
A methodology for developing environmental
information systems with software agents

Ioannis N. Athanasiadis and Pericles A. Mitkas

Abstract. This chapter presents a unifying methodology for developing envi-
ronmental information systems with software agents. Based on the experience
reported in recent literature, we abstract common requirements of environ-
mental information systems into agent types, combine state-of-the-art tools
from computer science, service-oriented software engineering and artificial in-
telligence domains, as software agents and machine learning, and illustrate
their potential for solving real-world problems. Specifically, two generic agent
types are specified that behave as information carriers and decision makers,
which provide an appropriate abstraction for deployment with added-value
services in environmental management information systems.

A concrete pathway for applying these instruments throughout the soft-
ware lifecycle of an environmental management information system is out-
lined, along with suggestions for software specification and deployment. The
method is demonstrated in two application domains: one for air quality as-
sessment and another for meteorological radar data surveillance.

Keywords. Intelligent information systems; Agent-oriented software engineer-
ing; Environmental data management, integration and reporting; Method-
ological tools; Agent architectures.

1. Introduction

1.1. Environmental Information Systems: Scope and challenges

Environmental Information Systems (EIS) is a broad term used for a range of IT
systems related to natural resources data management. A working definition, given
in [4] is the following one. An Environmental Management Information System
can be considered as an enterprise information system that provides e�cient and
accurate access to knowledge elements related to information about the natural
environment.

In Advanced Agent-Based Environmental Management Systems,

Cortes, U. and Poch, M. (eds), Whitestein Series in Software Agent Technologies and Autonomic Computing,

Birkhauser, Springer, 2009, pp.119-138.

2 I. N. Athanasiadis and P. A. Mitkas

Environmental monitoring networks established worldwide, primarily in ar-
eas with potential pollution problems, observe and record the conditions of the
natural environment. Through these networks, vast volumes of raw data are cap-
tured, and EIS are in charge of integrating all recorded data-streams. A typical
EIS installation involves the fusion into a central database of environmental data
recorded at distributed locations and in different means. Most commonly, EIS have
been developed and installed to pursue one or more of the following goals:

a. Off-line analysis systems. Such systems are geared towards gathering histori-
cal data in a systematic way and making them available for in-depth analysis
of natural phenomena.

b. (Real-time) reporting systems. These are systems responsible for identifying
and reporting the current environmental conditions. They satisfy the public
need for environmental awareness and the administrative and industrial needs
for prevention measures.

c. (Early) Warning Systems. In this case, the goal is to prognosticate the fu-
ture conditions of the environment. The need to forecast and forewarn about
potential environmental problems is the key for preserving nature and taking
precautionary actions.

Until lately, environmental data were meant for environmental scientists oc-
cupied with off-line studies and post-processing activities in their effort to under-
stand the natural phenomena involved. However, there has been a transition in
this practice: The aftermath of the growing societal interest in the environment
and sustainable development was the emerging need for providing environmental
information to the public.

Considering the quest for environmental information involving citizens, in-
dustry and administration, the challenge for EIS is to provide with advanced in-
formation services. EIS objectives are no longer restricted to integrate and process
raw data-measurements. EIS are challenged to fuse information and diffuse knowl-
edge, in forms comprehensible and accessible by everyone.

One challenge for modern EIS is to broaden their scope and embrace new
users from the administration, industry, and the society. Modern EIS users have
varying interpretations of environmental values, and consequently different needs
in terms of detail of information and mediums for communication, but also con-
flicting interpretations of the data handled by EIS. In spite of their diverse needs,
all users agree on the necessity to access trustworthy information on time. One of
the major challenges for EIS today is to effectively capture, manage and report en-
vironmental information at “near real-time”. Furthermore, modern EIS are called
to develop personalized services, and to tackle issues related to data ownership and
permissions, spatial and temporal scaling, industrial patent protection, intellectual
property rights, and privacy issues.

Another challenge for EIS is that traditionally EIS are developed for certain
case studies, therefore the generalization of the approach and the potential reuse
of tools is a very seldom situation. This is partially an intrinsic characteristic of

A methodology for developing EIS with software agents 3

environmental systems, as model configuration and adaptation to local conditions
is required. Knowledge sharing, in any forms from raw data to sophisticated envi-
ronmental model implementations, has become an increasingly important aspect
of sound environmental management [4].

The above challenges can be met by adopting modular, service-oriented ap-
proaches, such as software agent technology, where reusable components can pro-
vide with added-value digital services in open environments.

