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A B S T R A C T   

Many studies have applied machine learning to crop yield prediction with a focus on specific case studies. The 
data and methods they used may not be transferable to other crops and locations. On the other hand, operational 
large-scale systems, such as the European Commission’s MARS Crop Yield Forecasting System (MCYFS), do not 
use machine learning. Machine learning is a promising method especially when large amounts of data are being 
collected and published. We combined agronomic principles of crop modeling with machine learning to build a 
machine learning baseline for large-scale crop yield forecasting. The baseline is a workflow emphasizing cor
rectness, modularity and reusability. For correctness, we focused on designing explainable predictors or features 
(in relation to crop growth and development) and applying machine learning without information leakage. We 
created features using crop simulation outputs and weather, remote sensing and soil data from the MCYFS 
database. We emphasized a modular and reusable workflow to support different crops and countries with small 
configuration changes. The workflow can be used to run repeatable experiments (e.g. early season or end of 
season predictions) using standard input data to obtain reproducible results. The results serve as a starting point 
for further optimizations. In our case studies, we predicted yield at regional level for five crops (soft wheat, 
spring barley, sunflower, sugar beet, potatoes) and three countries (the Netherlands (NL), Germany (DE), France 
(FR)). We compared the performance with a simple method with no prediction skill, which either predicted a 
linear yield trend or the average of the training set. We also aggregated the predictions to the national level and 
compared with past MCYFS forecasts. The normalized RMSE (NRMSE) for early season predictions (30 days after 
planting) were comparable for NL (all crops), DE (all except soft wheat) and FR (soft wheat, spring barley, 
sunflower). For example, NRMSE was 7.87 for soft wheat (NL) (6.32 for MCYFS) and 8.21 for sugar beet (DE) 
(8.79 for MCYFS). In contrast, NRMSEs for soft wheat (DE), sugar beet (FR) and potatoes (FR) were twice as 
much compared to MCYFS. NRMSEs for end of season were still comparable to MCYFS for NL, but worse for DE 
and FR. The baseline can be improved by adding new data sources, designing more predictive features and 
evaluating different machine learning algorithms. The baseline will motivate the use of machine learning in 
large-scale crop yield forecasting.   

1. Introduction 

Crop yield prediction is an important but complex problem, neces
sary for sustainable intensification and efficient use of natural resources 
(Phalan et al. 2014; Tilman et al. 2011). Crop yield forecasts are valu
able to many stakeholders in the agri-food chain, including farmers, 
agronomists, commodity traders and policymakers (Basso and Liu 2019; 
Chipanshi et al. 2015). Crop yield is influenced by many crop-specific 

parameters, environmental conditions and management decisions 
(Fischer 2015), and it is difficult to build a reliable and explainable 
prediction model. 

Field surveys, crop growth models, remote sensing, statistical models 
and their combinations have been commonly used to predict crop yield. 
On their own, these methods address slightly different aspects of crop 
yield forecasting. Field surveys try to capture the ground truth. Crop 
growth models simulate crop growth and development according to 
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agronomic principles of plant, environment and management in
teractions (Basso et al. 2013; Chipanshi et al. 2015). Remote sensing 
methods rely on satellite imagery to capture the current state of crops 
and then to estimate the final yield (Lopez-Lozano et al., 2015). Statis
tical models use weather variables and the outputs of the three previous 
methods as predictors to derive linear relationships between the pre
dictors and crop yield (e.g. Bussay et al. 2015). Recent studies have 
combined different methods in innovative ways to build yield fore
casting models. For example, Lobell et al. (2015) and Zhao et al. (2020) 
used high-resolution remote sensing data and crop modeling to build 
statistical models to forecast the actual yield. Similarly, Newlands et al. 
(2014) developed a probabilistic yield forecasting framework for Can
ada using remote sensing, crop modeling, Bayesian inference and sta
tistical models. 

Machine learning takes a data-driven or empirical modeling 
approach to learn useful patterns and relationships from input data 
(Willcock et al., 2018) and provides a promising avenue for improving 
crop yield predictions. Machine learning algorithms approximate a 
function that relates features or predictors to labels, such as crop yield. 
Similar to statistical models, machine learning algorithms can utilize the 
outputs of other methods as features. In addition, machine learning al
gorithms have some distinct benefits: they can model non-linear re
lationships between multiple data sources (Chlingaryan et al. 2018); 
their performance generally improves when more training data is 
available (Goodfellow et al. 2016); and they can become robust to noisy 
data by using regularization techniques that help decrease the variance 
and the generalization error (James et al. 2013; Goodfellow et al. 2016). 
Therefore, machine learning could combine the benefits of other 
methods, such as crop growth models and remote sensing, with data- 
driven modeling to make reliable crop yield predictions. 

Many studies have applied machine learning to predict yields of 
certain crops in specific locations, but it is unclear whether their data 
and methods are transferable to other crops and locations. Some of them 
used empirical data collected for specific purposes that may not be 
available for other crops or locations (e.g. Pantazi et al. (2016)). Some 
others used generally available climate and satellite data, but made crop 
and location-specific design choices that limit their reusability (e.g. Cai 
et al. (2019)). In this paper, we seek to address the need for modular and 
reusable workflows that would help understand the usefulness of 
various data sources, predictors or features and machine learning al
gorithms for different crops across spatial and temporal settings. Reus
able workflows would allow researchers to run repeatable experiments, 
such as early season or end of season predictions, for different crops and 
countries with standard input data and obtain reproducible results. The 
models could be improved for specific crops and locations using new 
data sources, more advanced features and other optimizations. 

