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Abstract
Predictor inputs and labels (e.g. yield data) for crop yield forecasting are not always available at the
same spatial resolution. Common statistical and machine learning methods require inputs and
labels at the same resolution. Therefore, they cannot produce high resolution (HR) yield forecasts
in the absence of HR yield data. We propose a weakly supervised (WS) deep learning framework
that uses HR inputs and low resolution (LR) labels (crop areas and yields) to produce HR forecasts.
The forecasting model was calibrated by aggregating HR forecasts and comparing with LR crop
area and yield statistics. The framework was evaluated by disaggregating yields from parent
statistical regions to sub-regions for five countries and two crops in Europe. Similarly, corn yields
were disaggregated from counties to 10 km grids in the US. The performance of WS models was
compared with naive disaggregation (ND) models, which assigned LR forecasts for a region or
county to all HR sub-units, and strongly supervised models trained with HR yield labels. In
Europe, all models (ND, WS and strongly supervised) were statistically similar, mainly due to the
effect of yield trend. In the US, the WS models performed even better than the strongly supervised
models. Based on Kendall’s rank correlation coefficient, the WS model forecasts captured
significant amounts of HR yield variability. Combining information fromWS with Trend model
(using LR yield trend) and WS No Trend model (not using yield trend) provided good estimates of
yields as well as spatial variability among sub-regions or grids. High resolution crop yield forecasts
are useful to policymakers and other stakeholders for local analysis and monitoring. Our weakly
supervised framework produces such forecasts even in the absence of high resolution yield data.

1. Introduction

Predictor inputs and label data for crop yield fore-
casting are often not available at the same spa-
tial resolution. Weather inputs are available at grid-
level (Thornton et al 2020, EC-JRC 2022) and soil
and remote sensing data at sub-kilometer resolu-
tions (ESDAC 2021, Poggio et al 2021, Copernicus
ESA 2022). Label data (e.g. yield statistics) are pub-
lished for administrative regions, such as counties or
provinces. Common statistical and machine learning

methods require strong supervision, i.e. each data
point has to have inputs and a corresponding label
at the same spatial level. This means strongly super-
vised models can be built only at the administrative
levels where yield statistics are published. Therefore,
predictor inputs are aggregated to the level of yield
data. High resolution (HR) labels may be unavailable
for various reasons. For example, yield statistics are
rarely published at grid level, and farm level yield data
are typically held by private companies (Deines et al
2021). In the absence of HR labels, weakly supervised
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learning (Zhou 2018) is still possible using HR inputs
and low resolution (LR) labels. Deep learning models
can be weakly supervised by using HR inputs to pro-
duce HR yield forecasts, which can be aggregated to
LR and compared with the labels there.Weakly super-
vised models limit the spatial aggregation required
for input data and produce HR yield forecasts in the
absence of HR yield data.

Many studies have used deep learning for crop
yield forecasting (Khaki et al 2020, Wolanin et al
2020, Fan et al 2021, Shahhosseini et al 2021),
but they do not disaggregate yields to high resol-
utions. Folberth et al (2019) attempted disaggrega-
tion using gradient boosting (Friedman 2001) and
random forests (Breiman 2001). The models were
trained on LR inputs and labels and later applied
to HR inputs without any further learning or fine
tuning. This approach assumes that data for both
resolutions come from the same distribution, which
is generally unlikely. Other methods of disaggregat-
ing crop yields exist, for example, area-to-point kri-
ging (Brus et al 2018, Steinbuch et al 2020) and spa-
tial allocation based on cross-entropy method (You
et al 2014) or remote sensing indicators (Kang and
Özdoğan 2019, Shirsath et al 2020). We draw inspir-
ation from Jacobs et al (2018), who trained a convo-
lutional neural network (CNN) and an aggregation
layer to predict pixel-level population density from
HR satellite images and LR density statistics. To our
knowledge, weakly supervisedmethods have not been
used to disaggregate crop yields to HR.