1.2. Software agent technology

Agent-oriented software engineering has emerged as a novel paradigm for building
software applications. The key abstraction used is that of an agent, as a software
entity characterized by autonomy, reactivity, pro-activity, and social ability [12].
Certain types of software agents are able to infer rationally and support the de-
cision making process [11]. Although there are variant definitions of the notion of
agency found in literature (see the discussion in [23]), as a working definition we
consider as a standard agent any computational system operating in some environ-
ment, that is capable for sensing its environment and act upon it in order to fulfill
its goals ([22]). Agent-based systems may rely on a single agent, but the advantages
of this initiative are revealed in the case of multi-agent systems, which consist of a
community of co-operating agents. Several agents, structured in groups, can share
perceptions and operate synergistically to achieve common system goals.

In agent-oriented software engineering, an agent is both a metaphor for soft-
ware design and an abstraction for software development. As a software design
metaphor, agents are considered as the building blocks of a system. Agent related
technologies for software design include techniques for system requirements speci-
fication, software modelling, specification and verification (see discussion in [21]).
Taking a step ahead, agent technology has moved to agent-oriented software en-
gineering that adopts agents in the whole software design process, as for example
in GAIA [26]. For agent-based development, there is a plethora of agent deploy-
ment strategies and toolkits (for an extended list the reader is directed to [13]),
that vary from object-oriented programming and custom multi-agent systems to
service oriented systems and agent platforms [14]. The latter have emerged as the
evolution of object-oriented programming and distributed computing, and utilize
agents as the basic software unit for developing software.

Agents are well-suited in open, competitive environments, as those of knowl-
edge brokering, personal assistants, and online auctions, just to name a few. Ac-
cording to Parunak [17], software agents are best suited for applications that are
modular, de-centralized, changeable, ill-structured, and complex. Parunak draws
this conclusion, by ascertaining industrial and commercial applications, mainly in
the fields of control systems, enterprise resource planning systems and electronic
services.

4 I. N. Athanasiadis and P. A. Mitkas

2. Related work

EIS bear similar properties with the systems reviewed by Parunak: EIS need to ad-
dress several users at different service levels, integrate data and information from
heterogeneous sources, deal with data at multiple spatial and temporal scales and
adapt to changing conditions. Also, they inherit both the uncertainty and the
complexity involved in the natural phenomena. EIS involve uncertainties both at
data, model and decision-making levels, and complexities related to the conflicting
requirements and values of the involved users and stakeholders. Consequently, one
could claim that the area of environmental informatics fits well with the compe-
tences of agent-based systems.

Agent technology has attracted a significant amount of attention from re-
searchers in environmental informatics. Agent-based approaches have been adopted
for developing environmental systems for data management, decision support or
simulation purposes. Agent capabilities for distributed problem solving, adaptive
personalized services, knowledge sharing and proactive autonomy may enable ad-
vanced digital services for EIS.

Since the ’90s, agent technologies have been welcomed in ecological and en-
vironmental applications mainly as a metaphor for decomposing complex systems
and studying the emergence of collective behavior [16]. Ever since, agent-based
techniques have been extensively used for modeling in several environmental fields,
including population dynamics, landscape modeling, water management, forest
fires simulations, to name a few. However, agent technology has been adopted as
a tool for software design and implementation of environmental applications in a
limited, rather frag-mented way [1]. In a review of agent-based systems applied in
environmental informatics [1], Athanasiadis studied twenty three systems that uti-
lize agent technology at different stages of EIS development. An outlook of agent
use in environmental software is illustrated graphically in Figure 1 (from [1]). The
penetration of agent-oriented tools for software design and development is quali-
tatively represented on the two axes, and the acronyms of the systems reviewed is
situated in the hyperplane.

While there are several systems that use agent modeling for system design,
most of them have been implemented using traditional, object-oriented techniques.
Implementations that employ agent platforms are still in infancy. Similar holds
for agent oriented specification methodologies and tools that employ more so-
phisticated agent-oriented design toolkits. Only the PICO project [18] reports an
agent-oriented software engineering technique throughout the whole design pro-
cess, while software development using agent-based programming techniques is
not accompanied with agent-based design to a great extend.

There is a lot of space for exploiting agent technology in EIS, by adopting
agent-oriented software engineering and agent programming techniques in future
developments. Also, one of the issues that have not been tackled so far, is a unifying
methodology that abstracts common requirements of environmental information

A methodology for developing EIS with software agents 5

















































Figure 1. Penetration of agent-based techniques for software de-
sign and implementation in environmental informatics (from [1])

systems into agent types and provide an appropriate framework for deploying
agent-based EIS.

3. Structural components of the methodology

3.1. Agent orientation in EIS lifecycle

Advancing on the way earlier research work has dealt with EIS using agent tech-
nology, we propose a methodology for developing EIS as a multi-agent systems
(MAS). Our goal is to assign all services involved in the operational EIS to a soft-
ware agent society. This work considers the notion of an agent as the basic building
block for the requirements analysis, software specification, design and development
for an EIS.

