Managing Variant Calling Files the Big Data Way
Using HDFS and Apache Parquet

Aikaterini Boufea
Centre for Genomic & Experimental
Medicine MRC IGMM
University of Edinburgh
Edinburgh, UK
katerina.boufea@ed.ac.uk

Mark Kramer
Information Technology Group
Wageningen University & Research
Wageningen, The Netherlands

ABSTRACT

Big Data has been seen as a remedy for the efficient management
of the ever-increasing genomic data. In this paper, we investigate
the use of Apache Spark to store and process Variant Calling Files
(VCF) on a Hadoop cluster. We demonstrate Tomatula, a software
tool for converting VCF files to Apache Parquet storage format,
and an application to query variant calling datasets. We evaluate
how the wall time (i.e. time until the query answer is returned to
the user) scales out on a Hadoop cluster storing VCF files, either
in the original flat-file format, or using the Apache Parquet colum-
nar storage format. Apache Parquet can compress the VCF data by
around a factor of 10, and supports easier querying of VCF files
as it exposes the field structure. We discuss advantages and disad-
vantages in terms of storage capacity and querying performance
with both flat VCF files and Apache Parquet using an open plant
breeding dataset. We conclude that Apache Parquet offers benefits
for reducing storage size and wall time, and scales out with larger
datasets.

CCS CONCEPTS

« Applied computing — Bioinformatics; Agriculture; « Infor-
mation systems — Data management systems;

KEYWORDS

Big Data, bioinformatics, variant calling, Hadoop, HDFS, Apache
Spark, Apache Parquet, Tomatula

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
BDCAT’17, December 5-8, 2017, Austin, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.

ACM ISBN 978-1-4503-5549-0/17/12...$15.00
https://doi.org/10.1145/3148055.3148060

Richard Finkers
Plant Breeding Group
Wageningen University & Research
Wageningen, The Netherlands

Martijn van Kaauwen
Plant Breeding Group
Wageningen University & Research
Wageningen, The Netherlands

Ioannis N. Athanasiadis
Information Technology Group
Wageningen University & Research
Wageningen, The Netherlands
ioannis@athanasiadis.info

1 INTRODUCTION

The introduction of Next-Generation Sequencing enabled the fast
and cheap sequencing of whole genomes [2, 18]. Today, even small
laboratories are able to work on whole-genome sequencing projects
and generate vast volumes of genomic data. DNA sequences pro-
vide information on transcription, translation, subcellular localiza-
tion, phenotypic and genotypic variation, replication, recombina-
tion, protein - DNA interactions and many more. They may even
reveal novel regions of the genome that express previously un-
known genes. This new information can have a great impact in the
knowledge scientists have about specific organisms, and explain
some of their observable and hidden traits, such as susceptibility
to a disease or other cell functions. Thus, research is focused on
exploring the genome variation among individuals of the same or
different species. Because of the large data volume, but also the va-
riety of sources of origin and the velocity new data are generated,
we can characterize genomic data as Big Data. However, only a few
genomic frameworks are scalable [14, 16].

Big Data platforms such as Hadoop [3] and Apache Spark [5,
24] have been seen as a remedy, enabling efficient storage, fast
retrieval and processing of genomic data. Big data methods have
been used for the redesign of bioinformatics algorithms and tools.
In CloudBurst [20] and Crossbow [13] projects, Hadoop was used
to parallelize the procedure of mapping next-generation sequenc-
ing data to a reference genome for genotyping and single-nucleotide
polymorphisms (SNP) discovering. CloudBurst is a parallel version
of RMAP a seed-and-extend read-mapping algorithm that employs
Hadoop, and demonstrated to execute RMAP up to 30 times faster
than on a single computing machine [20]. Crossbow deployed a
similar-purpose tool using cloud computing services [13]. Hadoop
was also used in Myrna, a cloud-computing pipeline for calculat-
ing differential gene expression from large RNA-seq datasets [12].
SparkSeq is a general-purpose library for genomic cloud comput-
ing, that provides methods and tools to build genomic analysis
pipelines and query data interactively [23]. VariantSpark makes
use of Spark’s machine learning library, MLib, to develop a tool
for clustering variant calling data [19]. A tool for processing ge-
nomic reads and converting them to variant callings is ADAM [17].

https://doi.org/10.1145/3148055.3148060

##FORMAT=<ID=DF, Humber=1, Type=Integer, Description="Read Depth">

##FORMAT=<ID=FAC, Number=A, Type=Integer, Description="Flow Evaluator Alternate allele cbgervation count">
##FORMAT=<ID=FDP, Number=1, Type=Integer, Description="Flow Evaluator Read Depth">
##FORMAT=<ID=FRO, Number=1, Type=Integer, Description="Flow Evaluator Reference allele observation count™>
##FORMAT=<ID=FSLF, Number=LA, Type=Integer, Description="Flow Evaluator Alternate allele observations on the forward strand">
##FORMAT=<ID=F3AR, Number=a, Type=Integer, Description="Flow Evaluator Alternate allele cbservations on the reverse strand">
##FORMAT=<ID=FSRF, Number=1, Iype=Integer, Description="Flow Evaluator reference observations on the forward strand">
##FORMAT=<ID=F5RR, Number=1, Type=Integer, Description="Flow Evaluator reference observations on the reverse strand">