We propose a weakly supervised (WS) deep learn-
ing framework that uses HR inputs and LR labels to
produce crop yield forecasts for both HR and LR.
Since crop area statistics may be unavailable at HR,
the framework also estimates the crop areaweights for
aggregation. Our objective was to evaluate WS mod-
els that can produce HR yield forecasts even when
HR yields and crop areas are unavailable. This object-
ive was divided into three sub-objectives. First, we
assessed the ability ofWSmodels to disaggregate crop
yields from low to high resolution. Second, we evalu-
ated the quality of LR yield forecasts produced using
HR inputs. Our analysis included two crops (soft
wheat and potatoes) and five countries (Germany,
Spain, France, Hungary, Italy) in Europe and corn in
theUS. Third, we analyzed howwell weak supervision
captures yield variability at HR for an extreme harvest
and the following season’s harvest.

The contributions of this paper are as follows:
(1) we tackled the task of producing HR crop yield
forecasts assuming that predictor inputs are available
at both HR and LR, but labels are available only at
LR. (2) We designed an approach to learn aggrega-
tion weights for HR forecasts and to propagate weak
supervision signals from LR labels. (3) We demon-
strated the performance and benefits of weak super-
vision in two different settings, Europe and the US,

both in terms of agro-environmental factors and spa-
tial resolutions. Our approach is useful to research-
ers working on similar problems where HR inputs are
available, but labels are missing for various reasons.

2. Methods

We evaluated WS models in Europe and the US
(figure 1). In Europe, WS models used labels from
Nomenclature of Territorial Units for Statistics Level
2 (NUTS2) regions (LR) and inputs from NUTS3
regions (HR). NUTS is a hierarchical system of divid-
ing the territory of the European Union for statist-
ics and policy (Eurostat 2016). In the US, WS models
used labels from counties (LR) and inputs from10 km
grids (HR).

2.1. Data
European data came from the MARS Crop Yield
Forecasting System of the European Commission’s
Joint Research Centre (MARSWiki 2021) and the
Eurostat (Eurostat 2021). The data covered two
crops (soft wheat and potatoes) and five countries:
Germany, Spain, France, Hungary and Italy. Data
from all countries was combined to build one model
per crop, mainly due to the small number of NUTS2
labels. Seasonal data included outputs of the WOrld
FOod STudies (WOFOST) crop model (van Diepen
et al 1989, Supit et al 1994, deWit et al 2019), weather
variables and remote sensing indicators aggregated to
NUTS3 and NUTS2 (table 1). The yield trend was
captured using yield values of five previous years.
Static differences among regionswere captured by soil
water holding capacity and agro-environmental fea-
tures, such as elevation, slope and field sizes (Paudel
et al 2022). In addition, agro-environmental zones
and countries were added as categorical variables to
account for other agro-climatic and administrative
differences. Yield and crop area statistics served as
labels. In most cases, we had data from 1999 to 2018.
The most recent 30% of the years were allocated to
the test set. From the remaining 70% training years,
five most recent years were used in a custom five-
fold sliding validation (figure A.2) to optimize hyper-
parameters (i.e. parameters not learned duringmodel
training).

For theUS, county crop yields and crop areas were
exported from the National Agricultural Statistics
Service of the US Department of Agriculture (USDA-
NASS 2022). 10 km grid inputs came from the
ClimateData Store of theCopernicusClimateChange
Service (Copernicus CDS 2022) and Copernicus
Global Land Service (Copernicus GLS 2020) (table
A.1). Grid-level yields published by Deines et al
(2021), produced using the scalable crop yield map-
per approach of Lobell et al (2015), were considered
ground-truths for grid-level validation since yield
statistics are not available for 10 km grids. Overall, we
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Figure 1. Study areas with low and high resolution units. (a) Europe, (b) the United States. In (a), NUTS2 regions (gray) are
shown with their constituent NUTS3 regions (light gray). In (b), US counties (gray) are shown with constituent 10 km grids
(light gray).

had data from 2000 to 2018. Training and test splits
followed a 70%–30% scheme, similar to European
data. Since the data size was larger (about 10× com-
pared to Europe), hyperparameter optimization used
a single validation set (five most recent years from the
training set), instead of a five-fold sliding validation.