Agents are treated as the common conceptual tool that goes through the
whole software development lifecycle of an EIS from its conception to final de-
livery and installation. Given the human-like characteristics of an agent, as their
abilities to shape behaviors, realize roles and establish communicative dialogues, it
makes them a very handy tool for modular, decentralized, intergrated software en-
gineering process of an EIS. Agent orientation in EIS development can assist with
tackling problems involved in environmental applications as domain complexity
and interdisciplinarity. An agent in this way can be seen as a useful metaphor that

6 I. N. Athanasiadis and P. A. Mitkas

is much easier for wider audiences to comprehend, in contrast with the conven-
tional software engineering paradigms. As a consequence, environmental scientists
or the final users are enabled to follow easily the all software development phases of
an EIS. Transparency in environmental software and accessibility to an extended
peer community, involving other computer practitioners, disciplinary scientists,
users and affected public, is considered [19] as a key requirement for increasing
the trust against environmental software tools, and realizing the uncertainties in-
volved. Agent orientation can provide natural solutions towards the direction of
transparent, modular solutions.

Furthermore, software agent technology is a powerful tool for the develop-
ment of advanced service development and provision in an EIS. Software agents
are capable to formulate a mediating role, capable for providing services in open
environments. The environmental information vacuum, underlined by Agenda 21,
could be bridged using agents playing an information brokering role among diverse
stakeholders and users. In this sense, the role of a software agent in environmental
informatics is anticipated from a service oriented perspective. Software agents are
service providers, mediating between end users and the environmental data pools
for providing advanced information and decision support services.

We identify two main functions of software agents in EIS: software agents that
behave as information-carriers or decision-makers. Agents as information carriers,
act as a distributed community of data processing units, able to capture, manipu-
late and propagate information efficiently, i.e. they provide with data manipulation
services. Agents as decision-makers, behave as a network of problem-solvers that
work together to reach solutions.

In the followings we specify the behaviour of an agent in EMIS by defining a
common external view, that defines how agents are interacting with their virtual
environment, and two internal views: one for the information-carrier type and
one for the decision-maker type. The internal views set out agent’s own private
behaviour and functionality.

3.2. An abstract agent for EIS external view

Based on the mediating profile of a software agent in environmental informatics,
and using the notion of a standard agent [22], we define at an abstract level, an
agent (agent) in EIS system as an autonomous entity that defines its actions based
on its own perceptions about the state of its (virtual/artificial) environment.

Information on the state and the conditions of natural environment is cap-
tured in the form of environmental data. Environmental data may be a result of
inspection, measurement, or simulation activities of scientists, and typically have
spatio-temporal references.

Definition 3.1. Environmental data objects (EDO) constitute the virtual environ-
ment in which an agent operates. The (virtual/artificial) environment of an agent
comprise all the possible states of the environmental data objects it percepts.

A methodology for developing EIS with software agents 7

Let O be the set of environmental data objects that agent percepts. In an
EIS each EDO can be considered as a function of space s and time t, therefore
agent may be potentially exposed to a set of EDOs:

O = {OED(1), OED(2), . . . , OED(i), . . . }

where OED(i) = f(s, t)

The set S of the environmental states that an agent may percept is defined
as the set of all instances of its environment. In principle, the states to which an
agent is exposed to is an infinite set.

S = {s1, s2, . . . }, ∀sj = OED(i)(s, t)

Definition 3.2. Let A = {a1, a2, . . . } be the set of the possible actions of an
agent, then the agent can be defined as a function that maps the sequences of the
environmental states to agent actions as:

action : S! → A (3.1)

While the environment of the agent reacts to the the action a ∈ A applied
on state s ∈ S as:

env : S× A → S (3.2)

Definition 3.3. The execution (run) of agent is the sequence:

run : s0
a0−→ s1

a1−→ s2
a2−→ s3 . . . (3.3)

where s1 = env(s0, a0) is the state in which the agent environment goes when
the action a0 is performed on state s0. The interaction between an agent and its
environment is illustrated in Figure 2, that defines the external view of an agent
of the toolbox.

Having defined the external view of a generic agent in an EIS, we proceed
with the specification of the internal views of the two abstract agent types: the
information carrier agent and the decision-maker agent.

3.3. Information-carrier agent internal view

The information-carrier agent role aIC operates as a function that transforms
EDO, in order to provide added-value data transfomation and dissemination ser-
vices. From an external point of view, agent aIC percepts a series of environmen-
tal states S = {s1, s2, s3, . . . } to which it responds with a series of agent actions
A = {a1, a2, a3, . . . , ai}. Each action ai ∈ O! i is an environmental data object
that alters its evnironment’s state.