Large-scale crop yield forecasting systems, such as the MARS Crop 
Yield Forecasting System (MCYFS) of the European Commission’s Joint 
Research Centre (JRC) and the National Agricultural Statistics Service 
(NASS) of US Department of Agriculture (USDA), have the infrastructure 
and historical data to build and assess crop yield prediction models for 
different crops and locations. However, the operational systems we 
know of do not use machine learning. They build statistical models from 
weather observations, field survey results, crop growth model outputs, 
remote sensing indicators and yield statistics (MARSWiki, 2020; USDA- 
NASS, 2012). Van der Velde and Nisini (2019) evaluated the perfor
mance of MCYFS from 1993 to 2015 and found that there is no signifi
cant improvement in MCYFS performance from 2006 onwards. Machine 
learning is a promising method especially when a large amount of data is 
being collected and made public (Lokers et al. 2016; GODAN 2020; EC- 
JRC 2020). A reusable and extensible workflow based on inputs similar 
to MCYFS would motivate the adoption of machine learning in large- 
scale crop yield forecasting. 

We present a machine learning baseline for large-scale early and end 
of season crop yield forecasts. The baseline is a general machine learning 
workflow emphasizing three principles: (i) correctness, (ii) modularity, 

and (iii) reusability. First, our methodology focuses on how to create 
features that can explain crop growth and development based on agro
nomic principles of crop modeling, and how to apply machine learning 
without leaking information from the test set. Second, a modular design 
permits the workflow to be improved or extended by adding new data 
sources, designing more advanced features and evaluating different 
machine learning methods. Third, reusability addresses the trans
ferability of the workflow to different crops and countries with small 
configuration changes. The results obtained can be a starting point for 
further optimizations. 

We tested the machine learning baseline on three countries (the 
Netherlands (NL), Germany (DE), France (FR)) and five crops (soft 
wheat, spring barley, sunflower, sugar beet, potatoes) using MCYFS 
(MARSWiki, 2020; EC-JRC, 2020) and Eurostat data (Eurostat, 2020a, 
Eurostat, 2020b). We ran experiments to predict early season and end of 
season crop yield at NUTS2 or NUTS3 level (see Eurostat (2016), Section 
E of Supplement 1). We compared the regional predictions with a simple 
method with no prediction skill, which we call the “null” method. The 
null method either predicted a linear yield trend or the average of the 
training set. We also aggregated the predictions to the national (NUTS0) 
level and compared the results with past MCYFS forecasts. 

The remainder of the paper is organized as follows: Section 2 reviews 
related work in the field; Section 3 describes the methodology and the 
case studies; Section 4 presents the results; Section 5 discusses our find
ings and areas for further research; and Section 6 summarizes our con
clusions. Supplement 1 provides a brief introduction to MCYFS and 
machine learning, and the workflow details not included in Section 3 
(Methodology). Supplement 2 includes a Jupyter notebook implementa
tion (see https://jupyter.org/) of the machine learning baseline, a 
sample data set and supporting materials for Section 4 (Results) and 
Section 5 (Discussion). 

2. Related work 

Four methods or combinations thereof have been commonly used to 
predict crop yield: (i) field surveys, (ii) crop growth models, (iii) remote 
sensing, and (iv) statistical models. These methods have their strengths 
and weaknesses. Field surveys try to capture the ground truth by means 
of grower-reported surveys and objective measurement surveys (USDA- 
NASS, 2012). These surveys suffer from declining responses (Schnepf 
2017), resource restrictions and reliability concerns due to sampling and 
non-sampling errors (Chipanshi et al. 2015). Process-based crop models 
simulate crop growth and development by using crop parameters, 
environmental conditions and management practices as input. They 
apply agronomic principles of crop growth and development that apply 
across space and time (Basso and Liu 2019). However, they do not ac
count for all yield-reducing factors and have considerable data and 
calibration requirements (De Wit et al., 2019). Remote sensing tries to 
capture current information about crops by using satellite images. 
Remote sensing data are globally available under open data policies and 
they do not suffer from human errors (Chipanshi et al. 2015). However, 
remote sensing observations only provide indirect measurements of crop 
yield, namely observed radiance (Dorigo et al., 2007; Jones and 
Vaughan, 2010), and therefore rely on biophysical or statistical models 
to convert satellite observations into a yield prediction (e.g. Lopez- 
Lozano et al., 2015). Statistical models use meteorological indicators 
and the outputs of the three previous methods as predictors. These 
models estimate the yield trend attributable to technological advance
ments in genetics and management (Basso et al. 2013) and fit linear 
models between predictors and yield residuals (e.g. Bussay et al. 2015). 
They provide reasonable accuracy and explainability but cannot be 
extrapolated to other spatial and temporal contexts (Basso et al. 2013). 

Machine learning has gained popularity in agricultural applications 
due to its success in other fields, such as medicine (e.g. Kang et al. 
(2015)), bioinformatics (e.g. Mackowiak et al. (2015)) and natural 
language processing (e.g. Socher et al. (2012)). Recent reviews 
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(Chlingaryan et al., 2018; Kamilaris and Prenafeta-Boldu, 2018; Liakos 
et al., 2018) have looked at the applications of machine learning in 
agriculture. Many studies (included in the reviews and others) have 
applied traditional (or shallow) machine learning and deep learning to 
crop yield prediction. Among applications of shallow methods, Shah
hosseini et al. (2019) built machine learning metamodels from outputs 
of the APSIM crop model (Holzworth et al., 2015) to predict maize yield 
and nitrogen loss in the US; Jeong et al. (2016) applied Random Forests 
(Breiman 2001) to predict wheat yield globally and maize and potato 
yield in the US; and Gonzalez Sanchez et al. (2014) compared the per
formance of four machine learning algorithms on ten crops in Mexico. 
Among applications of deep learning, Crane-Droesch (2018) applied 
semiparametric deep neural networks to predict corn yield in the US; 
You et al. (2017) leveraged representation learning ideas to predict 
soybean yield in the US; and Pantazi et al. (2016) used self-organizing 
maps (Von der Malsburg 1973; Kohonen 2001) to predict within-field 
variation of wheat yield in the UK. These examples show that both 
shallow and deep methods can predict crop yield. However, they focus 
on optimizing performance for specific case studies. Some studies (e.g. 
Pantazi et al. (2016)) use empirical data collected for a specific location. 
Others use generally available data (e.g. You et al. (2017)), but focus on 
novel methods to improve performance. Some of them cover different 
crops (e.g. Jeong et al. (2016); Gonzalez Sanchez et al. (2014)) and lo
cations (e.g. Jeong et al. (2016)), but their emphasis is again on per
formance compared to statistical methods, not on reusable methods. 
Therefore, it is unclear whether their data and methods are transferable 
to other crops and locations. 

