
A Framework for Constructing Multi-agent
Applications and Training Intelligent Agents

Pericles A. Mitkas, Dionisis Kehagias,
Andreas L. Symeonidis, and Ioannis N. Athanasiadis

Department of Electrical and Computer Engineering,
Aristotle University of Thessaloniki,

GR541 24 Thessaloniki, Greece,
Tel.: +30-2310-996349,
Fax: +30-2310-996398
mitkas@eng.auth.gr,

{diok,asymeon,ionathan}@ee.auth.gr

Abstract. As agent-oriented paradigm is reaching a significant level of
acceptance by software developers, there is a lack of integrated high-
level abstraction tools for the design and development of agent-based
applications. In an effort to mitigate this deficiency, we introduce Agent
Academy, an integrated development framework, implemented itself as
a multi-agent system, that supports, in a single tool, the design of agent
behaviours and reusable agent types, the definition of ontologies, and the
instantiation of single agents or multi-agent communities. In addition to
these characteristics, our framework goes deeper into agents, by imple-
menting a mechanism for embedding rule-based reasoning into them. We
call this procedure “agent training” and it is realized by the application
of AI techniques for knowledge discovery on application-specific data,
which may be available to the agent developer. In this respect, Agent
Academy provides an easy-to-use facility that encourages the substitu-
tion of existing, traditionally developed applications by new ones, which
follow the agent-orientation paradigm.

1 Introduction

In the last years, agent technology has impressively emerged as a new paradigm
for software development [1], which is expected to gain even wider acceptance
among the software developers. One important contribution to this effort could
be the provision of such tools and development environments that will enable the
deployment of agent-based applications quickly and easily. As opposed to this
envisioned situation, the current landscape of agent constructing tools is charac-
terized by a plethora of agent development environments, which provide limited
capabilities in terms of the level of abstraction in the design and development
process of agent-oriented applications. On the other hand, the scope of agent
tools and technologies, which dominate the mainstream of development trends
in this field, is now becoming clearer than in the past years. In this respect, a

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 96–109, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

In Lecture Notes in Computer Science (Agent Oriented Software Engineering IV), 2935 :96-109, Jan 2004.

A Framework for Constructing Multi-agent Applications 97

quite desirable effort for agent developers is the creation of a software product
that combines all widely used mainstream technologies in one tool. In order to
fulfill this demand, we have developed Agent Academy (AA) [2], an integrated
framework for constructing multi-agent applications and embedding rule-based
reasoning into agents, at the design phase.

The framework presented in this paper is implemented upon the JADE [3]
infrastructure, ensuring a relatively high degree of FIPA compatibility, as defined
in [4,5]. AA is itself a multi-agent system, whose architecture is based on the
GAIA methodology [6]. It provides an integrated GUI-based environment that
enables the design of single agents or multi-agent communities, using common
drag-and-drop operations. This capability of the AA development environment
helps agent application developers to build a whole community of agents with
chosen behaviour types and attributes in a few minutes. Using AA, an agent
developer can easily go into the details of the designated behaviours of agents and
precisely regulate communication properties of agents. These include the type
and number of the agent communication language (ACL) messages exchanged
between agents, the performatives and structure of messages, with respect to
FIPA specifications [7,8,9], as well as the semantics, which can be defined by
constructing ontologies with Protégé–2000 [10].

All of the aforementioned characteristics of our development environment
have been viewed from an agent–oriented software engineering perspective, since
they provide essential elements for the design and the construction of a multi-
agent system with pre-specified attributes. In addition to that, there is the AI
perspective that deals with the reasoning capabilities of agents. In this context,
our system implements a “training module” that embeds essential rule-based
reasoning into agents. This kind of reasoning is based on the application of data
mining (DM) techniques on possible available datasets. This methodology de-
veloped within AA, results in the extraction of agent knowledge in the form of
a decision model (e.g. a decision tree). The extracted knowledge is expressed
in Predictive Modeling Markup Language (PMML) [11] documents and stored
in a data repository, handled by our development framework. The applied data
mining techniques are, by definition, updateable as new data come into the repos-
itory. Thus, it is easy to update the knowledge bases of agents, by performing
agent “retraining”. This capability can be especially exploited in environments
with large amounts of periodically produced data. A characteristic example of
such an environment is encountered in almost all enterprise IT infrastructures,
the vast majority of which are implemented following traditional development
paradigms. To this end, our presented infrastructure is envisioned as a conve-
nient tool that will encourage the development of new agent-based applications
over the existing traditional ones, by exploiting available data.