Definition 3.4. The information carrier agent aIC is an agent with state. The
internal view on aIC agent behaviour is illustrated in Figure 3. Each internal state
ik is a set of EDO instances, therefore:

I = {i1, i2, i3, . . . ik}, ik ∈ P(O) (3.4)

8 I. N. Athanasiadis and P. A. Mitkas

environment

agent

s0

OED(2)(t,l)

OED(1)(t,l)

OED(i)(t,l)

s1=env(s0,a0)

OED(2)(t’,l’)

OED(1)(t’,l’)

OED(i)(t’,l’)

s2=env(s1,a1)

OED(2)(t”,l”)

OED(1)(t”,l”)

OED(i)(t”,l”)

s0 a0 s1 a1 s2

Time

Sp
ac
e

Figure 2. Software agent - virtual environment interaction in
operational EMIS systems

The information carrier agent aIC operates as follows: It observes its virtual
environment through a perception function see, it captures the environmental
states s ∈ S into agent perceptions p ∈ P. Based on the sequences of percep-
tions, agent aIC refreshes its internal state through the transformation function
trans. Finally, aIC performs its actions, based on its internal states via the action
function.

Definition 3.5. The aIC “internal state” can be specified as:

s1,s2,s3 a1

Agent aIC

see
action

trans state

(p1,p2,p3)

i1

i0
i1

environment

O = {OED(1), OED(2), ...}

Figure 3. Internal structure and behaviour of agent aIC

A methodology for developing EIS with software agents 9

see : S → P (3.5)

trans : I × P
! → I (3.6)

action : I → A (3.7)

P,S ⊆ OI ⊆ P(O)A ⊆ O
!

Implementing this behaviour an information carrier agent is capable of man-
aging EDOs as follows: Suppose that initially aIC enjoys the internal state i0
and at some point it is exposed to three environmental states: s1, s2, s3. Through
the function see these environmental conditions are perceived by the aIC as
p1 = see(s1), p2 = see(s2), p3 = see(s3). Then, the transformation function trans
drives agent aIC to the internal state i1 = trans((p1, p2, p3), i0), which causes it
to return to its environment an action (sequence of EDOs) a1 = action(i(1)) =
action(trans((p1, p2, p3), i0). This behaviour is illustrated in Figure 3.

The abstract behaviour specified, enables aIC to perform a variety of data
manipulation activities. From simple data capturing activites (i.e. from sensor
networks) and database queries, to data aggregation and scaling, as well as complex
transactions in an information system.

The set of all information carrier agents is noted by IC and contains all agents
that implement the aIC behaviour.

3.4. Decision-maker agent internal view

An agent aDM functions as a decision maker by incorporating a reasoning engine
engine, that implements a decision-making model. The decision making model can
encompass deterministc strategies, knowledge-discovery techniques or heuristics.

Definition 3.6. The reasoning engine of a decision-maker agent aDM is a mapping
of internal states i1, i2, . . . in of aDM to a decision d, following the relation:

engine : I! → D (3.8)

Agent aDM , based on its decisions d ∈ D responds to the stimuli of its
enviornment by performing a set of actions a ∈ A.

Definition 3.7. Following the generic model of agent with state, agent aDM oper-
ates as follows:

see : S → P (3.9)

next : I × P → I (3.10)

engine : I
! → D (3.11)

action : D → A (3.12)

P,S ⊆ OI ⊆ P(O)D ⊆ OA ⊆ O
!

10 I. N. Athanasiadis and P. A. Mitkas

Let aDM be in state i0 and that at a certain point it is stimulated by observing
an environmental state s1. Through its see function it shapes the perception p1 =
see(s1), and consequently through function next, aDM revises its internal state
to i1 = next(i0, p1). Suppose that the state sequence (i1, i2) results the reasoning
engine engine to get the decision d1 = engine(i1, i2). Due to this decision, aDM ,
performs the action a1 = action(d1) = action(engine(i1, i2)). The internal state
and the behaviour of an decision maker agent role are illustrated in Figure 4.

a1

Agent aDM

s1

see action

next
state

p1

i1

i0
(i1,i2, i3)

environment

O = {OED(1), OED(2), ...}

engine

d1

Figure 4. Internal structure and behaviour of agent aDM

With the above internal model, we specify an agent with ability to infer,
based on its virtual environment observations, to shape its perceptions and revise
its internal state. Based on the sequence of its internal states it makes its decisions
that feedbacks as actions to its environment. The set of all decision-maker agents
is noted as DM, that contains all agents that implement the behaviour of aDM ∈
DM.

4. Deployment of the toolbox

4.1. Multi-agent systems for EIS design and deployment

The advantages of agent technologies are revealed in the case of multi-agent sys-
tems, which consist of a community of co-operating agents. For the design and the
development of EIS more than one agents of the two types defined above in our
toolbox are cooperating together.