Large-scale crop yield forecasting systems, such as MCYFS, NASS and 
Statistics Canada, have historical data, infrastructure, expertise, evalu
ation frameworks and dissemination channels to build and assess crop 
yield prediction models for different crops and locations (see Section A of 
Supplement 1; USDA-NASS (2012); Statistics Canada 2019). To our 
knowledge, these systems do not use machine learning. They build 
statistical models using weather observations, field survey results, crop 
growth model outputs, remote sensing indicators and yield statistics. 
NASS uses survey results and linear statistical models to forecast crop 
yields (USDA-NASS, 2012). MCYFS provides a control board for human 
experts to run analyses and to build crop yield prediction models using 
two methods. The first method estimates the trend related to techno
logical improvements and applies a simple or multiple linear regression 
on the yield residuals using crop growth model outputs and meteoro
logical indicators (MARSWiki, 2020; Lecerf et al. 2019). The second 
method applies principal component analysis (Wold et al., 1987) and 
cluster analysis to identify similar years and forecast the yield based on 
similarities (MARSWiki, 2020; Lecerf et al. 2019). In addition, MCYFS 
experts use their judgment based on information from other sources, 
such as farming magazines. No previous work has applied machine 
learning to MCYFS data. A generic workflow based on MCYFS data 
would motivate the use of machine learning in large-scale crop yield 
forecasting. 

Common applications of statistical models estimate the yield trend 
and detrend yield values before building regression models between 
predictors and yield residuals (e.g. Lecerf et al. 2019; Bussay et al. 
2015). The yield trend for later years includes information from the 
earlier years. Evaluating such models by including earlier years in the 
test set and later years in the training set would cause information 
leakage. Some applications of machine learning to crop yield prediction 
have also used yield trend or other information from previous year(s). 
However, not all of them have avoided information leakage. For 
instance, Cai et al. (2017) ran cross-validation to train and optimize 
their prediction models. During cross-validation, the test fold can be in a 
bin earlier than the training folds, thus leading to information leakage. 
To avoid this leakage, Shahhosseini et al. (2019) adopted a time-based 
look-forward validation that always put the training data before the 
test data. We designed a machine learning workflow for crop yield 
prediction emphasizing the application of machine learning without 

information leakage. 
The need for modularity and reusability in agricultural modeling has 

been stressed by Janssen et al. (2017) and Holzworth et al. (2014). In the 
case of crop yield prediction, modular design makes it possible to run 
experiments to test alternative configurations, such as early or end of 
season prediction. Similarly, modularity is crucial to minimize and di
agnose unexpected outcomes when one part of the workflow is updated 
(Janssen et al. 2017). Reusability has not been a design goal in agri
cultural system modeling; more emphasis has been placed on the un
derlying science (Holzworth et al., 2014). Example applications of 
machine learning to crop yield prediction show a similar pattern. 
Reusability or transferability of methods has not been emphasized. We 
have designed the machine learning baseline focusing on modularity 
and reusability. 

3. Methodology 

We designed a machine learning workflow for crop yield prediction 
using MCYFS data. We evaluated the workflow by predicting crop yield 
at NUTS2 or NUTS3 levels for five crops and three countries. For each 
crop and country, we ran experiments to predict early season (30 days 
after planting) and end of season crop yield with and without using the 
estimated yield trend from previous years. For each experiment, we 
compared the regional predictions with a simple method with no pre
diction skill (the “null” method) and also aggregated the predictions to 
national (NUTS0) level and compared them with past MCYFS forecasts. 

The overall workflow has two parts (Fig. 1). The first part consists of 
preprocessing and feature design, which are specific to data sources, and 
splitting data into training and test sets. The second part, focusing on 
machine learning, is independent of data sources. Data from various 
sources, such as crop growth simulation outputs, weather observations 
and yield statistics, were homogenized and aligned to the same spatial 
and temporal resolutions. The data was split into training and test sets 
before designing features (see Section 3.1.2). Some data sources required 
feature design; others were directly used as features. Once we had fea
tures and labels, machine learning algorithms were trained and opti
mized on the training set and evaluated on the test set. 

We designed the workflow emphasizing three principles: correctness, 
modularity and reusability. 

The overall workflow has two parts. The first part includes pre
processing and feature design. The second part includes machine 
learning. 

3.1. Workflow design: correctness 

For correctness, we focused on how to design explainable features 
and how to apply machine learning without information leakage. 

3.1.1. Explainable feature design 
We incorporated agronomic principles from crop modeling to design 

features with physical meaning in terms of their impact on crop growth 
and development. Based on the outputs of the WOFOST crop model 
(Supit et al., 1994; Van Diepen et al., 1989), we selected 3 dekads (10- 
day periods) when significant changes occur in the crop’s development 
stage (DVS): (i) START_DVS (DVS ≥ 0) is when the crop emerges from 
the soil, (ii) START_DVS1 (DVS ≥ 100) is the middle of the flowering 
phase, and (iii) START_DVS2 (DVS ≥ 200) is when the crop becomes 
ripe. (See De Wit et al. (2019) for a summary of how DVS is calculated.) 
Using these 3 dekads, we divided the crop season into 6 periods: (i) pre- 
planting window, (ii) planting window, (iii) vegetative phase, (iv) 
flowering phase, (v) yield formation phase, and (vi) harvest window 
(Table 1). 

For each period of the crop calendar, we identified the weather in
dicators, crop growth model outputs and remote sensing indicators that 
affect or capture the state of crop growth and development (Table 2). 
Using these indicators, we designed 3 types of features: (i) maximum 
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values for accumulative indicators, such water-limited yield biomass, 
(ii) counts of days or dekads for indicators related to extreme conditions, 
such as maximum temperature, and (iii) average values for other in
dicators. Section E of Supplement 1 includes details about the data sources 
and the indicators used in feature design. Features for extreme condi
tions counted days or dekads with values +/− 1 standard deviation and 
+/− 2 standard deviations from the average. By taking the averages and 

standard deviations of indicators, we made the workflow generic and 
reusable. Similarly, by creating a large number of features, we explored 
the space of thresholds for extreme conditions and leveraged feature 
selection (see Section C.2.2 of Supplement 1) to identify the features with 
the appropriate thresholds. 