2.2. The weakly supervised framework
The WS framework modified the deep learning
framework from Paudel et al (2023) to include
LR trend features and an aggregation layer. Long

short-term memory (LSTM) recurrent neural
networks (RNNs) were used to extract features from
seasonal data at HR, including crop productivity
indicators, weather and remote sensing indicators.
Features from LSTM were concatenated with static
data and LR yield trend features and passed to the
output layer (figure 2), which produced HR yield
forecasts and crop area fractions. We believe remote
sensing indicators can help predict crop area frac-
tions (crop production area/total land area), but
not the absolute crop areas. The aggregation layer
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Table 1. Data sources for Europe. In Europe, data sources covered two crops and five countries: soft wheat (DE, ES, FR, IT) and
potatoes (DE, FR, HU, IT). The US data covered corn. Data sources for the US are shown in table A.1.

Data Type of data Indicators, source

Crop productivity and water
balance indicators

Seasonal time series Water-limited dry weight biomass (kg ha−1), water-limited dry
weight storage organs (kg ha−1), water-limited leaf area index
(m2 m−2), development stage (0–200), root-zone soil moisture
as % of soil water holding capacity, sum of water limited
transpiration (cm). Source: MCYFS. See Lecerf et al (2019).

Weather variables Seasonal time series Maximum, minimum, average daily air temperature (◦C), sum
of daily precipitation (PREC, mm), sum of daily
evapotranspiration of short vegetation (ET0, mm)
(Penman-Monteith, Allen et al (1998)), climate water
balance= PREC− ET0 (mm), sum of daily global incoming
shortwave radiation (kg m−2 d−1). Source: MCYFS. See Lecerf
et al (2019).

Remote sensing indicators Seasonal time series Fraction of absorbed photosynthetically active radiation
(Smoothed). Source: MCYFS. See Copernicus GLS (2020).

GAES Static Agro-environmental zone identifiers. Source: Global
agro-environmental stratification (Mücher et al 2016).

Crop areas Yearly Crop production areas (ha). Source: Eurostat (Eurostat 2021)
and MCYFS (EC-JRC 2022).

Irrigated area Static Irrigated total area and irrigated crop-specific area (ha).
Source: EC-JRC (2022).

Elevation, slope Static Average and standard deviation of elevation (m) and slope
(degrees). Source: USGS-EROS (2021).

Soil Static Soil water holding capacity. Source: MCYFS. See Lecerf et al
(2019).

Field size Static Average and standard deviation (ha). Source: Lesiv et al (2019).

Yield Yearly Yield at NUTS3 level (t ha−1). NUTS2 level yields were
produced by aggregating NUTS3 yields. Source: FR-Agreste
(2020), DE-RegionalStatistiks (2020), Eurostat (2021), EC-JRC
(2022).

multiplied predicted crop area fractions with land
areas to produce HR crop areas, and used them to
calculate crop area weights for aggregation. HR yield
forecasts were then aggregated to LR. The framework
was supervised with NUTS2 or county-level yields
and crop areas. Data from all NUTS3 regions within
an NUTS2 region, or 10 km grids within a county,
formed a batch to enable aggregation of HR fore-
casts. Model weights were optimized using the Adam
optimizer (Kingma and Ba 2014). Hyperparameters
optimized included the learning rate and weight
decay (aka L2-penalty). Models were retrained with
optimal hyperparameters and evaluated on the val-
idation set with early stopping: training stopped
after the validation error increased for two success-
ive epochs. Before the final evaluation on the test
set, models were retrained on the entire training set
(including validation set) with optimal hyperpara-
meters and early stopping epoch.

2.3. Evaluation
Performance of the WS models was compared with
two types of models: strongly supervised models
and naive disaggregation (ND) models (figure 3).
Strongly supervised models were built at HR and LR
with inputs and labels from the corresponding spa-
tial level. ND models assigned the forecasts from LR
models for parent region or county to all constitu-
ent sub-regions or grids. Thus, ND models served as
the ‘null’ models with no prediction skill, while the
strongly supervised models provided the bar to beat.
LR LSTM and HR LSTM adapted the LSTM frame-
work from Paudel et al (2023). The HR LSTM and
theWSmodels used the same HR inputs, except yield
trend features. The HR LSTM had access to the HR
yield trend; theWSmodels only had the LR trend. All
forecasts were made 60 days before harvest.