Definition 4.1. A multi-agent environmental information system model (EnvMAS)
can be specified as a set of N agent types agn, each one of which implements the
behavior of the information carrier agent type, or the decision-maker type.

EnvMASmodel = {ag1, ag2, ag3, . . . , agn, . . . , agN} (4.1)

agn ∈ {IC ∪DM}, n = 1 . . .N

A methodology for developing EIS with software agents 11

Each agent type agn may have one or more instantiations agn(k), k =
1 . . .Kn, and therefore the operating multi-agent system is specified as:

EnvMAS = {ag1(1), ag1(2), . . . ag1(K1), (4.2)

ag2(1), ag2(2), . . . ag2(K2),

. . . , agn(1), agn(2), . . . , agn(Kn),

. . . , agN(1), agN(2), . . . , agN (KN)}

In total, there are
∑N

n=1 Kn agents running in the system. EnvMAS interacts
with the natural environment and the end users through EDOs perceived by the
agents, while inter-agent communication ensures system coordination.

4.2. How to get the toolbox to work

Having defined a generic agent for EIS, two specific agent types and a multi-agent
system in our toolbox, the question that rises is how to use them in order to design
and deploy an EIS as a multi-agent system. Though there are no silver bullets in
software design, here we present a pathway that starts from an (unknown) appli-
cation domain, decomposes it into agents of the toolbox, and synthesize them into
an operating multi-agent system. An agent is a metaphor that is used throughout
the software lifecycle. The specified abstract agent types are to be used for system
analysis, software design and specification and software development.

4.2.1. System analysis phase. As in any software project, first comes the system
analysis phase, which starts with a study of the domain at hand. Problem definition
and the specification of the system goals is performed using abstract agent types
as roles for defining system components and functions. This step can be realized
by specifying the entities of the system using the toolbox. In principal, we identify
two categories of entities:

(a) Entities that are part of the problem and contribute in the system specifica-
tion;

(b) Entities that are part of the system and frame the problem boundaries.

In the first group fall all system drivers, which are external to the software system,
as the end users. Such entities influence system specification, but they are not part
of it. The second category comprise those entities which are part of the system. This
role can be played by humans (i.e the system administrator), parts of the natural
environment (i.e a river), or hardware or software components of the system (i.e
a sensor network or a database system).

The analysis phase concludes with the specification of the entities, their be-
haviour and their interaction. This process can be done using requirement elicita-
tion methods, as role playing games, where all stakeholders are involved. Environ-
mental scientists, decision-makers, software architects and end users are engaged
in this phase.

12 I. N. Athanasiadis and P. A. Mitkas

4.2.2. System design phase. Next comes the system design phase, which involves
four main steps:

1. Entity behavior is assigned to software agent types;
2. The general system architecture is defined;
3. System functionalities are specified;
4. The system is specified using agent-based models.

The first step is to match system entities to certain agent types. The criterion
for the assignment is the functionality and the behavior of entities. Information
processing functionalities are assigned to information carrier agent types, and de-
cision making nodes to decision maker agents. This step sketches a first draft of
the system design, based on the requirements defined during the analysis phase.

Next, the general system architecture is specified, based on the functionality
envisioned services. Agent behaviors are interwoven to ensure certain information
flows through agent cooperation and coordination. Protocols for agent communi-
cation are identified and the external views of the agents are specified.

The third step is the functional specification of the system. Each if the agents
is specified in detail and the internal views are detailed. Specifically, agent trans-
formation functions are defined for information carrier agents. For decision-maker
agents, internal states and inference engines are specified, as discussed below in
paragraphs 4.2.3 and 4.2.4.

The design phase is concluded with agent oriented system design. Agent
modeling toolkits, as GAIA [24, 26], is used for the detailed system specification,
while the in-depth agent communication can be designed with AORML [20]. These
above mentioned tools are a suggestion for specifying a multi-agent system as a
computational organization; software architects may select alternative methods for
agent-oriented system design, as AUML [15], iSTAR [25], or Tropos [10].

4.2.3. Information carrier agent design. Modeling agents as information carriers
involves four steps:

Step 1. Identify system inputs and outputs:
Consider the interfaces between the software system, data sources and end-

users. Identify services provided by system entities. Assign agents to realize these
interfaces acting either as data fountains, or data sinks.

Step 2. Formulate information channels: Detail how information flows through
the system. Specify possible data transformations needed. Assign those tasks to
information carrier agents that operate as data managers.

Step 3. Conceptualize agent messaging: Based on the two previous steps,
realize inter-agent communications for smooth information propagation. Specify
the semantics of the communications using ontologies.