The paper is structured as follows. Section 2 briefly reviews related work.
Section 3 describes the architecture of our framework and illustrates the devel-
opment process and the use of tools provided for the construction of a multi-agent
system. In section 4, a detailed presentation of the agent “training” mechanism
is given. Finally, section 5 concludes the paper and outlines future work.

98 P.A. Mitkas et al.

2 Existing Tools and Applications

The growth in interest and use for agent technology motivated the development
of different frameworks and environment to support the implementation of multi-
agent systems. Most of them are Java-based applications that aim at facilitating
rapid implementation of agent-based applications, by providing mechanisms to
manage and monitor message exchanges between agents, and interface support
for creating and debugging multi-agent systems.

An advanced open-source tool-kit providing a library of software components
and tools that enable the rapid design, development and deployment of agent
systems is ZEUS [12]. Although this system is FIPA compliant, it does not
support agent mobility, as opposed to AA. Another development environment
[13] is implemented as a multi-agent system, in a similar manner as AA, but it
does not satisfy the requirements for FIPA compliance.

As far as compliance to FIPA standards is concerned, there is a development
framework [14] that meets the FIPA specifications about Agent Management
and Agent Communication Language, among others, as well as AA does. An-
other tool [15] for creating agent systems uses FIPA-ACL for agent messages,
but implements its own naming register service, ignoring the relative FIPA spec-
ifications.

All of the aforementioned development frameworks do not facilitate the use
of any particular reasoning tools, but they do not prevent the agent developers
from using other existing tools or implementing their own agent reasoning. In
contrast, AA provides both a high-level, GUI-based environment for the design
and development of agent-based applications and a training facility that creates
rule-based reasoning into the developed agents. A survey of existing tools for
creating rule-based reasoning for agents is given in [16].

3 The Development Framework

Our development framework acts as an integrated GUI-based environment that
facilitates the design process of a MAS. It also supports the extraction of decision
models from data and the insertion of these models into newly created agents.
Developing an agent application using AA involves the following activities from
the developer’s side:

a. the creation of new agents with limited initial reasoning capabilities;
b. the addition of these agents into a new MAS;
c. the determination of existing, or the creation of new behaviour types for

each agent;
d. the importation of ontology-files from Protégé–2000;
e. the determination of message recipients for each agent.

In case that an agent application developer intends to create a reasoning
engine for one or more agents of the designed MAS, two more operations are
required for each of those agents:

A Framework for Constructing Multi-agent Applications 99

instantiated MAS

Agent Academy

database

DMM

ATM

Agent Factory (main GUI)

XML
Application Data

Protege-2000

Agent Types Definition

Behaviour Types Definition

MAS Creation Tool

Ontology definition

Extraction of
the decision

model

Insertion of the
decision model

into agents

Instantiation
of a new

MAS
Agent with
reasoning

Dummy
agents

Data
storage

Design of agent
application

Fig. 1. Diagram of the Agent Academy development framework

– the determination of an available data source of agent decision attributes;
– the activation of the training procedure, by specifying the parameters of the

training mechanism.

Figure 1 illustrates the Agent Academy main functional diagram, which rep-
resents the main components and the interactions between them. In the remain-
ing section, we discuss the Agent Academy architecture, and we explain how the
development process is realized through our framework.

