenAlea: a
visual programming and component-based software platform for plant modelling.
Funct. Plant Biol. 35 (10), 751–760. https://doi.org/10.1071/FP08084.

Pradal, C., Fournier, C., Valduriez, P., Cohen-Boulakia, S., 2015. OpenAlea: scientific
workflows combining data analysis and simulation. SSDBM: Scientific and Statistical
Database Management 1–6. https://doi.org/10.1145/2791347.2791365.

Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., Thorburn, P.,
Antle, J.M., Nelson, G.C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F.,
Wallach, D., Baigorria, G., Winter, J.M., 2013. The agricultural model
intercomparison and improvement project (AgMIP): protocols and pilot studies.
Agric. For. Meteorol. 170, 166–182. https://doi.org/10.1016/j.
agrformet.2012.09.011.

Villa, F., Donatelli, M., Rizzoli, A.E., Krause, P., Kralisch, S., Van Evert, F.K., 2006.
Declarative modelling for architecture independence and data/model integration: a
case study. In: Voinov, A., Jakeman, A.J., Rizzoli, A.E. (Eds.), Proceedings of the
IEMSs Third Biennial Meeting:" Summit on Environmental Modelling and Software".
International Environmental Modelling and Software Society, Burlington, USA,
pp. 1–6. July 2006. CD ROM. Internet: Ht.

Williams, J.R., Izaurralde, C.A., 2005. The APEX Model, vol. 2. Blackland Research
Center Reports.

Williams, J.R., Jones, C.A., Kiniry, J.R., Spanel, D.A., 1989. EPIC crop growth model.
Trans. ASAE (Am. Soc. Agric. Eng.) 32 (2), 497–511.

C.A. Midingoyi et al.

https://doi.org/10.1016/j.envsoft.2005.05.004
https://doi.org/10.1016/j.envsoft.2005.05.004
https://doi.org/10.1504/IJASS.2011.042205
https://doi.org/10.1016/J.ENVSOFT.2022.105496
https://doi.org/10.1073/PNAS.2202112119
https://doi.org/10.1073/PNAS.2202112119
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref4
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref4
https://doi.org/10.1177/0037549703040939
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref6
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref6
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref6
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref6
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref6
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref7
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref7
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref7
https://doi.org/10.1007/978-3-642-12957-5_11
https://doi.org/10.1007/978-3-642-12957-5_11
https://doi.org/10.1093/insilicoplants/diad006
https://doi.org/10.5220/0009826604300437
http://refhub.elsevier.com/S1364-8152(23)00176-7/opth0dmhYRULe
http://refhub.elsevier.com/S1364-8152(23)00176-7/opth0dmhYRULe
https://doi.org/10.1016/j.envsoft.2019.04.003
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.15252/msb.20177651
https://doi.org/10.15252/msb.20177651
https://doi.org/10.1016/j.envsoft.2008.10.018
https://doi.org/10.1016/j.envsoft.2008.10.018
https://doi.org/10.1016/j.envsoft.2014.12.013
https://doi.org/10.19103/AS.2019.0061.10
https://doi.org/10.19103/AS.2019.0061.10
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref17
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref17
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref17
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref17
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.21105/joss.02317
https://doi.org/10.1016/0378-4290(94)00102-I
https://doi.org/10.1016/j.envsoft.2017.01.021
https://doi.org/10.1016/j.envsoft.2017.01.021
https://doi.org/10.1016/j.agsy.2016.09.021
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1145/318372.318577
https://doi.org/10.1145/318372.318577
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref25
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref25
https://doi.org/10.1093/insilicoplants/diz001
https://doi.org/10.1093/insilicoplants/diz001
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref27
https://doi.org/10.1038/nbt1156
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref29
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref30
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref30
https://doi.org/10.3389/fpls.2017.00786
https://doi.org/10.3389/fpls.2017.00786
https://doi.org/10.1016/j.eja.2006.04.007
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref33
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref33
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref33
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref33
https://doi.org/10.1093/insilicoplants/diaa007
https://doi.org/10.1093/insilicoplants/diaa007
https://doi.org/10.1016/j.envsoft.2021.105055
https://doi.org/10.1093/jxb/erz175
https://doi.org/10.1093/jxb/erz175
https://doi.org/10.1007/978-3-319-23401-4_9
https://doi.org/10.1016/j.anbehav.2003.06.004
https://doi.org/10.1016/j.anbehav.2003.06.004
https://doi.org/10.1016/j.cageo.2012.04.002
https://doi.org/10.4236/jsea.2013.64A005
https://doi.org/10.1071/FP08084
https://doi.org/10.1145/2791347.2791365
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1016/j.agrformet.2012.09.011
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref44
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref44
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref44
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref44
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref44
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref44
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref45
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref45
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref46
http://refhub.elsevier.com/S1364-8152(23)00176-7/sref46

	Crop modeling frameworks interoperability through bidirectional source code transformation
	1 Software availability
	2 Introduction
	3 Methods
	3.1 CyMLTx transformation workflow
	3.2 Requirements for a crop model component
	3.3 Design and architecture of CyMLTx
	3.3.1 Code transformation principles
	3.3.2 CyMLTx implementation

	3.4 Use cases
	3.5 Extension of CyMLTx to new platforms

	4 Results
	4.1 Generation of Crop2ML ModelUnit specifications
	4.2 Automatic transformation of the source code of the platform’s algorithm into CyML
	4.3 Generation of Crop2ML ModelComposite
	4.4 Interoperability between modeling platforms
	4.5 Extension of CyMLTx to new modeling platforms

	5 Discussion
	5.1 Advantages of the CyMLTx approach
	5.2 Limitations of the CyMLTx approach
	5.3 CyMLTx supports model improvement, reuse and exchange

	6 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