Step 4. Specify delivery deadlines: Concrete deadlines are assigned to agent
communication, in order to ensure ‘on-time’ delivery of information. Exit on failure
strategies need to be detailed too.

The outcome of the above procedure is materialized as the specifications of
a MAS architecture, in the form of:

A methodology for developing EIS with software agents 13

MAS = 〈A, O, I, D〉 (4.3)

where:

- A = {ag1, . . . , agn}, is a countable set of software agents.
- O is the domain ontology, which specifies the common vocabulary in order

to represent the system environment.
- I = {Ik = (agi, agj)/agi, agj ∈ A}, is a set of interactions between agents.

These interactions show the relations in the system organization and they
allow the definition of a social framework determining the information flows
in the system.

- D = {Dk, ∀ Ik ∈ I}, is a set of the delivery deadlines assigned to each agent
communication.

4.2.4. Decision-maker agent design. Agents as decision makers are employed to de-
liver the reasoning abilities of the EIS. Indicatively, decision-making in a real-time
EIS involves either assessment services or activities to overcome data uncertainty
problems. Based on the domain knowledge, agent decision-making strategies are
identified through the following procedure:

Step 1. Problem formulation and decomposition: Consider the overall problem
at hand and try to break it down into sub-problems.

Step 2. Construction of decision points: Assign specific agents to solve each
sub-problem, taking under account their resources, specified by the system’s ar-
chitecture.

Step 3. Decision strategy specification: For each sub-problem provide a strat-
egy to solve it using the available resources.

Step 4. Realization of Inference models: Implement the decision strategies
designed in the previous step as inference models of the respective agents. Inference
models will be embedded into decision-maker agents as reasoning engines.

This procedure is highly dependent on the application under consideration.
Finding an optimal decision strategy is a rather difficult task, especially when
execution time is a parameter of success. However, three distinct cases of decision-
making engines, can be identified, covering the majority of applications:

Case 1 Deterministic Strategies: These are applied, when domain-specific,
certain, explainable rules for decision-making are available. Such rules may en-
compass natural laws, logical rules or legal constraints. In such cases, rules are
incorporated as a static, confident, explainable expert system into the agents.

Case 2 Data-driven Strategies : When historical datasets are available, the
application of machine learning algorithms for knowledge discovery can yield in-
teresting knowledge models. These models can be used for agent reasoning in
a dynamic, inductive way. In EIS, there are large volumes of data continually
recorded. When natural laws describing the monitored phenomena do not exist,
or they are too complex, data-driven models, such as decision trees, case-based
reasoning, or neural networks provide an option to the application developer. In

14 I. N. Athanasiadis and P. A. Mitkas

this case, the procedure involves the creation of an inference model from historical
data. This model is later incorporated into the agents.

Case 3 Heuristic strategies : When neither of the above cases is applicable,
heuristic models or ‘rules of thumb’ may be incorporated into agents.

This checklist provides with a guideline for designing decision-making agents
required by a multi-agent EIS.

4.2.5. System development and deployment phase. System development is the
third phase of the process. Having specified the overall agent architecture, the
internal agent structures and agent communication protocols in the previous step,
next comes the system deployment using an agent platforms. Software engineer
has a plethora of tools available for agent programming and deployment, as JADE
[9, 8]. Agent programming toolkits consist a middleware for the development of
distributed multi-agent applications, that support natively peer-to-peer agent com-
munication, basic agent behaviors and an agent runtime environment.

The development phase concludes with system installation and deployment.
An iterative process for revealing design faults or development bugs is then required
for ensuring software quality of the system’s final version.

5. Demonstration of the methodology

The methodology presented here has been demonstrated in two case studies which
we discuss below.

5.1. Application in air quality assessment

The methodology described in the previous section has been applied to the devel-
opment of O3RTAA, an EIS for air quality assessment and reporting. O3RTAA is
a multi-agent system for monitoring and assessing air quality, by exploiting data
from a sensor network. A community of software agents is assigned to monitor
and validate measurements coming from several sensors, to assess air-quality, and,
finally, to fire alarms to appropriate recipients, when needed, via the Internet. The
overall system architecture is depicted in 5.

In O3RTAA, information carriers are responsible to collect data from field
sensors, perform data management activities, as data preprocessing, normalization
and transformation, and propagate information, which involves posting informa-
tion to end-users over the internet and updating a measurement database. As
shown in Figure 5, “contribution agents” (CA) operate as data fountains of the
system, which capture data from the sensors and “distribution agents” (DA) are
data sinks which provide with information services to end users.