##FORMAT=<ID=GQ, Humber=1, Type=Integer, Description="Genotype Quality, the Phred-scaled marginal (or unconditional) probability of the called genotype">

##FORMAT=<ID=GT, Humber=1, Type=5tring, Description="Genotype">

##FORMAT=<ID=RQ, Number=1, Type=Integer,Description="Reference allele cbservation count">
##FORMAT=<ID=5AF, Number=A, Type=Integer, Description="Alternate allele cbservations on the forward strand">
##FORMAT=<ID=SAR, Number=A, Type=Integer, Description="Alternate allele observations on the reverse strand">

##FORMAT=<ID=5RF, Number=1, Type=Integer, Description="Number of reference observations on the forward strand">

##FORMAT=<ID=5RR, Number=1, Type=Integer, Description="Number of reference cbservations on the reverse strand">

#CHRCM PCS ID REF ALT QUAL

chrl 2488153 . s G 4476.14 PRASS

chrl 2491258 . c G 2611.42 PASS AC=2;AF=0.500;AN=4;R0=146;DF=1332;FAO=146; FDP=334;FR=. ;FRO
chrl 6528100 . GGCCCCT GGCCCIC 10278.10 PASS

chrl 6528468 . c T

chrl 6529188 . C T 11263.97 PRSS RC=2;RF=0.500;RN=4;R0=606;DP=.

chrl 6529443 . s G 5283.78 PASS

chrl 6529747 . i AT 1631.35 PASS LC=1;AF=0.500;AN=2;R0=10;DP=478; FAD=.

FILTER INFC FORMAT Samplel Sample2 Sample3
BC=4;AF=1.00;AN=4;DP=648:FDF=195; FR=. ;FRO=2 ;FSAF=115;FS5AR=78; FSRF=2; FSRR=0; FWDB=0.00167703; FXX=0.0101518 ; HRUN=

BC=2;AF=1.00;AN=2;A0=90;DP=655; FRO=638; FDF=638;

FSAF=87;F5RR=59; FSRF=109; FSRR=79; FWDB=-0.00494¢
.,HEALED, HEALED, HEALED, HEALED, HEALED; FRC=0; FSAF=

1859.16 PASS AC=2;AF=0.500;AN=4;R0=120;DP=893;FAC=120;FDP=236; FR=.;FRO=116; F5AF=32; FSAR=E88; FSRF=41; FSRR=T75; FWDE=0.0384332;I
2960;FAC=640;FDP=946; FR=. ,HEALED; FRG=306; F5AF=336;F5AR=304; FSRF=11; FSRR=295;I
BC=2;AF=0.500;AN=4;R0=331;DF=2207;FAO=361; FDP=T708;FR=. ,HEALED; FRO=347; FSAF=187; FSAR=1T4;F35RF=196; FSRR=151; FWDI

228;FDP=468; FR=. ; FRO=240; FSAF=93;F5AR=135; FSRF=108; FSRR=132; FWDB=-0.00987]

Figure 1: Example of a VCF format file. Header lines start with the ‘4’ character and contain the file metadata. Variant Call
records follow, with each line corresponding to a variant location on the reference genome. They include both general infor-

mation columns and one column for each sequenced sample.

ADAM makes use of Apache Parquet to develop a new data colum-
nar storage and Spark to parallelize the processing pipeline of trans-
forming genomic reads to variant-calling ready reads, accelerating
the variant calling procedure. Similarly, Halvade is a framework for
executing sequencing pipelines in parallel, and has implemented
a DNA sequencing analysis pipeline for variant calling using tra-
ditional algorithms such as the Burrow-Wheeler Aligner (BWA)
and the Genome Analysis Toolkit (GATK) [9]. One of the latest
Hadoop libraries is FASTdoop [10] designed to distribute efficiently
collections of long sequences (FASTA files) instead of short reads
(SAM/BAM) without losing the information of each piece’s origin.

Previous work has also investigated the potential benefits from
adopting a more generalized storage format than the standard flat-
text files, that enables structured querying. VCF-miner, converts a
VCFfile to a JSON dictionary as a pre-processing step [11], whereas
BioPig [18], SeqPig [21], SBtab [15] and GMQL [16] suggest the tab-
ular storage format that can be queried with an SQL-like language.