We first evaluated WS with Trend forecasts to
validate that they are accurate when aggregated to
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Figure 2. Weakly supervised framework for high resolution crop yield forecasts. The framework used seasonal and static data
from high resolution and yield trend from low resolution to produce high resolution forecasts, which were then aggregated to low
resolution. The framework was weakly supervised by comparing the aggregated forecasts with low resolution yields and crop
areas. The stacked boxes represent data from different high resolution units.

Figure 3. Evaluation framework. The low resolution (LR) models and high resolution (HR) models were trained with inputs and
labels from the corresponding (low or high) resolution. The weakly supervised (WS) models were trained with high resolution
inputs and low resolution labels. High resolution forecasts fromWS models were compared with naive disaggregation (ND)
LSTM and HR LSTM. Low resolution forecasts from the WS models were compared with LR LSTM. LR LSTM and HR LSTM are
based on the LSTM framework of Paudel et al (2023).

low resolution. For this, we compared performance
with LR LSTM. More importantly, we were inter-
ested in the quality of HR forecasts; we compared
themwith ND LSTM andHR LSTM forecasts. Model
comparison followed the scheme used by Paudel
et al (2023). Model forecasts were collected from
ten models to account for the effect of random

weight initializations. We used the average normal-
ized root mean squared errors (NRMSEs), normal-
ized by average yield of the test set, of ten models
to compare performance. Variance and outliers were
analyzed using boxplots of prediction residuals (pre-
dicted yield − reported yield). Significance of model
performance was evaluated using theMann–Whitney
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U test (Mann and Whitney 1947), which is a non-
parametric version of Student’s t-test for independent
samples. Prediction residuals used for boxplots and
statistical tests were averaged across the ten models.

We also analyzed the spatial variability ofHR fore-
casts for soft wheat in Europe and corn in the US.
A significant part of yield variability is explained by
the yield trend attributed to factors such as technolo-
gical improvements (see Lecerf et al 2019). In figure 2,
we expected the LR trend to make the WS model
more accurate, but suppress spatial variability at HR.
Therefore, we ran another version of the WS model
without NUTS2 or county trend. The two versions
are calledWSwith Trend andWSNoTrend (figure 3).
Kendall’s rank correlation coefficient, or Kendall’s tau
(Kendall 1938), was used to quantify the skill to cap-
ture spatial yield variability at HR. For example, the
ranking of NUTS3 yield forecasts within the same
NUTS2 region was compared with the ranking of
NUTS3 yields to compute Kendall’s tau. Kendall’s tau
of the WS models were compared with those of HR
LSTM. A high correlation (and significance based on
p-value) would show that forecasts captured the rel-
ative differences in yields among NUTS3 regions. To
illustrate the spatial yield variability captured by dif-
ferent models, maps of yield forecasts vs. yield statist-
ics were plotted for an extreme harvest and the follow-
ing season’s harvest. In Europe, NUTS3 regions were
selected based on maximum acreage for soft wheat
(France) and years (2016 and 2017) based on signific-
ant yield losses reported in the north of France in 2016
(see Ben-Ari et al 2018). In the US, spatial variability
of 10 kmgrid yieldswas analyzed for 2012, when there
was a severe drought (Rippey 2015), and 2013.

3. Results

In this section, performance comparison results are
reported for the WS with Trend model and spatial
variability analysis includes the WS No Trend model
as well.

3.1. Evaluation of low resolution yield forecasts
For both soft wheat and potatoes in Europe, LR
(NUTS2) forecasts of WS with Trend and LR LSTM
were statistically similar (p-value 0.8534 and 0.5274
respectively) (table A.4). Box plots of prediction
residuals and per-country average NRMSEs were also
generally similar, although WS with Trend had more
stable NRMSEs (i.e. lower variance), especially for
potatoes (figures 4(a) and (b); table A.2). Overall, WS
withTrendmodel was not significantly better than the
LR LSTMmodels despite using HR inputs.