Decision-maker agents in O3RTAAare responsible for validating incoming
measurements; substituting erroneous measurements by estimating missing values
and approximating false sensor readings; and calculating of qualitative indicators.
The first two activities are left to CA agents, while ”Alarm DMA” agent is in
charge of the third. Data-driven strategies are employed for data validation and

A methodology for developing EIS with software agents 15

Sensor
Network

O 3 Sensor

NO Sensor

X Sensor

Contribution

X CA

NO CA

O 3 CA

Management Distribution End User
Applications

Measurements
Database

Web

@

O 3 RTAA System

Database
DMA Agent

Ozone Alarm
DMA Agent

Database
DA Agent

Web
DA Agent

…

Figure 5. O3RTAA System Architecture

erroneous data substitution engines, while deterministic strategies were used for
for air quality indicator engine.

The O3RTAA system has been tested against real data and demonstrated
as a pilot case at the Mediterranean Centre for Environmental Studies Founda-
tion (CEAM), in collaboration with IDI-EIKON, Valencia, Spain. More details
on O3RTAA architecture are given in [6] and a more generalized framework is
presented in [2]. Data-driven strategies using knowledge discovery techniques are
presented in [7, 3]

5.2. Application in meteorological radar data surveillance

The second case study is a meteorological radar data surveillance system deployed
as a pilot service for the Meteorological Service of Cyprus. The agent-based EIS
developed, called ABACUS intervenes between a meteorological Doppler radar and
end-users, as the meteorological service and the local airport. The goal of the sys-
tem is to manage and process radar recordings (which indicate clouds formations
above the island); identify specific meteorological incidents and their evolution
through time, and to provide with digital services to the end users, as online
warnings and visualizations.

This goal was assigned to a community of cooperating agents, illustrated in
Figure 6. An information carrier agent is responsible for acquiring radar scans and
preprocess them by applying certain filter. A set of meteorologist agents (decision-
maker agents), each one of which is responsible for an annular sector within the
radars range, calculates metrics and indices within its sector and applies decision
rules for assessing the weather conditions and issuing alarms. Finally, a couple of
information carrier agents further process the data and presents them to the end
users.

ABACUS has been demonstrated with real data at the Meteorological Service
of Cyprus. System architecture is detailed in [5].

16 I. N. Athanasiadis and P. A. Mitkas

A
B

A
C

U
S

P

LA
T

FO
R

M

End User
Applications

)))Web@

Management & Processing
Layer

Contribution
Layer

Distribution
Layer

DB Agent Alarm Agent

GUI AgentAbacus
Agent

Radar Agent

Meteorologist Agents
Community

End User
Terminal

System
Parameters

Decision
RulesRadar Data

End User
Applications

Figure 6. Abacus system architecture

6. Discussion

In this work, we presented an methodology for developing agent-based EIS, that
supply with digital services, as those of seamless data integration, environmental
assessment, warning services, information diffusion, and advanced decision making.
The method relies on two generic agent types for EIS and a concrete pathway for
using agents as a unique metaphor for system analysis, design and deployment.

An overview of the methodology is depicted in Figure 7. It unifies in a single
process two properties of agents: their capacity (a) for distributed information
processing, and (b) for distributed problem solving. The main advantage of such an
approach is that it fully exploits the capabilities of autonomous agents, considering
them as both information carriers and decision makers. Information flows dictate
how agents manipulate data, while domain knowledge determines the decision
making process incorporated into the agents. Information flows are implemented
through agent communication channels, while the decision-making processes are
transformed into agent reasoning models. Agent architectures that can be designed
with our methodology are able to deal with data uncertainty problems, through
the hybrid use of either deterministic, data-driven or heuristic decision-making
strategies for agent reasoning.

Our methodology provides with the means for adopting agent technology
throughout the lifecycle of environmental information systems. We defined where

A methodology for developing EIS with software agents 17

Domain
Knowledge

Decision
Making

Inference
engines

Application
Domain

Information
Flows Agent Modeling

Distributed Problem Solving

Distributed Information Fusion

Synthesis

Integration

Agent-based EIS

Figure 7. An abstract view of our methodology

and how agents can be used, suggested existing tools from agent oriented soft-
ware engineering and provided with guidelines about the process that a software
architect has for developing agent-based EIS. The

The benefits of our methodology rely on two pillars: First is the use of agents
for software requirement analysis and design, as the human like characteristics of
agents are much easier for the environmental scientist to comprehend and com-
municate with. This means that environmental scientists can be engaged deeper
in the EIS development process. Second, it employs a distributed information pro-
cessing approach, using software agents, thus agent-based EIS are open, modular
and extensible, which is always a goal for EIS. Finally, we argued that using a sin-
gle metaphor (that of an agent) throughout the EIS lifecycle is a great advantage
for building trust of environmental scientists in EIS.