The above efforts focus on applying Big Data techniques for han-
dling sequence data files like FASTA and BAM and parallelizing
processing pipelines, such as variant calling. Sequence files are usu-
ally big and require heavy processing. However, once these files
are processed, there is no need to access their content. Studies are
then based on the results of processing, which include VCF files
that contain combined information of genome variability across
several samples. Large cohort studies can have thousands of sam-
ples. Enabling fast access and retrieval of information from VCF
files can give the opportunity to researchers to ask questions from
the data without being limited by time cost. This can be addition-
ally supported by the interactive environment of Spark. Thus, in
this work, we focus on using Big Data tools for storing and query-
ing variant calling data. Specifically, we stored VCF datasets on a
Hadoop Distributed File System (HDFS) and investigated the ef-
fects of storage parameters, such as the replication factor, on the
performance of querying applications. We used Apache Spark’s

Python API for the applications and tested the ability of the sys-
tem to scale-out by making available more computing nodes. Fi-
nally, we investigated potential gains from storing variant calling
data in columnar format using Apache Parquet. For this purpose,
we developed Tomatula!, an open-source software tool for convert-
ing VCF files to the Apache Parquet format.

To test the different parameters of the distributed filesystem and
evaluate the Apache Parquet columnar storage format, we devel-
oped a demonstrating application that returns the allele frequen-
cies of variant sites within a requested region on the chromosome.
The software tool, the demonstration scripts and an example dataset
(intentionally very small for educational purposes) are available as
open software repository on GitHub, and as supplementary mate-
rial.

2 MATERIALS AND METHODS
2.1 Big data tools

Apache Spark is a fast and general-purpose cluster computing
system for in-memory computations, overcoming the Hadoop Map-
Reduce bottleneck of communicating to hard disks [24]. By run-
ning in-memory computations, Spark can perform up to 100x faster
than Hadoop MapReduce operation, allowing also for interactive
querying of the data [19]. The master/slave architecture of Apache
Spark consists of three layers:

(a) the Cluster resource manager for managing the filesystem,
i.e. Hadoop YARN, Apache Mesos or Standalone Scheduler;

(b) the Driver program responsible for coordinating the applica-
tion tasks and running the main method of the script; and

(c) the Application layer providing APIs that create and man-
age the Resilient Distributed Datasets (RDDs) - the main
programming abstraction of Apache Spark.

Uhttps://www.github.com/bigdatawur/tomatula/

Spark applications run as multiple independent RDD operations
that can be parallelized on several worker nodes. The driver pro-
gram running on the master node is responsible for collecting and
combining the results of the tasks and return the output of the
query.

Apache Parquet offers a columnar storage format, where data
are stored in column chunks, which are further split into row groups
and spread over the worker nodes. Each column chunk is com-
posed of pages written back to back, sharing the same header. Apa-
che Parquet system supports also two types of metadata for file
and column metadata. File metadata point on the locations of all
the column metadata start locations. Column metadata store loca-
tion information for all the column chunks. Readers access first
the file metadata to locate all the column chunks they are inter-
ested in, and subsequently use column metadata to skip over non-
relevant pages [4]. A Parquet table can be easily distributed over
many nodes and the main advantage is that using metadata access-
ing applications can directly jump to the appropriate fields of the
record. In the case of vcf data, metadata will include the positions
of all fields (columns) as well as embedded information (pages) of
each column, as for example the Allele Frequency (AF) part of the
INFO field. Moreover, the Parquet storage system offers high com-
pression and reduces network traffic by filtering out early irrele-
vant column data.

2.2 VCF files and tools

The Variant Call Format (VCF) is a standard tab-delimited file
format used to represent single-nucleotide polymorphisms (SNP),
insertions and deletions, and structural variation calls, storing only
the variations, along with a reference genome. The VCF format is
a flat-file format without a strict predefined schema and metadata.
The file is composed of two main parts; the header and the variant
call records (Figure 1). The header contains information about the
dataset and relevant reference sources, such as the organism or the
genome build version. It can also contain definitions of the annota-
tions used to qualify and quantify the properties of the variant calls
contained in the VCF file. The last header line contains the field
names of the data lines. Each data line represents one variant with
its properties. The fields of a data line include the chromosomal lo-
cation, the reference and alternative sequence, and the frequency
of the alternative sequence among the samples. Additionally, there
is one field per sample with information on the observed sequence
and statistical information, such as the quality of the sample [8].

The VCF format provides a compact way to to summarize ge-
nomic information of a sample and compare it in a systematic way
to other samples. It is an important source of information in studies
aiming to link phenotypic traits to genetic mutations and statisti-
cally test such relationships. Data can be combined and analyzed
in several different ways depending on the research questions. In
the era of personalized medicine, variant calling data can give clini-
tians insight on the disease progression and the appropriate treat-
ment for an individual based on the genomic data and information
from other samples.