In the US, HR inputs did make WS with Trend
model significantly better; county-level corn fore-
casts were better than those from LR LSTM model
(p-values near 0) (table A.6). The LRLSTMhad a sim-
ilar averageNRMSE, butwith a higher variance; it also

underestimated the yieldsmore compared toWSwith
Trend (figure 4(c)).

3.2. Evaluation of high resolution yield forecasts
For soft wheat and potatoes in Europe, HR (NUTS3)
forecasts of all three models—WS with Trend, ND
LSTM and HR LSTM—were statistically similar
(tables A.7 and A.8). Box plots of ND LSTM and WS
with Trend were similar, but the latter had slightly
higher average NRMSEs, especially for soft wheat in
Germany and Spain (figure 5(a); table A.3). For pota-
toes, the similarity between WS with Trend and HR
LSTM was less conclusive because median residuals
were quite different (0.3588 vs. 0.2123) andHRLSTM
had much lower average NRMSEs (figure 5(b)).
Overall, performance results in Europe did not show
weak supervision to be better than naive disaggrega-
tion to NUTS3.

For corn in the US, weak supervision did produce
better HR forecasts than ND LSTM as well as the HR
LSTM (p-values near zero) (table A.7). HR LSTMhad
the lowest average NRMSE, but box plots showed that
WS with Trend had prediction residuals closer to zero
thanNDLSTMandHRLSTM(figure 5(c); tableA.3).
The median prediction residuals were−0.546 for ND
LSTM,−0.132 forWSwith Trend and−0.443 for HR
LSTM.

3.3. Spatial variability of high resolution forecasts
At HR in Europe, WS with Trend forecasts for soft
wheat were not better than naively disaggregated val-
ues and the same was true for HR LSTM forecasts.
Even then, NDmodels provide no information about
HR yield variability because they assign the same
value to all NUTS3 regions within a NUTS2 region.
Kendall’s tau forWSmodels showed that weak super-
vision does provide information about spatial yield
variability. Kendall’s tau values were 0.265 for WS
with Trend, 0.357 for WS No Trend and 0.578 for HR
LSTM (p-values near zero indicating significance). As
expected, WS No Trend model had a higher correla-
tion coefficient than WS with Trend model. For corn
in the US, Kendall’s tau values were 0.278 forWSwith
Trend and 0.327 for WS No Trend and 0.532 for HR
LSTM (p-values near zero).

For soft wheat in France, ND LSTM predicted
higher yields in 2016, with an average prediction
residual of 0.362. The maps showed that WS with
Trend andHRLSTMwere also influenced by the yield
trend and overestimated yields (average prediction
residuals: 0.280 and 0.395 respectively). Their fore-
casts looked quite similar (figure 6(a)). WS No Trend
model captured the yield losses better with an aver-
age residual of 0.064. In 2017, ND LSTM produced
more accurate forecasts (average prediction residual
−0.144), but provided no information about NUTS3
level yield variability (figure 6(b)). WS with Trend
model forecasts looked similar to ND LSTM forecasts
and did not show visible differences among NUTS3
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Figure 4. Evaluation of low resolution forecasts 60 days before harvest.Weak supervision with trend (WS with Trend) is
compared with low resolution LSTM (LR LSTM). Prediction residuals used for the boxplots and per-country NRMSEs were
averaged across ten models. The whiskers in the bar plots indicate the standard deviation of NRMSEs for the ten models.

sub-regions within NUTS2 regions. WS No Trend
model captured such differences better, and the fore-
casts looked similar to HR LSTM forecasts. Because it
did not use yield trend,WSNo Trendmodel underes-
timated the yields: the average prediction residual was
−0.516 compared to −0.135 for WS with Trend and
−0.061 for HR LSTM.