3.1 Architecture

The main architecture of AA is also shown in Fig. 1. An application developer
launches the AA platform in order to design a multi-agent application. The main
GUI of the development environment is provided by the Agent Factory (AF), a
specifically designed agent, whose role is to collect all required information from
the agent application developer regarding the definition of the types of agents
involved in the MAS, the types of behaviours of these agents, as well as the
ontology they share with each other. For this purpose, Agent Academy provides

100 P.A. Mitkas et al.

a Protégé–2000 front-end. The initially created agents possess no referencing
capabilities (“dummy” agents). The developer may request from the system
to create rule-based reasoning for one or more agents of the new MAS. These
agents interoparate with the Agent-Training Module (ATM), which is responsible
for inserting a specific decision model into them. The latter is produced by
performing DM on data entered into Agent Academy as XML documents or as
datasets stored in a database. This task is performed by the Data Mining Module
(DMM), another agent of AA, whose task is to read available data and extract
decision models, expressed in PMML format.

AA hosts a database system for storing all information about the configura-
tion of the new created agents, their decision models, as well as data entered into
the system for DM purposes. The whole AA platform was created as a MAS,
which is executed upon JADE.

3.2 Developing Multi-agent Applications

The main GUI of the development platform (Agent Factory) consists of a set of
graphical tools, which enable the developer to carry out all required tasks for the
design and creation of a MAS, without any effort for writing even a single line
of source code. In particular, the Agent Factory comprises the Ontology Design
Tool, the Behaviour Type Design Tool, the Agent Type Definition Tool, and the
MAS Creation Tool.

3.3 Creating Agent Ontologies

A required process in the creation of a MAS, is the design of one or more on-
tologies, in order for the agents to interoperate adequately. The Agent Factory
provides an Ontology Design Tool, which helps developers adopt ontologies de-
fined with the Protégé–2000, a tool for designing ontologies. The RDF files that
are created with Protιgι are saved in the AA database for further use. Since
AA employs JADE for agent development, ontologies need to be converted into
special JADE ontology classes. For this purpose, our framework automatically
compiles the RDF files into JADE ontology classes.

3.4 Creating Behaviour Types

The Behaviour Type Design Tool assists the developer in defining generic be-
haviour templates. Agent behaviours are modeled as workflows of basic building
blocks, such as receiving/sending a message, executing an in-house application,
and, if necessary, deriving decisions using inference engines. The data and con-
trol dependencies between these blocks are also handled. The behaviours can
be modeled as cyclic or one-shot behaviours of the JADE platform. These be-
haviour types are generic templates that can be configured to behave in different
ways; the structure of the flow is the only process defined, while the configurable
parameters of the application inside the behaviour, as well as the contents of the

A Framework for Constructing Multi-agent Applications 101

messages can be specified using the MAS Creation Tool. It should be denoted
that the behaviours are specialized according to the application domain.

The building blocks of the workflows, which are represented by nodes, can
be of four types:

1. Receive nodes, which enable the agent to filter incoming FIPA-SL0 messages.
2. Send nodes, which enable the agent to compose and send FIPA-SL0 messages.
3. Activity nodes, which enable the developer to add predefined functions to the

workflow of the behaviour, in order to permit the construction of multi-agent
systems for existing distributed systems.

4. Jess nodes, which enable the agent to execute a particular reasoning engine,
in order to deliberate about the way it will behave.

Figure 2 illustrates the design of the behaviour for an agent that receives
a message and, according to the content of the message, either executes a pre-
specified function, or sends a message to another agent.

Fig. 2. Creating the Behaviour of an agent through the Behaviour Design Tool

102 P.A. Mitkas et al.

3.5 Creating Agent Types

After having defined certain behaviour types, the Agent Type Definition Tool is
provided to create new agent types, in order for them to be used later in the
MAS Creation Tool. An agent type is in fact an agent plus a set of behaviours
assigned to it. New agent types can be constructed from scratch or by modifying
existing ones. Agent types can be seen as templates for creating agent instances
during the design of a MAS.

During the MAS instantiation phase, which is realized by the use of the
MAS Creation Tool, several instances of already designed agent types will be
instantiated, with different values for their parameters. Each agent instance of
the same agent type can deliver data from different data sources, communicate
with different types of agents, and even execute different reasoning engines.