VCFtools?, the most widely used program package for working
with VCF files, uses indexes based on the chromosomal location of

Zhttps://vcftools.github.io

|-- CHROM: long

|-- POS: long

|-- ID: string
|-- REF: string
|-- ALT: string

|-- QUAL: string

|-- FILTER: string
|-- INFO: struct

| |-- AB: string
| |-- ABP: string

|-- PAIRED: string
|-- PAIREDR: string
-- LYC2740: struct

|

|

|

| |-- AO: string
| |-- DP: string
| |-- GL: string
| |-- GT: string
| |-- QA: string
| |-- QR: string
| |-- RO: string

Figure 2: A part of the generated schema with embedded dic-
tionaries for the fields INFO and individual LYC2740.

each variant site. This is an efficient way to find quickly informa-
tion about a specific region or site but has no functionality when
searching for specific columns of the file, for example a sub-set of
the individuals listed in columns. Especially when a study includes
hundreds or thousands of individuals, such queries can have very
limited performance.

2.3 The conversion tool

Tomatula is a generic software tool we developed for converting
flat VCF files into Apache Parquet columnar storage format. Tomat-
ula operates in two steps: First, the VCF file is converted to JSON
format, using the last header line to identify column names. Next,
the JSON file is parsed and saved as a set of Parquet files, a pro-
cedure that is automatically done by Apache Spark[5]. VCF fields
that contain more detailed information, such as the INFO column
and the individuals fields, are further split into embedded dictio-
naries in a nested schema. An example schema of the generated
structure is illustrated in Fig.2.

Tomatula converter was tested with VCF files from open datasets
available at EMBL-EB], including those of the 1,000 Genomes Pro-
ject [6]; and the 100 Tomato Genome Sequencing Project [1].

2.4 Experimental setup on a cluster with
Apache Hadoop and Apache Spark

The central idea of a Hadoop cluster architecture is a set of vir-
tual machines forming a local network. We attempted two differ-
ent approaches to deploy our system on such a network. Our first
approach was to build our own Apache Spark cluster using the
standalone cluster mode. We created virtual machines on a remote
server and installed Apache Spark in each one of the machines.

https://vcftools.github.io

One of the machines was selected to be the master of the clus-
ter, and the rest the workers. Master and workers were communi-
cating through a secure shell (SSH) connection. Network security
was established by private IPs. The cluster consisted of one master
node and three worker nodes. The system could scale-out further
by adding more worker nodes when needed. A secondary master
node could be also added to the design, to prevent loss of function-
ality in case the primary master node is down. In standalone mode,
the data has to be stored in every node, which is not efficient for big
data applications®. We used this standalone cluster to develop our
application but all tests were run on the HDFS system presented
next.

Apache Spark can be also deployed on top of an HDFS and
run applications using more sophisticated cluster managers, such
as YARN. In this setting, Spark RDDs load data using the URI of
the underlying HDFS. The infrastructure of the Dutch national e-
infrastructure offers such an environment, which we used with the
support of SURF Cooperative [22]. SURF Hadoop cluster consists
of 170 computing/data nodes and 1370 CPU-cores in total, that is
8 cores per node. The total memory is 10 TB and the available ca-
pacity of HDFS is 2.3 PB. The cluster runs Spark 1.6.1 on top of
Hadoop HDFS 2.7.1 using YARN manager. In this environment it
was possible to first store a (genomic) dataset on HDFS, and subse-
quently use Apache Spark for running applications. SURF Hadoop
cluster nodes run Linux 2.6.32 with Java 1.7.0_79 and Scala 2.10.5.
The driver and executor nodes have 6 GB of memory [22].

2.5 Experimental Design

We examined four main factors that can affect the performance of
an Apache Spark cluster, using the SURF Hadoop cluster:

(a) the number of computing nodes of the cluster,
(b) the replication factor of HDFS,

(c) the storage format, and

(d) the size of the input files.

We executed our experiments for different cluster sizes, varying
between 2 and 150 executor nodes to test the effect of the cluster
size on the wall time, time until the query answer is returned to
the user, and to what extend accessing VCF information can scale
out.

Another parameter of HDFS that may affect the performance of
the querying applications is the replication factor, referring to the
number of copies of the file in the distributed filesystem. We tested
the performance of our applications when increasing the copies of
the dataset from the default value of 3 to 5, 7 and 9.

We compared two storage formats, the VCF flat-file and the Par-
quet columnar storage format. The original VCF file from the study
of Aflitos et al. [1], contains variant calling information of whole-
genome sequencing of 104 individuals. In order to test the perfor-
mance of the two file formats and the designed system for bigger
input files, we copied the individuals’ information 10 times, result-
ing in a VCF file with 1144 individuals (columns). All other settings
of the HDFS and the cluster, such as block size, were kept at the
default values.

3See http://spark.apache.org/docs/latest/programming-guide. html#external-datasets

All experiments were executed five times and the detailed re-
sults are provided as supplementary material [7]. The metrics re-
ported were provided by Spark Web Ul and are based on the Coda
Hale Metrics Library.

