Supporting the decision-making process in environmental monitoring systems with knowledge discovery techniques feature image Photo Credit: Ioannis N. Athanasiadis
Ioannis Athanasiadis bio photo

Ioannis Athanasiadis

Assistant Professor with the Democritus University of Thrace, in Xanthi, Greece

Email Twitter LinkedIn ResearchID Google Scholar ACM DL DBLP

Abstract: In this paper an empirical approach for supporting the decision making process involved in an Environmental Management System (EMS) that monitors air quality and triggers air quality alerts is presented. Data uncertainty problems involved in an air quality monitoring network, as recorded measurement validation and estimation of missing and erroneous values, are addressed through the exploitation of data mining techniques. Exhaustive experiments with real world data, resulted trustworthy predictive models, capable to support the decision-making process. The outstanding performance of the induced predictive models indicate the added value of this approach for supporting the decision making process involved in an EMS.


Published as:
I. N. Athanasiadis, P. A. Mitkas, Supporting the decision-making process in environmental monitoring systems with knowledge discovery techniques, Knowledge Discovery for Environmental Management - Knowledge-based Services for the Public Sector Symposium, vol. Workshop III, pg. 1-12, 2004, KDnet.