Some studies have experimented with crop calendar periods for one 
crop (e.g. Han et al. (2020) for winter wheat, Shahhosseini et al. (2019) 
for maize), but they did not explore the transferability of their approach 
to other crops. Lopez-Lozano et al. (2015) identified the optimal period 
for the correlation between fraction of absorbed photosynthetically 
active radiation (FAPAR) and yield statistics for three crops. We did not 
calculate optimal periods; instead, we devised a generic method that 
could be reused for different crops and countries. 

3.1.2. Machine learning without information leakage 
We applied supervised learning (see Section B of Supplement 1), 

specifically supervised regression, to crop yield prediction. Supervised 
learning relies on training examples that include features as well as la
bels, such as yield statistics, to learn a function that relates features to 
labels. We split the full dataset into training and test sets. When using the 
yield trend, we added the last few years for each region to the test set 
(Fig. 2a). This restriction was necessary because later years would 
contain yield trend estimated from earlier years and having earlier years 
in the test set would cause information leakage. When not using the 
yield trend, we could have used random splits. However, we needed the 
same test years for all regions to compare the predictions with MCYFS 
(see Section 3.5). Therefore, we added every nth year to the test set, with 
n determined by the test fraction. In both cases, we allocated 70% of the 
data for training and 30% for testing. We used the training set to train 
and optimize a model and the test set for the final evaluation. We split 
the data into training and test sets before feature design because feature 
design relied on crop calendar information (see Table 1) and the aver
ages and standard deviations of the indicators shown in Table 2. We 
inferred the crop calendar and calculated indicator statistics only using 
the training set. 

We optimized the hyperparameters of feature selection (the number 
of features to select) and prediction algorithms (e.g. the number of 
neighbors for k-nearest neighbors) by dividing the training set into 
validation folds. When using the yield trend, we could not run cross- 
validation because the test fold could end up in a bin earlier than the 
training folds and that would cause information leakage. Therefore, we 
used a time-based k-fold sliding validation (Fig. 2b). For example, NL 
data was available from 1994 to 2018 and the training years included 
1994 to 2011. Assuming 5-folds, we trained the first iteration of k-fold 
sliding validation on data from 1994 to 2007, the second iteration on 
1995 to 2008 and so on until the fifth iteration, which we trained on 
1998 to 2011. When not using the yield trend, we applied regular k-fold 
cross-validation. 

We created pipelines consisting of feature scaling, feature selection 

Fig. 1. The high-level workflow.  

Table 1 
Crop calendar definition.  

Period Start Dekad End Dekad 

Pre-planting window (p0) min(1, avg START_DVS - 11) avg START_DVS 
Planting window (p1) avg START_DVS - 1 avg START_DVS + 1 
Vegetative phase (p2) avg START_DVS avg START_DVS1 
Flowering phase (p3) avg START_DVS1–1 avg START_DVS1 + 1 
Yield Formation phase (p4) avg START_DVS1 avg START_DVS2 
Harvest window (p5) avg START_DVS2–1 avg START_DVS2 + 1 

We inferred the crop calendar from WOFOST outputs by selecting 3 dekads that 
signified important development stage changes. START_DVS is when the crop 
emerges from the soil. START_DVS1 is the middle of the flowering phase. 
START_DVS2 is when the crop becomes ripe. The pre-planting window was 
restricted to a maximum of 12 dekads or 4 months. 

Table 2 
Feature design using crop modeling principles.  

Period Maximum values Average values Counts of days or 
dekads with extreme 
values 

Pre-planting 
window  

TAVG, PREC, 
CWB  

Planting 
window  

TAVG, PREC RSM, TMIN, PREC 

Vegetative 
phase 

WLIM_YB, TWC, 
WLAI 

RSM, TAVG, 
CWB, FAPAR 

RSM 

Flowering 
phase  

PREC RSM, PREC, TMAX 

Yield 
Formation 
phase 

WLIM_YB, 
WLIM_YS, TWC, 
WLAI 

RSM, CWB, 
FAPAR 

RSM 

Harvest 
window  

PREC PREC 

We identified indicators affecting crop growth and development during different 
crop calendar periods. Weather indicators included average temperature 
(TAVG), precipitation (PREC), climate water balance (CWB = precipitation - 
evapotranspiration), minimum temperature (TMIN) and maximum temperature 
(TMAX). WOFOST outputs included water-limited yield biomass (WLIM_YB), 
water-limited yield storage (WLIM_YS), water-limited leaf area index (WLAI), 
relative soil moisture (RSM) and total water consumption (TWC). Remote 
sensing indicators included the fraction of absorbed photosynthetically active 
radiation (FAPAR). 
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and training stages (see Section C.2 of Supplement 1) to avoid information 
leakage during feature selection and training (Muller and Guido 2016). 
The pipelines ensured each stage of training and optimization used only 
the training data. In effect, the parameters for scaling features (e.g. mean 
and standard deviation), the number of features to select and the feature 
weights for the trained model were learned from the training set. 
Furthermore, we optimized the hyperparameters using only the training 
set. When optimizing the hyperparameters, the pipeline was run for each 
iteration of 5-fold sliding validation or 5-fold cross-validation. There
fore, all stages of the pipeline (feature scaling, feature selection and 
training) were run using the training folds and the trained model was 
evaluated using the corresponding test fold. 

3.2. Workflow design: Modularity 

For modularity, we focused on making the baseline relatively easy to 
improve and extend. We minimized the dependencies between succes
sive stages of the workflow. We chose extensible data structures to allow 
the indicators selected for feature design to change without affecting the 
workflow (Fig. 3). The goal was to simplify the process of designing new 
features or improving existing features with new data. For example, 
features for extreme conditions count days or dekads with values +/− 1 
standard deviation and +/− 2 standard deviations from the average. 
The use of the averages and standard deviations of indicators makes the 
workflow generic and reusable. However, when crop-specific thresholds 
for different indicators are available, such data can be used to manually 
define more accurate and predictive features (see Section C.1.3 of Sup
plement 1 for examples). 