References

[1] I. N. Athanasiadis. A review of agent-based systems applied in environmental infor-
matics. In A. Zerger and R. M. Argent, editors, MODSIM 2005 Int’l Congress on
Modelling and Simulation, pages 1574–1580, Melbourne, Australia, December 2005.
Modelling and Simulation Society of Australia and New Zealand.

[2] I. N. Athanasiadis. An intelligent service layer upgrades environmental information
management. IT Professional, 8(3):34–39, May-June 2006.

[3] I. N. Athanasiadis. The Fuzzy Lattice Reasoning Classifier for mining environmen-
tal data. In V. G. Kaburlasos and G. X. Ritter, editors, Computational Intelligence
Based on Lattice Theory, Studies in Computational Intelligence, pages 175–193.
Springer-Verlag, 2007.

[4] I. N. Athanasiadis. Towards a virtual enterprise architecture for the environmental
sector. In N. Protogeros, editor, Agent and Web Service Technologies in Virtual
Enterprises, pages 256–266. Information Science Reference, 2007.

18 I. N. Athanasiadis and P. A. Mitkas

[5] I. N. Athanasiadis, M. Milis, P. A. Mitkas, and S. C. Michaelides. A multi-agent sys-
tem for meteorological radar data management and decision support. Under revision,
2008.

[6] I. N. Athanasiadis and P. A. Mitkas. An agent-based intelligent environmental mon-
itoring system. Management of Environmental Quality, 15(3):238–249, 2004.

[7] I. N. Athanasiadis and P. A. Mitkas. Knowledge discovery for operational decision
support in air quality management. Journal of Environmental Informatics, 9(2):100–
107, Jul 2007.

[8] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE-A white paper. EXP in
search of innovation, 3(3):6–19, September 2003.

[9] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
JADE. In Proc. of 7th Int’l Workshop on Agent Theories, Architectures and Lan-
guages (ATAL-2000), Boston, MA, 2000. Available online:http://jade.cselt.it.

[10] F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos software development
methodology: processes, models and diagrams. In F. Giunchiglia, J. Odell, and
G. Weiss, editors, Software Engineering III, Third International Workshop, AOSE-
2002, LNCS. Springer-Verlag, 2003.

[11] N. Jennings, K. Sycara, and M. J. Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

[12] N. R. Jennings. On agent-based software engineering. Artificial Intelligence, 117:277–
296, 2000.

[13] M. Luck, P. McBurney, and C. Preist, editors. Agent Technology: Enabling Next
Generation Computing, A Roadmap for Agent Based Computing. AgentLink, 2003.

[14] E. Mangina. Review of software products for Multi-Agent Systems. AgentLink, 2002.

[15] J. Odell, H. v. D. Parunak, and B. Bauer. Extending UML for agents. In Proc. of
the 2nd Int’l Workshop on Agent-Oriented Information Systems, Berlin, Germany,
2000. iCue Publishing.

[16] R. L. Olson and R. A. Sequeira. An emergent computational approach to the study
of ecosystem dynamics. Ecological Modelling, 79:95–120, 1995.

[17] H. v. D. Parunak. Agents in Overalls: Experiences and Issues in the Development and
Deployment of Industrial Agent-Based Systems. International Journal of Cooperative
Information Systems, 9:209–227, 2000.

[18] A. Perini and A. Susi. Developing a decision support system for integrated production
in agriculture. Environmental Modelling & Software, 19:821–829, 2004.

[19] J. Rotmans. Methods for Integrated Assessment: The challenges and opportunities
ahead. Environmental Modeling and Assessment, 3:155–179, 1998.

[20] G. Wagner. The Agent-Object-Relationship metamodel: Towards a unified concep-
tual view of state and behavior. Information Systems, 28(5):475–504, 2003.

[21] G. Weiss. Agent orientation in software engineering. Knowledge Engineering Review,
16(4):349–373, 2002.

[22] M. Wooldridge. Intelligent Agents. In G. Weiss, editor, Multiagent Systems: A mod-
ern approach to distributed Artificial Intelligence, chapter 1, pages 27–78. MIT Press,
2000.

A methodology for developing EIS with software agents 19

[23] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

[24] M. Wooldridge, N. R. Jennings, and D. Kinny. The GAIA Methodology for
Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

[25] E. Yu. Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In Proc. of the 3rd IEEE Int. Symp. on Requirements Engineering,
Washington, USA, 1997. IEEE.

[26] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems:
the GAIA Methodology. ACM Trans on Software Engineering and Methodology,
12(3):317–370, 2003.

Ioannis N. Athanasiadis
Dalle Molle Institute for Artificial Intelligence,
Lugano, Switzerland
e-mail: ioannis@athanasiadis.info

Pericles A. Mitkas
Electrical and Computer Engineering Dept, Aristotle University of Thessaloniki,
Thessaloniki, Greece
e-mail: mitkas@eng.auth.gr