3.6 Deploying a Multi Agent System

The design of the behaviour and agent types is followed by the deployment of
the MAS. The MAS Creation Tool enables the instantiation of all defined agents
running in the system from the designed agent templates. The receivers and
senders of the ACL messages are set in the behaviours of each agent. After all
the parameters are defined, the agent instances can be initialized. Agent Factory
creates default AA Agents, which have the ability to communicate with AF and
ATM. Then, the AF sends to each agent the necessary ontologies, behaviours,
and decision structures.

4 Agent “Training”

The initial effort for the implementation of such a development framework as
the one presented in this paper, was motivated by the lack of an agent-oriented
software-engineering tool coupled with AI aspects, as far as we know. The ability
to incorporate background knowledge into an agent’s decision–making process is
arguably essential for effective performance in dynamic environments. However,
agent-oriented software engineering methodologies deal with, both high-level,
top-down iterative approaches and design methods for software systems [17].
Thus, the lack of tools that concern agent reasoning issues in most high-level
software design approaches is excused when we examine these approaches from a
pure software-engineering point of view. Moreover, building a MAS with a large
number of agents usually requires the reasoning to be distributed in many agents
of the MAS community, reducing the degree of reasoning per agent. From our
perspective, an agent-oriented development infrastructure should both provide
high-level design capabilities and deal with the internals of an agent architecture,
in order to be considered complete and generic.

For this reason, we have implemented, as a separate module of the overall
agent-oriented development environment a mechanism for embedding rule-based
reasoning capabilities into agents. This is realized through the ATM, which is

A Framework for Constructing Multi-agent Applications 103

responsible for embedding specific knowledge into agents. This knowledge is
generated as the outcome of the application of DM techniques into available
data. The other module, whose role is to exploit possible available datasets
in order to extract decision models, is the DMM. Both ATM and DMM are
implemented as JADE agents who act in close collaboration.

These two basic modules, as well as the flow of the agent training process are
shown in Fig. 3. At first, let us consider an available source of data formatted in
XML. The DMM receives data from the XML document and executes certain
DM algorithms (suitable for generating a decision model), determined by the
agent-application developer. The output of the DM procedure is formatted as a
PMML document.

Agent

JADE Behaviour

Rule-based Behaviour

Initial Beliefs

Data Mining Module (DMM)

Agent Training Module (ATM)

decision model

JESS Rule

Engine

XML data

PMML
document

Fig. 3. Diagram of the agent training procedure

104 P.A. Mitkas et al.

PMML is an XML-based language, which provides a rapid and efficient way
for companies to define predictive models and share models between compliant
vendors’ applications. It allows users to develop models within one vendor’s
application, and use other vendors’ applications to visualize, analyze, evaluate or
otherwise use the models. The fact that PMML is a data mining standard defined
by DMG (Data Mining Group) [11] provides the Agent Academy platform with
versatility and compatibility to other major data mining software vendors, such
as Oracle, SAS, SPSS and MineIt.

The PMML document represents a knowledge model that expresses the ref-
erencing mechanism of the agent we intend to train. The resulted decision model
is translated, through the ATM, to a set of facts executed by a rule engine. The
implementation of the rule engine is provided by JESS [18], a robust mechanism
for executing rule-based reasoning. Finally, the execution of the rule engine be-
comes part of agent’s behaviour.

As shown in Fig. 3, an agent that can be trained through the provided infras-
tructure encapsulates two types of behaviours. The first is the basic initial be-
haviour predefined by the AF module. This may include a set of class instances
that inherit the Behaviour class defined in JADE [5]. The initial behaviour is
created at the agent generation phase, using the Behaviour Design Tool, as de-
scribed in the previous section. This type of behaviour characterizes all agents
designed by Agent Academy, even if the developer intends to equip them with
rule-based reasoning capabilities. This essential type of behaviour includes the
set of initial agent beliefs.

The second supported type of behaviour is the rule-based behaviour, which
is optionally created, upon activation of the agent-training feature. This type
of behaviour is dynamic and implements the decision model. In the remaining
section, we present the details of the data mining procedure and we describe the
mechanism for embedding decision-making capabilities into the newly trained
agents.