2.6 Querying applications

To investigate querying efficiency of storing VCF files on HDFS,
either as flat-files or using Apache Parquet, we developed an appli-
cation that retrieves the allele frequencies within a certain region
of a VCF file. The allele frequency information is reported under
the INFO field showing what is the frequency of presence of each al-
ternative sequence on a genomic location among all samples. For
example, a sample record line of VCF file from location 14370 of
chromosome 20 is illustrated in Figure 3. The reference sequence
has a guanine base (G), while an adenine (A) was observed in some
of the samples with allele frequency 0.5 (encoded in the sub-field
AF of the INFO field).

#CHROM POS I REF ALT QUAL FILTER INFO FORMAT Samplel
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5 GT:GQ:DP:HQ ©|@:48:1:51,51

Figure 3: An example of a VCF format showing the last
header line with the field headers and a data line with all
generic fields and a sample.

We executed a series of experiments, querying for a region of
2000 bases in the file of chromosome 6 from the VCF files of the 100
Tomato Genome Sequencing Project [1], that corresponds to the
approximate length of a gene. When querying the original VCF flat-
file format, the application splits each line into a list, one for each
field, and the INFO field is further split into the constituent parts
to find the AF part and associate it to the REF and ALT columns.

In the contrary, using the Apache Parquet format, field names
are available via the schema and accessible via a simple SQL-like
query, which in Apache Spark syntax looks like:
vcf. select ("CHROM", "POS", "REF", "ALT", "INFO.AF")\

.filter("POS > " + lower + " AND POS < " + upper)
where vcf is a Resilient Distributed Dataset to which the Parquet
file has been loaded. Note that schema fields are accessed with their
names, and the same holds for nested fields (as in INFO.AF which
corresponds to the allele frequency).

3 RESULTS
3.1 Cluster size

To test the effect of the cluster size we run all the applications for
different cluster sizes between 2 (default) and 150 executor nodes.
Although the performance was satisfactory already from a cluster
size of around 50 nodes, we continued increasing the size as the
duration was decreasing. We observed that a minimum duration is
reached when around 100 nodes are used. After this point, the wall
time slightly increases again mainly due to scheduling delays that
are introduced. Figure 4 shows the performance of the PySpark
version of the Allele Frequency application for the original VCF
file with 104 individuals and replication factor of 5. A cluster with
10 worker nodes can achieve a 4-fold reduction of the wall time
compared to the 2-worker cluster.

http://spark.apache.org/docs/latest/programming-guide.html#external-datasets

S o

5 8-

ko] A

I o

° |

c

ol

o

49

+ n

= o

&

o \

E 8 T

-z “ [N

o) [

e 8 m‘§~§

s \§‘§~§-§\

T o $-2-3-%

5 WO 7]

S
T T T I
0 50 100 150

cluster size

Figure 4: Wall time results for different cluster sizes. Lines
show mean over 5 repetitions. Error bars indicate corre-
sponding standard error. Illustration for Allele frequency
application on the original VCF file (104 individuals) and
replication factor 5

3.2 Replication factor

The replication factor is an important parameter of the distributed
file system that can affect the wall time. There are two main advan-
tages for having copies/replicates of the files stored in the HDFS.
First, data is protected against loss due to DataNode failures. Sec-
ond, since data is stored in multiple locations, it becomes more
quickly accessible, avoiding an application being hold on the queue
of a busy node. However, more copies of the file require more stor-
age capacity. Thus, aspects such as storage cost and total size of
the files have to be considered as well.

Figure 5 shows that, as expected, higher replication factor leads
to faster query response. However, with replication factor of 7 a
minimum is reached with no further improvement when increas-
ing the copies of the data. Additionally, in this application, there
are no significant gains in terms of wall time for increasing the
replication from 5 to 7.

3.3 Converting files with Tomatula

We used Tomatula converter for transcribing variant calling data
of wild species of the tomato clade, from the study of Aflitos et
al. [1] into Apache Parquet. Due to its columnar storage, Apache
Parquet offers very high compression, resulting to significant gains
in terms of disk storage. The original VCF file contains the vari-
ants of 104 sequenced individuals and was approximately 606 GB.
This file was split into separate VCF files per chromosome, sized
between 10.3 GB and 75.4 GB. The size of chromosome 6 VCF file,
which will be used in our experiments for querying allele frequen-
cies, was 37.6 GB and the respective Parquet file was 8.8 GB. To ex-
plore future scenarios where more individuals were included, we
copied the individuals’ fields 10 times, ending up with an extended
dataset of 1144 individuals. The resulting VCF file for chromosome

. Replications
s 3 —
=
s 8 3
'g e e 5
g | -=- 7
I} - 9
»
L8
F ©
C
3
o
E oS
— [aV)
3
N o
~— O —
c =
i)
)
5 © 7]
©

cluster size

Figure 5: Wall time results for different replication factors
and cluster sizes. Lines show mean over 5 repetitions. Error
bars indicate corresponding standard error. Illustration for
Allele frequency application on the original VCF file (104
individuals)

6 was 369.7 GB and in the Parquet format115.1 GB. Table 1 sum-
marizes the file size of storing VCF files on HDFS as plain text and
using Apache Parquet. The results demonstrate the capacity of the
Apache Parquet format in terms of potential for saving storage ca-
pacity. This can support the storage and use of genomic informa-
tion not only in research but also in clinical practice.