We defined configuration options to control data flow when running 
various experiments (Fig. 4). For example, geographical information 
about region centroids was not included by default, but could be used if 
desired. Different experiments could be run by updating the configura
tion options and running the workflow; the workflow itself did not 
change. In addition, the generated features could be saved in a file and 
loaded later for machine learning, making the machine learning part of 
the workflow independent of preprocessing and feature design. Simi
larly, predictions of machine learning algorithms could be saved to a file 
and loaded later for comparison with MCYFS (Section 3.5). 

We defined feature selection and prediction algorithms in a modular 
and extensible manner to enable experimentation with different algo
rithms (Fig. 4). Feature selection algorithms could be added by speci
fying the number of features to select. Similarly, prediction algorithms 
could be added by setting certain hyperparameters to default values and 
specifying the values of other hyperparameters to be optimized. We 
defined the range of values of hyperparameters as lists that could be 
extended or shortened. 

3.3. Workflow design: Reusability 

We designed the workflow to be reusable for different crops and 
countries. We applied data homogenization to standardize the fil
enames, file formats and data columns, thereby minimizing the amount 
of input required to run the workflow. We reused the same feature 
design principles for different case studies (see Section 3.1.1). Data 
homogenization and configuration options for crop name, country (two 
letter code, e.g. NL) and NUTS level made it possible to run the workflow 

Fig. 2. Training, validation and test splits when using yield trend. 
(a) For each region, we split the full dataset into training and test sets. 
(b) We further divided the training set into validation training and test sets for feature selection and hyperparameter optimization using a time-based 5-fold 
sliding validation. 
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for different crops, countries and NUTS levels (Fig. 4). We set most 
configuration options to reasonable defaults to avoid specifying all of 
them for every experiment. 

3.4. Data, case studies and experiments 

We used WOFOST crop growth model outputs, weather observations, 
remote sensing data, soil data, region centroids, modeled crop area 
fractions and yield statistics for the Netherlands (NL), Germany (DE) and 

France (FR) to evaluate the workflow. We had NL data for 12 NUTS2 
regions from 1994 to 2018, FR data for 101 NUTS3 regions from 1989 to 
2018 and DE data for 401 NUTS3 regions from 1999 to 2018. As 
described in Section 3.1.2, we used 70% of the data for training and 30% 
for testing. Section E of Supplement 1 provides more details about the data 
and the NUTS regions. We did not use region centroids by default 
because it was unclear whether they provided additional information 
not included in WOFOST outputs and weather observations. 

We used thirteen case studies and ran four experiments for each case 

Fig. 3. Modularity and extensibility in feature design. 
Features were designed using extensible lists of indicators for each crop calendar period. Lists of indicators correspond to entries in Table 2. 

Fig. 4. Configuration Options. 
Configuration options were used to select 
the case study and the experiment being run. 
Feature selection algorithms and prediction 
algorithms were defined using extensible 
data structures. Therefore, different algo
rithms could be added or removed to study 
their benefits without affecting the work
flow. (see Section C.2.3 of Supplement 1 for 
more details about the algorithms.)   
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study to verify correctness, modularity and reusability of the machine 
learning workflow. First, to verify the explainability of features, we 
counted the frequencies of selected features for each crop across 
different countries and algorithms. We deferred a detailed analysis of 
feature importance for future research. Second, to verify modularity of 
the workflow, we ran four experiments for each crop and country with 
options for using yield trend (Yes or No) and early season prediction (Yes 
or No). For early season prediction, we used current season information 
up to 30 days after planting. For end of season prediction, we used 
current season information up to the end of the harvest window. Third, 
to verify reusability, we ran the four experiments for thirteen case 
studies: soft wheat (NL, DE, FR), spring barley (NL, DE, FR), sunflower 
(FR), sugar beet (NL, DE, FR) and potatoes (NL, DE, FR). We tested the 
optional components of the workflow (e.g. using centroids, saving and 
loading features) on soft wheat (NL). For NL, predictions were made at 
NUTS2; for DE and FR, predictions were made at NUTS3. Overall, we 
tested the workflow with two NUTS levels, five crops and three 
countries. 

We evaluated the performance of four machine learning algorithms 
in predicting crop yield: (i) Ridge Regression (Hoerl and Kennard 1970), 
(ii) K-nearest Neighbors Regression (Cover and Hart 1967; Aha et al. 
1991), (iii) Support Vector Machines Regression (Boser et al. 1992; 
Cortes and Vapnik 1995), and (iv) Gradient Boosted Decision Trees 
Regression (see Friedman 2001; Hastie et al. 2009). These methods 
represent different classes of algorithms based on how they learn the 
relationships between features and labels. Section C.2.3 of Supplement 1 
provides a brief description of these algorithms. The predictions of 
machine learning algorithms were compared with those of a simple 
method with no skill (the “null” method). When yield trend was not 
used, the null method was equivalent to the ZeroR algorithm (see Baskin 
et al. 2017), which predicts the average of the training set. When yield 
trend was used, the null method predicted the linear yield trend esti
mated from a 5-year window. All algorithms were evaluated using mean 
absolute error (MAE), mean absolute percentage error (MAPE), root 
mean squared error (RMSE) and the coefficient of determination or R2. 
MAE and RMSE were compared using their normalized counterparts. 
The normalized errors were calculated by dividing the mean error with 
the mean yield of the test set. Section C.2.3 of Supplement 1 provides the 
details about the evaluation metrics used. 