4.1 Mining Background Data for Creating Decision Models

The mechanism for extracting knowledge from available data, in order to pro-
vide agents with reasoning, is based on the application of DM techniques on
background application-specific data [19]. From our experience with the applica-
tion of our framework to an industrial scenario about supply chain management
[20], we ascertained that the enterprise IT infrastructures generate and manipu-
late a large amount of data on a permanent basis, thus becoming suitable data
providers that satisfy the purposes of DMM.

In the initial phase of the DM procedure, the developer launches the GUI-
based wizard depicted in Fig.4(a) and specifies the data source to be loaded and
the agent decision attributes that will be represented as internal nodes of the
extracted decision model. In Fig.4(b) the developer selects the type of the DM
technique from a set of available options. In order to clarify the meaning of agent
decision attributes, let us consider the decision model in Fig.5. A certain decision
is made when some or all input attributes are satisfied. In Fig. 5 we see an input

A Framework for Constructing Multi-agent Applications 105

Fig. 4. The two first steps of the DMM wizard

vector of M attributes and an output vector with N attributes, which comprises
the overall decision that an agent makes. One part of agent decision attributes
is identical to the set of inputs that an agent receives, while the remaining part
represents the outputs (decision nodes) of the agent.

Regarding the technical details of the DMM, we have developed the DM
facility in our framework, by incorporating a set of DM methods based on the
WEKA [21] library and tools and we further extended the WEKA API in or-
der for it to support PMML (a later version of the WEKA API will have our
extension included). Some other new DM techniques have also been developed
but we will not mention them here, as this would be out of this paper’s scope.
For further information on the developed DM algorithms, please see [22].

106 P.A. Mitkas et al.

.

.

.

Input attribute 1
Input attribute 2

Input attribute M-1
Input attribute M

.

.

.

Output attribute 1
Output attribute 2

Output attribute N-1
Output attribute N

Decision model

Fig. 5. Input and output attributes in a decision model

In Fig.6(a), we present an XML document, while the respective PMML out-
put, which represents a cluster-based decision model, is shown in Fig.6(b). In
order to generate the PMML output, we used the K-means algorithm to perform
clustering on selected attributes described in the XML document. The dataset
illustrated in Fig.6(a) comes from the design of the formerly mentioned MAS [20]
about supply chain management. The XML document concerns customer-related
data. The PMML output shown in Fig.6(b), contains, apart from the extracted
decision model, some other algorithm-specific details, such as the number of
clusters produced, the attributes of the data set and the document version.

4.2 Embedding Intelligence into Agents

We saw in Fig.2 that the completion of the training process requires the trans-
lation of the DM resulted decision model into an agent-understandable format.
This is performed by the ATM, which receives the PMML output as an ACL
message sent by the DMM, as soon as the DM procedure is completed, and ac-
tivates the rule engine. Actually, the ATM converts the PMML document into
JESS rules and communicates, via appropriate messages, with the “trainee”
agent, in order to insert the new decision model into it. After the completion
of this process, our framework automatically generates Java source code and
instantiates the new “trained” agent into the predefined MAS. The total con-
figuration of the new agent is stored in the development framework, enabling
future modifications of the training parameters, or even the retraining of the
already “trained” agents.

5 Conclusions and Future Work

In this paper we have presented Agent Academy, a multi-agent development
framework for constructing multi-agent systems, or single agents. We argued
that the existing tools and infrastructures for agent development are especially
focused on the provision of high-level design methodologies, leaving out the de-
tails of agents’ decision-making abilities. In contrast, our framework can provide
both a GUI-based, high- level MAS authoring tool and a facility for extract-
ing rule-based reasoning from available data and inserting it into agents. The