Table 1: File sizes of storing variant calling data of the
tomato genome ([1]) on HDFS in VCF format and in Apache
Parquet.

VCF Apache Parquet
Chrom 6 All Chrom. Chrom 6 All Chrom.
104 Individuals 37.6 GB 471.3 GB 8.8 GB 112 GB
1144 Individuals 369.7 GB 4.53 TB 115.1 GB 1.43 TB

3.4 Accessing allele frequencies with Tomatula

Besides smaller file sizes, converting the VCF flat-file to a columnar
storage format, as Apache Parquet) offers more advantages. First,
it can save much time from the pre-processing steps needed when
parsing the tab-delimited VCF format. Although this procedure is
time consuming, it has to be done only once and the output can be
re-used for all the queries. The table has to be updated only when
new samples are added in the study.

Second, the application on the Apache Parquet format scales-
out better, reaching an acceptable wall time with smaller number
of executor nodes. Especially for the original dataset of 104 indi-
viduals, Apache Parquet format reaches the minimum from the de-
fault 2-executors cluster. Additionally, there is no need to increase
the replication factor. Figure 6 illustrates the wall time when using
Apache Parquet for storing the 104-individuals file, with cluster

= Replications
2 3 —
s 8 3
-c% [aV] cee. B
S _ -- 7
E - 9
78
F O
c
3
o
E S H
—~ [eV)
3
o
\(g/ O —
c -
ke
T g
S Yol
©

0 50 100 150

cluster size

Figure 6: Wall time results for different replication factors
and cluster sizes using the Apache Parquet format. Lines
show mean over 5 repetitions. Error bars indicate corre-
sponding standard error. Illustration for Allele frequency
application on the original Parquet file (104 individuals)

sizes varying between 2 and 150 nodes, and replication factors of
3,5,7and 9.

Third, all information stored under specific headers, is program-
matically exposed, thus SparkSQL can be used, allowing not only
for easy querying but also to take advantage of the interactive fea-
tures of Apache Spark.

3.5 Increased input size

Similar conclusions regarding the effect of cluster size, replication
factor and file format were reached using a bigger dataset of 1144
individuals (Figure 7). The HDFS replication factor had minimal
influence to the results, and higher values rather contributed to
increasing complexity. The wall time for both input formats in-
creased, however, note that adding more nodes still improves the
performance. It also worths noticing that we observed an overall
lower duration of the method that used the VCF than the Parquet
format. However, the difference is not significant and the Parquet
format is still more efficient in terms of cluster size, needing 10-20
less worker nodes than VCF to reach the minimum duration (Fig-
ure 8).

4 DISCUSSION

Big Data methods can have important advantages for big variant
calling projects. Through Tomatula conversion tool and our exper-
imental evaluation, in this work we confirmed the capability to
easily scale-out when files become bigger without the need for ex-
pensive hardware investment. Tomatula could be very easily exe-
cuted on private or public cloud services that provide the ability to
adjust the computing capacity depending on the demands of the
application.

1000 2000
Il

500
Il

duration (sec) mean +/- standard error
200
Il

50
L

0 50 100 150

cluster size

1000 2000
Il

500
Il

duration (sec) mean +/- standard error

100
Il

50
L

0 50 100 150

cluster size

Replications
— 3 cte 5 = e 7 c= O

Figure 7: Wall time results of the extended dataset in both
VCF and Parquet format, for varying cluster sizes and repli-
cation factors. Lines show mean over 5 repetitions. Error
bars indicate corresponding standard error.

Apache Parquet offers a more generalized and highly compressed
format, compared to the flat VCF format. Fields can be missing or
empty without affecting the querying script. The SQL-like flavor
allows to easily expand the schema including more data or fields.

2500 3000
1

2000
1

duration (sec) mean +/- standard error
1000 1500
|

500
|

cluster size

—— VCF - 104 individuals - VCF - 1144 individuals
Parquet — 104 individuals ---- Parquet — 1144 individuals

Figure 8: Wall time results for the original and the extended
dataset in both VCF and Parquet format. Lines show mean
over 5 repetitions. Error bars indicate corresponding stan-
dard error. Illustration for Allele frequency application for
cluster sizes and between 2 and 40 worker nodes and repli-
cation factor 3.