For corn in theUS, we evaluated spatial variability
for 2012 and 2013 because of the well-known drought
of 2012 (Rippey 2015). For 2012,WSNoTrendmodel

captured the yield losses better, while WS with Trend
model overestimated the yields (figure A.3). The aver-
age prediction residuals were 4.76 for ND LSTM, 5.27
for WS with Trend and 3.60 for WS No Trend. The
WSNo Trendmodel also captured differences among
grids better than theWS with Trend model (Kendall’s
tau: 0.315 vs. 0.265), especially within some counties
in Illinois. In 2013, all models produced more accur-
ate forecasts compared to 2012 (figure A.4). Grid-
level variability was difficult to compare visually, but
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Figure 5. Evaluation of high resolution forecasts 60 days before harvest.Weak supervision with trend (WS with Trend) is
compared with naive disaggregation LSTM (ND LSTM) and high resolution LSTM (HR LSTM). Prediction residuals used for the
boxplots and per-country NRMSEs were averaged across ten models. The whiskers in the bar plots indicate the standard deviation
of NRMSEs for the ten models.

WSNoTrend had a higher Kendall’s tau thanWSwith
Trend (0.303 vs. 0.242).

Overall, the LR trend was more useful toWS with
Trend in Europe than in the US. The Pearson’s r for

NUTS2 trend and NUTS3 yields was 0.81 for soft
wheat and 0.61 for potatoes. The corresponding value
for county trend and 10 km grid yields was 0.33. This
makes sense because NUTS3 regions are much larger
than 10 km grids and yield trend is more pronounced
at larger spatial levels, where variability due to other
factors tends to average out.

4. Discussion

The reliance of standard machine learning methods
on strong supervision can be a limitation when yield

labels are unavailable. Weakly supervised deep learn-
ing methods address this limitation by learning from
HR inputs and LR labels. We have shown that weak
supervision can disaggregate crop yields from low
to high resolution. In Europe, WS with Trend mod-

els were not better than ND LSTM models, but
they were statistically similar to HR LSTM models,
which were themselves similar to ND LSTM models.
Therefore, WS with Trend forecasts were as good as
those fromHRLSTM, especially for soft wheat. At the
same time, the WS models, especially WS No Trend
model, captured some NUTS3-level yield variability.
Information from WS with Trend and WS No Trend
could be combined, for example using a weighted
average, to produce more accurate forecasts. Another
approach would be to train the WS No Trend model

8
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Figure 6. Spatial variability of soft wheat yields and forecasts. Forecasts from weak supervised with trend (WS with Trend) and
weak supervised no trend (WS No Trend) models are compared with naive disaggregation LSTM (ND LSTM) and high resolution
LSTM (HR LSTM). The WS No Trend model produced more accurate forecasts for 2012 and also captured NUTS3 level yield
variability better than ND LSTM and WS with Trend.

to predict yield residuals from the trend. In general,
WS with Trend forecasts indicate where the yield level
should be. WS No Trend forecasts provide inform-
ation about deviations from that yield level. Future
work could develop a consistent method of selecting
one WS model or combining information from the
two models.

Our WS framework was adapted to forecast corn
yields for 10 km grids in theUSwithminimal changes
related to data preprocessing and larger (approxim-
ately 10×) data size.WSwithTrend forecasts were sig-
nificantly better than LR LSTM and HR LSTM fore-
casts for counties and grids respectively. Both WS
models captured some grid-level variability within
counties, and WS No Trend model also captured
some yield losses due to drought in 2012 (figure A.3).

County-level NRMSEs were quite similar to those
reported by other studies. For example, Khaki et al
(2020) used aCNN–RNN framework and reported an
NRMSE of 9% for 2016–2018. WS with Trend had a
correspondingNRMSEof 10.54%. Futurework could
experiment with other architectures, another crop
model (e.g. WOFOST or Agricultural Production
Systems sIMulator (APSIM) (Holzworth et al 2014))
and additional farm management information to
improve the performance of WS models.