A Framework for Constructing Multi-agent Applications 107

<Instances title="ALTEC Data" author="Kehagias Dionisis">
 <Attributes>
 <Attribute>
 <Name>AVG_Order_Freq</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>AVG_Order_Rev</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>AVG_Payment_Trms</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Crd_Limit</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Logistics Dif</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Order_Freq</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Order_Rev</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Payment_Terms</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Turnover</Name>
 <Type>numeric</Type>
 </Attribute>
 </Attributes>
 <Data>
 <Row>
 <Crd_Limit>-8.23599E-2</Crd_Limit>
 <Logistics_Dif>-6.69967E-2</Logistics_Dif>
 <Turnover>-0.138325</Turnover>
 <AVG_Order_Freq>-0.64769</AVG_Order_Freq>
 <STD_Order_Freq>-0.71325</STD_Order_Freq>
 <AVG_Order_Rev>-0.35288</AVG_Order_Rev>
 <STD_Order_Rev>-0.21821</STD_Order_Rev>
 <AVG_Payment_Trms>-1.32909</AVG_Payment_Trms>
 <STD_Payment_Terms>
0.50519</STD_Payment_Terms>
 </Row>
 </Data>
</Instances>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pmml_2_0.dtd>
<PMML>
 <Header copyright="CERTH" description=" Clustering
Model of ERP data">
 <Application name="Agent Academy" version="0.3" />
 </Header>
 <DataDictionary numberOfFields="9">
…
 </DataDictionary>
 <ClusteringModel
modelName="ERP-org.agentacademy.modules.dataminer.f
ilters.ReplaceMissingValuesFilter"
modelClass="centerBased" numberOfClusters="5">
 <MiningSchema>

…
 </MiningSchema>
 <ClusteringField field="AB"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="CL"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="TO"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="AOP"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="STDAOP"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="AOI"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="STDAOI"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="APT"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="STDAPT"
compareFunc-tion="squaredEuclidean" />
 <Cluster name="0">
 <Array n="9"> -1.825885 17.36695 18.23353 -0.55470
-0.47161 7.96735 14.47850 0.40154 0.92600</Array>
 </Cluster>
 <Cluster name="1">
 <Array n="9">
0.06525-0.27008-0.12450-0.64679-0.71163-0.35276-0.218
16-1.32502-0.49305</Array>
 </Cluster>
 <Cluster name="2">
 <Array n="9"> 0.03786 0.04243 0.04831 -0.08052
-0.17864 0.16450 0.09465 0.63661 0.00631 </Array>
 </Cluster>
…
 </ClusteringModel>
</PMML>

Fig. 6. XML input (a) and PMML output (b)

produced knowledge is expressed as PMML formatted documents. We have pre-
sented the functional architecture of our framework; we shortly demonstrated
an indicative scenario for deploying a MAS and, finally, we discussed the details
of the agent “training” process.

Through our experience with Agent Academy, we are convinced that this de-
velopment environment significantly reduces the programming effort for building

108 P.A. Mitkas et al.

agent applications, both in terms of time and code efficiency, especially for those
MAS developers who use JADE. For instance, one MAS, that requires the writ-
ing of almost 6,000 lines of Java code, using JADE, requires less than one hour
to be developed with Agent Academy. This test indicates that AA meets the
requirement for making agent programs in a quicker and easier manner. On the
other hand, our experiments with the DMM have shown that the completion
of the decision model generated for agent reasoning is highly dependant on the
amount of available data. In particular, a dataset of more than 10,000 records is
adequate enough for producing high-confidence DM results, while datasets with
fewer than 3,000 records have yielded non-consistent arbitrary output.

The AA framework is the result of a development effort, which begun two
years ago. Currently, a beta version exists, which is not yet publicly available.
The first stable implementation of AA is planned to come out on July 2003, as
an open-source product. Our near future work involves the finalization of the
integration process for AA, as well as the exhaustive testing of the platform, by
implementing three large-scale applications in the domains of real-time notifica-
tion, web-based applications, and supply-chain management, respectively.

Acknowledgements. Work presented in this paper is partially funded by the
European Commission, under the IST initiative as a research and development
project (contract number IST-2000-31050, “Agent Academy: A Data Mining
Framework for Training Intelligent Agents”). Authors would like to thank all
members of the Agent Academy consortium for their remarkable efforts in the
development of such a large project.