Writing queries for datasets stored in Apache Parquet using
Apache Spark is straightforward and allows for interactive query-
ing. We demonstrated the ease of querying Parquet files with a
simple application, encouraging scientists to experiment with their
own queries using the interactive environment of Spark. The ad-
vantage of column metadata can be better demonstrated with que-
ries that request information from multiple columns and embed-
ded fields. A future direction will be to test the schema with more
complex queries where data from multiple columns/rows can be
combined. Such an interesting query can be the calculation of the
alternate allele frequency of each sample. The columnar format
of Apache Parquet is expected to be advantageous for distributing
columns across worker nodes and combining the information of
each sample’s rows.

Future work may also be directed towards evaluating other Big
Data systems that support better querying by row. Apache Avro
provides a schema-enforced format similar to the JSON format but
more efficient in terms of storage space and highly supported in the
Hadoop environment. For variant calling data, the chromosomal
position can be used as the key for fast access to every line of a
VCEF. Tomatula converter can be expanded to include VCF-to-Avro
conversion.

Our experiments showed that the Apache Parquet format out-
performs also in terms of the relationship between wall time and
cluster size. As shown in our results, Apache Parquet requires less

nodes to achieve a similar performance in comparison to the orig-
inal flat-file format. Note that the querying response performance
of flat-files with 104 individuals resembles that of Apache Parquet
with 1144 individuals. In our experiments, Apache Parquet was
able to handle 10 times more information using the same comput-
ing resources compared to a querying application used flat-files.
In our estimation, bigger advantages in performance between the
two methods will be found when querying for information stored
in the fields of individuals.

Finally, we observed significant gains in hard disk storage ca-
pacity, which also favor Apache Parquet. The Parquet format can
compress the VCF data by a factor of 10 as shown in Table 1. This is
a very important advantage in large cohort studies but also in clin-
ical practice, where genomic information of patients can be used
for personalized treatment. In such a scenario, the healthcare sys-
tem will need an efficient and flexible storage format for managing
data from thousands of patients.

The cluster size, as expected, highly affects the performance of
the wall time. More workers means higher computational power
and faster response. However, there is a minimum duration that
cannot be further reduced and using too many nodes can lead to
the opposite results, with response increasing due to increased
time for scheduling the tasks and collecting/reducing the results.
In our experiments, we noted that there is not significant gain in
wall time for increased replication factor. Yet more copies of the
data can improve security against data loss in case a data node is
down or damaged. Additionally, accessibility might be improved
in more busy Hadoop clusters, in case resources are shared and it
is more probable a data node to be busy with another task.

To summarize, we recommend the use of Big Data methods to
query variant calling data and provide analytics services, and we
encourage the investigation of other bioinformatics applications
that can take advantage of parallel computing opportunities of-
fered by the Apache Spark ecosystem. The gains can be better in-
vestigated with more complex pipelines, when computations have
to be performed on the collected data to provide the results. Since
Apache Spark application layer supports APIs for several program-
ming languages, there is the potential of deploying existing bioin-
formatics tools on a Spark cluster. Still, Hadoop HDFS, Apache
Spark and Apache Parquet are relatively new platforms, and are
under development. We expect further improvements in Apache
Parquet performance, when new features, such as indexing and lin-
eage based recovery will be implemented. The migration to Spark
2.2.0 is also expected to improve the query performance. Spark
2.2.0 implements whole-stage code generation that improves ex-
ecution performance by combining multiple operators into a sin-
gle Java function and collapsing queries into a single function re-
ducing memory calls of intermediate results. Finally, Spark 2.2.0
enables the processing of multiple rows together in a columnar
format, providing a new Parquet reader.

ACKNOWLEDGMENTS

Three anonymous reviewers provided suggestions that helped im-
prove and clarify this manuscript.

This work was carried out on the Dutch national e-infrastructure
with the support of SURF Cooperative.

SUPPLEMENTARY MATERIAL

Software is available on Github online, under General Public Li-
cense (GPL3): https://github.com/BigDataWUR/tomatula
Experimental results are available on Zenodo online, under CC-BY
2.0 Attribution 2.0 license: doi:10.5281/zenodo.582145