3.5. Comparison with MCYFS forecasts 

We aggregated the predictions of the machine learning baseline from 
NUTS2 (NL) or NUTS3 (DE, FR) to national (NUTS0) level to compare 
with past MCYFS forecasts. NUTS2 or NUTS3 predictions were aggre
gated to NUTS0 by weighting them on the modeled crop area. Cerrani 
and Lopez Lozano (2017) have described in detail the algorithm used to 
model crop areas for different NUTS levels. Predictions at NUTS3 were 
aggregated to NUTS2 based on crop area weights for NUTS3 regions, and 
predictions at NUTS2 were further aggregated to NUTS1 using crop area 
weights for NUTS2 regions, and so on. We compared the aggregated 
NUTS0 predictions and the actual MCYFS forecasts (see Van der Velde 
and Nisini (2019)) using the official Eurostat national yield statistics 
(Eurostat, 2020a) as the reference. We evaluated the two sets of pre
dictions using mean absolute error (MAE), mean absolute percentage 
error (MAPE), root mean squared error (RMSE) and the coefficient of 
determination or R2. 

We had to make an adjustment to training and test splits to aggregate 
the crop yield predictions from NUTS3 or NUTS2 to NUTS0: the test set 
had to include the same set of years for all regions. (Note this restriction 
is necessary only when aggregating the predictions to NUTS0 level.) 
When we made the test years the same, some regions and test years were 
missing predictions. We filled the missing predictions in two ways. First, 
if the region had predictions for other test years, we filled the missing 
value with the average of the remaining years. Second, if the region had 
no predictions at all, we ignored the region and adjusted the area 

fractions of other sibling regions (with the same parent NUTS region). 

3.6. Implementation 

We used Apache Spark dataframes (Zaharia et al. 2016) for data 
preprocessing and feature design, and applied machine learning using 
the scikit-learn python package (Pedregosa et al. 2011). We developed 
and tested the workflow in Google Colaboratory (https://colab.research 
.google.com/) and ran the different experiments in Google Dataproc 
cluster (https://cloud.google.com/dataproc) and Microsoft Azure 
Databricks (https://azure.microsoft.com/en-us/services/databricks/). 

4. Results 

To verify explainability of features, we looked at feature selection 
frequencies for each crop across different countries and algorithms. To 
demonstrate modularity and reusability, we ran four experiments with 
options to use yield trend (Yes or No) and to predict early in the season 
(Yes or No) for all thirteen crop and country combinations: soft wheat 
(NL, DE, FR), spring barley (NL, DE, FR), sunflower (FR), sugar beet (NL, 
DE, FR) and potatoes (NL, DE, FR). Predictions for NL were made at 
NUTS2 and predictions for DE and FR were made at NUTS3. All results 
were aggregated to national level and compared with past MCYFS 
forecasts. In this section, we present the normalized RMSE for different 
case studies. MAPE results are included in Section D of Supplement 1, and 
all results including normalized MAE, normalized RMSE, MAPE and R2 

for all case studies, experiments and algorithms are provided in Sup
plement 2. Results of optional experiments (e.g. using region centroids 
data, saved features and saved predictions) are also included in Sup
plement 2. 

4.1. Feature selection frequencies 

Feature selection counts for potatoes show that soil water holding 
capacity was always selected (Table 3). Similarly, all the features for the 
pre-planting window were frequently selected. For the planting window, 
averages and extremes of temperature and precipitation were important. 
Similarly, most frequently selected features for the vegetative phase 
were the fraction of absorbed photosynthetically active radiation 
(FAPAR), water-limited yield biomass, leaf area index and average 
temperature. Precipitation and maximum temperature extremes were 
important for the flowering phase. For the yield formation phase, FAPAR 
and WOFOST indicators such as total water consumption, water-limited 
yield biomass and yield storage were important. Finally, average and 
extremes of precipitation were important during the harvest window. 
Feature selection frequencies are generally consistent with the factors 
affecting crop growth and development during these periods. For 
example, temperature extremes during the flowering phase and pre
cipitation extremes during planting and harvest windows (see Van der 
Velde et al. 2018) are known to influence crop yield. Feature selection 
frequencies for other crops are included in Supplement 2. 

4.2. Yield trend vs. no yield trend 

We compared the end of season predictions of the Gradient Boosted 
Decision Trees (GBDT) algorithm with the option of using yield trend 
(Yes or No) to those of the null method (Fig. 5; Fig. 13). We chose GBDT 
because its performance was better than other algorithms in most cases. 
Except for a few instances (e.g. normalized RMSE for sugar beet (NL) and 
sugar beet (DE) “No Yield Trend” (Fig. 5); MAPE for potatoes (FR) “Yield 
Trend” (Fig. 13)), machine learning performed better than the null 
method. Because of the differences in training and test sets (see Section 
3.1.2), we cannot directly compare “Yield Trend” and “No Yield Trend”. 
Nevertheless, the two sets of error values were quite similar, indicating 
that machine learning could be applied with or without yield trend. 
When using the yield trend, the test set included the tail end of available 
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years. Therefore, using the yield trend would be useful to make pre
dictions for the future. The “No Yield Trend” approach could be useful to 
make predictions for missing years. 

4.3. Early season vs. end of season predictions 

Early season predictions using yield trend (Fig. 6; Fig. 14) indicated 
that the baseline could make early season predictions better than the 
null method. We selected GBDT for comparison because its performance 
was better than other algorithms in most cases. The normalized RMSE 
and MAPE values for machine learning were lower than those for the 
null method in all instances except MAPE for potatoes (FR) (Fig. 14). The 
null method predicted the yield using a linear 5-year trend. Early season 
predictions were made 30 days (or 3 dekads) after planting. End of 
season predictions were made at the end of the harvest window. Both 
early season and end season predictions used the yield values of 5 pre
vious years, soil data and the current season information up to the 
prediction dekad. Except for Spring Barley (NL), error values for the 
machine learning baseline improved slightly over the course of the 
season. 