Performance of WS models was quite different
betweenEurope and theUS. In theUS,WSwithTrend
models were better than even the strongly supervised
HR LSTM. In Europe, they were similar to ND LSTM
as well as HR LSTM. To understand this similarity, we
analyzed the effect of yield trend using Trend Only

9
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models. LR and HR Trend Only models fitted a line
through yield values of five previous years. The ND
Trend Only model naively disaggregated LR Trend
Only forecasts to high resolution. In Europe, ND
Trend Only models were statistically similar to HR
Trend Only models for both soft wheat and potatoes.
This similarity between LR and HR trends, coupled
with high correlation between LR trend andHRyields
(Pearson’s r: 0.81 for soft wheat and 0.61 for pota-
toes), had a significant influence in making the mod-
els similar to each other. In the US, ND Trend Only
and HR Trend Only models were statistically differ-
ent, and LR trend was correlated less with HR yields
(Pearson’s r: 0.33). The weaker influence of LR trend
may have helped the WS models to learn better from
HR inputs. Consequently, WS with Trend was statist-
ically better than strongly supervised models at both
resolutions. Apart from the influence of yield trend,
weak supervision could be affected by differences in
spatial resolution, the number of sub-regions or grids
within a region or county, the quality of estimated
crop area weights, quality of LR labels and yield vari-
ability at HR. Research into the effect of these factors
on the performance of WS models will bring clarity
to when and where weak supervision will work.

In this paper, we have scratched the surface of
high resolution crop yield forecasting with weak
supervision. We see three areas that need further
research to gauge the benefits and limitations of
weakly supervised methods. First, more work is
needed to understand the scale differences that can
be handled by weak supervision. For example, weak
supervision worked well between counties to 10 km
grids in the US and less so between NUTS2 and
NUTS3 regions in Europe. For very large differences
in resolution (e.g. NUTS3 regions or counties to 1 km
grids), supervision signals from LR labels may be
insufficient to capture HR differences. Second, pre-
dictor inputs must be suitable to capture yield vari-
ability at selected resolutions. Crop simulation out-
puts and weather variables may correlate well with
yields at NUTS3 or 10 km grids, but become less rel-
evant at farm or parcel level. HR remote sensing data,
for example from Sentinel satellites (Copernicus ESA
2022), and ground measurements may provide bet-
ter predictors for farm level yields. Third, we exper-
imented with standard neural network architectures.
Future work could investigate other architectures that
aremore suitable for weak supervision. Asmentioned
above, architectures that combine strengths of CNNs
and RNNs to learn both spatial and temporal features
are also worth exploring. Data size and quality will
always play a role due to the data-driven nature of
neural networks.

Crop yield predictors will become available at
increasingly high resolution. Yield data may be

missing due to many reasons, including privacy con-
cerns. When there is an imbalance between spatial

resolutions of inputs and yields, weakly supervised
methods provide a solution. Our approach will con-
tinue to work when HR yield data becomes avail-
able for some regions but not others. Deep learn-
ing may also provide a way to better optimize the
crop area weights. HR crop areas, when available,
will remove the need to estimate them and further
improve the quality of yield forecasts. HR crop yield
forecasts improve the effectiveness of policy interven-
tions targeted to food security, agricultural produc-
tion and resource sustainability (You et al 2014). We
have shown that weakly supervised methods can pro-
duce such forecasts in the absence of HR labels.

5. Conclusions

We designed a weakly supervised deep learning
framework that uses HR inputs and LR labels to
produce crop yield forecasts for both resolutions.
Evidence from NUTS2 to NUTS3 in Europe and
county to 10 km grids in the US showed that
weak supervision performs similarly well or better
than strong supervision in different settings, both
in terms of agro-climatic factors and spatial resolu-
tions. Forecasts from WS No Trend models captured
a significant amount of HR yield variability and pro-
duced more accurate forecasts for extreme harvests.
The framework can be improved with additional data
sources, including HR crop areas, a better under-
standing of factors affecting weak supervision and
neural network architectures that can capture both
spatial and temporal differences. Overall, high res-
olution crop yield forecasts are useful to farmers,
policymakers and other stakeholders as they provide
more detailed information about local yield variabil-
ity. Weakly supervised methods provide a way to pro-
duce such forecasts whenHR yield data is unavailable.
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