References

1. Lind, J.: Issues in agent-oriented software engineering. In: First International
Workshop on Agent-Oriented Software Engineering (AOSE–2000), Limerick, Ire-
land (2000)

2. Agent Academy Consortium: Agent Academy. (2000) Available at:
http://agentacademy.iti.gr.

3. Bellifemine, F., Poggi, A., Rimassa, G., Turci, P.: An object-oriented framework
to realize agent systems. In: Proceedings of WOA 2000 Workshop, Parma, Italy
(2000) 52–57

4. Foundation for Intelligent Physical Agents: FIPA Developer’s Guide. (2001) Avail-
able at: http://www.fipa.org/specs/fipa00021/.

5. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: JADE Programmer’s Guide.
(2001) Available at: http://sharon.cselt.it/.

6. Wooldridge, M.J., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–312

7. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library
Specification. (2001) Available at: http://www.fipa.org/specs/fipa00037/.

8. Foundation for Intelligent Physical Agents: FIPA SL Content Language Specifica-
tion. (2002) Available at: http://www.fipa.org/specs/fipa00008/.

A Framework for Constructing Multi-agent Applications 109

9. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specifi-
cation. (2002) Available at: http://www.fipa.org/specs/fipa000037/.

10. Noy, N.F., Sintek, M., S., D., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating
semantic web contents with Protégé–2000. IEEE Intelligent Systems 16 (2001)
60–71

11. Data Mining Group: Predictive Model Markup Language Specifications (PMML),
ver. 2.0. (2002) Available at: http://www.dmg.org.

12. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: A tool-kit for building distributed
multi-agent systems. Applied Artifical Intelligence Journal 13 (1999) 129–186

13. Gutknecht, O., Ferber, J.: Madkit: A generic multi-agent platform. In: 4th Inter-
national Conference on Autonomous Agents, Barcelona, Spain (2000)

14. Suguri, H., Kodama, E., Miyazaki, M., Nunokawa, H., Noguchi, S.: Madkit: A
generic multi-agent platform. In: Proceedings of the Workshop on Ontologies in
Agent Systems, 5th International Conference on Autonomous Agents, Montreal,
Canada (2001)

15. Jeon, H., Petrie, C., Cutkosky, M.: JATLite: a java agent infrastructure with
message routing. IEEE Internet Computing 4 (2000) 87–96

16. Rahimi, S., Cobb, M., Ali, D., Paprzycki, M.: An analysis of intelligence-enhancing
techniques for software agents. In: Proceedings of the 5th World Multi-Conference
on Systemics, Cybernetics and Informatics, Orlando (2001)

17. Tveit, A.: A survey of agent-oriented software engineering. In: Proceedings of the
NTNU Computer Science Graduate Student Conference, Norwegian University of
Science and Technology, Trondheim, Norway (2001)

18. Friedman-Hill, E.: Java Expert System Shell (JESS). Sandia National Laboratories.
(2002) Available at: http://herzberg.ca.sandia.gov/jess.

19. Symeonidis, A.L., Mitkas, P.A., Kehagias, D.: Mining patterns and rules for
improving agent intelligence through an integrated multi-agent platform. In:
6th IASTED International Conference, Artificial Intelligence and Soft Comput-
ing ASC, Banff, Alberta, Canada (2002)

20. Symeonidis, A.L., Kehagias, D., Koumpis, A., Vontas, A.: Open source sup-
ply chains. In: 10th International Conference on Concurrent Engineering (CE-
2003), Workshop on intelligent agents and data mining: research and applications,
Madeira, Portugal (2003)

21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann Publishers, San Francisco,
CA (2000)

22. Athanasiadis, I.N., Kaburlasos, V.G., Mitkas, P.A., Petridis, V.: Applying machine
learning techniques on air quality data for real-time decision support. In: First
International NAISO Symposium on Information Technologies in Environmental
Engineering (ITEE’2003), Gdansk, Poland (2003)