4.4. Comparison with MCYFS forecasts 

We aggregated the predictions of the machine learning baseline to 
NUTS0 and compared them with past MCYFS forecasts using Eurostat 
national yield statistics as the reference. Because the MCYFS method 
performs trend analysis, we compared the predictions of machine 
learning algorithms using the yield trend. For comparison, we used 
predictions from the best machine learning algorithm and the selected 
algorithm varied by case study. The details are included in Supplement 2. 
For early season, we compared the predictions of machine learning for 
30 days after planting with MCYFS forecasts from the closest dekad 
(Fig. 7a; Fig. 15a). We also compared machine learning predictions at the 
end of the harvest window with the final MCYFS prediction of the year 
(Fig. 7b; Fig. 15b). The machine learning baseline performed similar to 
MCYFS early in the season. Predictions were comparable for NL (all four 

crops) and DE (spring barley, sugar beet, potatoes) and FR (soft wheat, 
spring barley, sunflower). For example, the Normalized RMSE was 7.87 
for soft wheat (NL) (6.32 for MCYFS), 8.21 for sugar beet (DE) (8.79 for 
MCYFS) and 10.63 for sunflower (FR) (10.91 for MCYFS). On the other 
hand, predictions for DE (soft wheat) and FR (sugar beet and potatoes) 
were much worse; the Normalized RMSE was 16.38 for soft wheat (DE) 
(6.21 MCYFS), and 14.34 sugar beet (FR) (MCYFS 7.42). As the season 
progressed, MCYFS forecasts improved significantly while machine 
learning predictions did not improve as much (Fig. 7a,b; Fig. 15a,b). 
Predictions for NL were still comparable to MCYFS (e.g. Normalized 
RMSE was 3.05 for soft wheat (NL) (MCYFS 5.48)), but worse for DE and 
FR. The baseline used the same data sources throughout the season: 
WOFOST outputs, weather observations, remote sensing indicators and 
soil data. On the other hand, MCYFS uses other sources of information, 
such as media reports and farming magazines, to update their pre
dictions. Moreover, the role of MCYFS analysts is key as they investigate 
the underlying feature data, identifying the ones that better explain crop 
growth and yields, and select the appropriate statistical models to pro
duce reliable yield forecasts (Lopez-Lozano and Baruth, 2019). 

5. Discussion 

Previous studies (e.g. Shahhosseini et al. 2019; Cai et al. 2019; You 
et al. 2017; Jeong et al. 2016) have demonstrated that machine learning 
can play an important role in crop yield prediction and the same was 
confirmed by our results. Likewise, machine learning has the potential to 
build on other methods of yield prediction, such as field surveys, crop 
growth models and remote sensing. Prior applications of machine 
learning to crop yield prediction focused on optimizing performance for 
specific case studies. We focused on a generic workflow that could be 
used to investigate the potential of machine learning across different 
crops and locations. The machine learning baseline covers the meth
odological aspects of applying machine learning and acts as a baseline in 
terms of performance. Future applications of machine learning could 
investigate in more detail the advantages of combining machine 
learning with other methods, such as crop growth models and remote 
sensing, and compare their results with the baseline. 

We designed the machine learning baseline emphasizing three 
principles: correctness, modularity and reusability. First, we focused on 
correctness to design explainable features and to apply machine learning 
without information leakage. When working with time series data, such 
as crop yield, features designed using values from previous years, such 
as the yield trend, are used. Whenever information from previous years 
is included in features, particular attention is required to avoid infor
mation leakage. The baseline presents a time-based training and test 
split and a k-fold sliding validation to ensure that information from the 
test set is not used during training. Second, we emphasized modularity to 
let the workflow evolve and to run experiments with alternative con
figurations. The workflow supports incremental changes to extend and 
optimize the baseline for specific case studies. Third, we focused on 
reusability to enable the same workflow to run for different crops and 
locations. The emphasis on modularity and reusability will encourage 
model and software reuse and prevent a proliferation of monolithic and 
duplicate software implementations (Janssen et al. 2017; Holzworth 
et al., 2014). 

A key innovation of the baseline is the feature design method fol
lowed by feature selection later in the workflow. We designed features 
based on agronomic principles from crop modeling. We identified in
dicators that affect crops during different crop calendar periods. We also 
included features to account for extreme conditions. Features for 
extreme conditions were based on averages and standard deviations of 
indicators, making the workflow generic and reusable. By creating a 
large number of features, we explored the space of thresholds for 
extreme conditions and leveraged feature selection to identify the 
appropriate thresholds. Similarly, instead of having experts hand pick 
features, we generated a large number of features and applied feature 

Table 3 
Feature selection frequencies for potatoes (No Yield Trend).   

Static Features (Frequency)  

Soil water holding capacity (12) 

Period Features (Frequency) 

Pre-planting 
window 

avg TAVG (9), avg CWB (8), avg PREC (8) 

Planting window avg TAVG (4), avg PREC (6), TMIN >1 STD (5), PREC >1 STD 
(4), TMIN <2 STD (3), TMIN <1 STD (3), RSM < 2 STD (1), 
TMIN >2 STD (1) 

Vegetative phase max WLIM_YB (11), max TWC (7), max WLAI (7), avg RSM (4) 
avg FAPAR (12), avg TAVG (11), avg CWB (9), RSM > 2 STD 
(3) 

Flowering phase avg PREC (8), TMAX >1 STD (4), TMAX <1 STD (4), RSM < 1 
STD (3), PREC >1STD (3), PREC >2 STD (3), TMAX >2 STD 
(1), TMAX <2 STD (1) 

Yield formation 
phase 

avg FAPAR (12), max WLIM_YB (11), max WLIM_YS (8), max 
TWC (8), max WLAI (6), avg RSM (8), avg CWB (7), RSM > 2 
STD (4), RSM < 1 STD (4) 

Harvest window PREC >2 STD (4), avg PREC (3) 

Selection frequencies were aggregated for three countries (NL, DE, FR) and four 
algorithms. Weather indicators included average temperature (TAVG), precipi
tation (PREC), climate water balance (CWB = precipitation - evapotranspira
tion), minimum temperature (TMIN) and maximum temperature (TMAX). 
WOFOST outputs included water-limited yield biomass (WLIM_YB), water- 
limited yield storage (WLIM_YS), water-limited leaf area index (WLAI), rela
tive soil moisture (RSM) and total water consumption (TWC). Remote sensing 
indicators included the fraction of absorbed photosynthetically active radiation 
(FAPAR). Other abbreviations: avg= average, max = maximum, min = mini
mum, STD = standard deviation. 
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selection to identify the most predictive ones. In this respect, we take a 
data-driven approach to learn the features that explain yield variability 
for each crop and country. 

We ran the baseline to predict crop yield by applying supervised 
machine learning, which relies heavily on the size and quality of the 
data. In particular, a supervised learning algorithm is a good predictor 
when training labels are reliable and the training set is representative of 

the full dataset. We decided to predict crop yield at the sub-national 
level and combined data from different regions to ensure a sizable 
dataset. MCYFS forecasts are made at the national level and rely on crop 
yield statistics reported by European Union countries to Eurostat 
following the guidelines set out in the Annual Crop Statistics Handbook 
(Eurostat, 2019). Yield statistics at sub-national levels are not curated as 
often and vary across countries and crops (Lopez-Lozano et al., 2015). 

Fig. 5. Yield Trend vs. No Yield Trend. 
The normalized RMSE of Gradient Boosted Decision Trees was compared with the null method. 

D. Paudel et al.                                                                                                                                                                                                                                  



Agricultural Systems 187 (2021) 103016

10

Some regions have missing data and others have data copied from pre
vious years. Thus, regional crop yield prediction illustrates the data size 
vs. data quality trade-off (e.g. see MAPE for potatoes (FR), Fig. 14). 
Nevertheless, the aggregated NUTS0 predictions of machine learning 
were promising, especially early in the season. In the case of NL (all four 
crops) and DE (spring barley, sugar beet, potatoes) and FR (soft wheat, 

spring barley, sunflower), the baseline’s performance was comparable to 
MCYFS (see Fig. 7a; Fig. 15a). In terms of methodology, MCYFS uses data 
from all previous years to train models for the upcoming year (see Van 
der Velde and Nisini (2019)). In contrast, the machine learning baseline 
was trained with data up to 2011 or 2012, with predictions extrapo
lating up to 2018. Such differences in data and methods should be 

Fig. 6. Early season prediction using a 5-year yield trend. 
The normalized RMSE of Gradient Boosted Decision Trees for early and end of season predictions. 
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considered when comparing the performance between the baseline and 
the MCYFS forecasts. Future research could investigate methods to 
address data quality and analyze the impact of different features, algo
rithms, hyperparameters and regularization methods to shed light into 
the potential of machine learning to improve crop yield predictions. 
Crop yield prediction at sub-national level may be a better approach for 
certain crops and countries where regional data is reliable. On one hand, 
the aggregated national yield forecasts could be more accurate and, on 
the other, the sub-national yield forecasts could also be useful for 

regional analysis. The machine learning baseline would serve as a 
starting point for such research. 

As the present implementation of the baseline is based on MCYFS 
data, it can be directly used for crops and countries covered by MCYFS. 
Similarly, the baseline can be extended to scenarios where equivalent 
crop development and crop yield indicators (e.g. dry-weight yield 
biomass, leaf area, development stage) are available from other crop 
simulation models. Furthermore, Lopez-Lozano and Baruth (2019) have 
proposed a framework to extend MCYFS-style data and infrastructure to 

Fig. 7. Comparing machine learning baseline with past MCYFS forecasts. 
Normalized RMSE for a) Early season predictions (30 days after planting), and b) end of season predictions, both using a 5-year yield trend. 
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the rest of the world. The machine learning baseline would be useful 
when data for the rest of the world is available in a similar format to 
MCYFS. 

The baseline has ample room for improvement both in terms of the 
general design principles as well as fit-for-purpose optimizations. From 
our experience, the baseline could be improved in at least five ways. 
First, detection of outliers and duplicate data (particularly for yield 
statistics) could help improve the quality of training data. Second, the 
impact of different features, algorithms, hyperparameters and regula
rization methods could be analyzed to build a better optimized machine 
learning model. Third, new data sources could be added by applying 
appropriate data homogenization and preprocessing. Another consid
eration is feature design. Some data sources can be directly used as 
features; others require careful feature design. Fourth, certain additional 
data could make feature design more accurate. In the baseline, we infer 
the crop calendar for the whole country using WOFOST outputs. Crop 
calendar could be made per region, especially when the country covers 
multiple agro-ecological zones. More accurate sowing and harvest dates, 
phenological databases or remote sensing (see Alemu and Henebry 
2016) could be used to define the crop calendar. Similarly, crop-specific 
thresholds could be used to define extreme conditions. Fifth, more 
advanced features could be designed to include weather or soil infor
mation from the previous years and to capture changes in cropping 
patterns. 

The machine learning baseline has some technical limitations as 
well. First, the baseline does not have a generic method for data pre
processing. Data for certain crops and countries may need extensive 
preprocessing to fit the requirements of the baseline. Second, the base
line is not implemented for very big data analyses. Although we used 
Spark data frames for distributed preprocessing and feature design, we 
employed scikit-learn for feature selection and machine learning. Scikit- 
learn does not distribute data and computations when running multiple 
algorithms or when optimizing hyperparameters. The main reason for 
using scikit-learn instead of Spark machine learning library (Spark 
MLlib, https://spark.apache.org/mllib/) was feature selection. In the 
future, Spark MLlib may evolve to support the required functionality. In 
any case, future research could focus on running the machine learning 
part of the workflow in a distributed environment. 

6. Conclusions 

We designed a modular and reusable machine learning workflow for 
crop yield prediction and tested the workflow on thirteen case studies. 
Overall, we found that explainable features designed using principles of 
crop modeling can be used to predict crop yield at sub-national level. For 
early season predictions, the machine learning baseline performed 
similar to MCYFS in most cases. There was room for improvement as the 
season progressed. For crops and countries where regional data is reli
able, sub-national yield prediction using machine learning is a prom
ising approach going forward. Apart from addressing data quality issues, 
the baseline could be improved in three main ways: adding new data 
sources, designing more predictive features and evaluating different 
algorithms. The machine learning baseline serves as a starting point to 
explore the potential of machine learning for large-scale crop yield 
forecasting. 
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