REFERENCES

[1] Saulo Aflitos et al. 2014. Exploring genetic variation in the tomato (Solanum
section Lycopersicon) clade by whole-genome sequencing. Plant Journal 80, 1
(2014), 136-148. https://doi.org/10.1111/tpj.12616
Abdalla Ahmed. 2016. Analysis of Metagenomics Next Generation Sequence
Data for Fungal ITS Barcoding: Do You Need Advance Bioinformatics Experi-
ence? Frontiers in Microbiology 7, July (2016), 1061. https://doi.org/10.3389/fmicb.
2016.01061
[3] Apache Software Foundation. 2011-2017. Apache Hadoop. http://hadoop.apache.
org/. (2011-2017). [Online; last accessed 23-Feb-2017].
[4] Apache Software Foundation. 2017. Apache Parquet. (Jan. 2017). http://parquet.
apache.org/ [Online; last accessed 23-Feb-2017].
[5] Apache Software Foundation. 2017. Apache Spark. (Jan. 2017). http://spark.
apache.org/ [Online; last accessed 23-Feb-2017].
[6] Adam Auton et al. 2015. A global reference for human genetic variation. Nature
526 (2015), 68-74. https://doi.org/10.1038/nature15393 arXiv:15334406
[7] Aikaterini Boufea and Ioannis N Athanasiadis. 2017. Experimental results of
"Managing variant calling datasets the big data way". (May 2017). https://doi.
org/10.5281/zenodo.582145
[8] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks,
Mark A. DePristo, Robert E. Handsaker, Gerton Lunter, Gabor T. Marth,
Stephen T. Sherry, Gilean McVean, and Richard Durbin. 2011. The variant call
format and VCFtools. Bioinformatics 27, 15 (2011), 2156-2158. https://doi.org/
10.1093/bioinformatics/btr330
[9] Dries Decap, Joke Reumers, Charlotte Herzeel, Pascal Costanza, and Jan Fostier.
2015. Halvade: Scalable sequence analysis with MapReduce. Bioinformatics 31,
15 (2015), 2482-2488. https://doi.org/10.1093/bioinformatics/btv179
[10] Umberto Ferraro Petrillo, Gianluca Roscigno, Giuseppe Cattaneo, and Raffaele
Giancarlo. 2017. FASTdoop: A Versatile and Efficient Library for the Input of
FASTA and FASTQ Files for MapReduce Hadoop Bioinformatics Applications.
Bioinformatics 33, 10 (2017), 1575-1577. https://doi.org/10.1093/bioinformatics/
btx010
[11] Steven N Hart, Patrick Dufty, Daniel J Quest, Asif Hossain, Mike A Meiners, and
Jean Pierre Kocher. 2016. VCF-Miner: GUI-based application for mining variants
and annotations stored in VCF files. Briefings in Bioinformatics 17, 2 (2016), 346~
351. https://doi.org/10.1093/bib/bbv051
[12] Ben Langmead, Kasper D Hansen, and Jeffrey T Leek. 2010. Cloud-scale RNA-
sequencing differential expression analysis with Myrna. Genome biology 11, 8
(2010), R83. https://doi.org/10.1186/gb-2010-11-8-r83

[2

[13] Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop, and Steven L Salzberg.

2009. Searching for SNPs with cloud computing. Genome biology 10, 11 (2009),
R134. https://doi.org/10.1186/gb-2009-10-11-r134

Jeremy Leipzig. 2016. A review of bioinformatic pipeline frameworks. Briefings
in Bioinformatics 18, 3 (2016), 530-536. https://doi.org/10.1093/bib/bbw020
Timo Lubitz, Jens Hahn, Frank T. Bergmann, Elad Noor, Edda Klipp, and Wol-
fram Liebermeister. 2016. SBtab: A flexible table format for data exchange in
Systems Biology. Bioinformatics 32, April (2016), btw179~-. https://doi.org/10.
1093/bioinformatics/btw179

Marco Masseroli, Pietro Pinoli, Francesco Venco, Abdulrahman Kaitoua, Vahid
Jalili, Fernando Palluzzi, Heiko Muller, and Stefano Ceri. 2015. GenoMetric
Query Language: A novel approach to large-scale genomic data management.
Bioinformatics 31, 12 (2015), 1881-1888. https://doi.org/10.1093/bioinformatics/
btv048

Matt Massie, Frank Nothaft, Christopher Hartl, Christos Kozanitis, André Schu-
macher, Anthony D Joseph, David A Patterson, Frank Austin Nothaft, and David
Patterson. 2013. ADAM: Genomics Formats and Processing Patterns for Cloud Scale
Computing. Tech. Rep. UCB/EECS-2013-207. EECS Department, University of
California, Berkeley, CA, USA. http://www.eecs.berkeley.edu/Pubs/TechRpts/
2013/EECS-2013-207.html

Henrik Nordberg, Karan Bhatia, Kai Wang, and Zhong Wang. 2013. BioPig: A
Hadoop-based analytic toolkit for large-scale sequence data. Bioinformatics 29,
23 (2013), 3014-3019. https://doi.org/10.1093/bioinformatics/btt528

Aidan R. O’Brien, Neil F. W. Saunders, Yi Guo, Fabian A. Buske, Rodney J. Scott,
and Denis C. Bauer. 2015. VariantSpark: population scale clustering of geno-
type information. BMC Genomics 16, 1 (2015), 1052. https://doi.org/10.1186/
512864-015-2269-7

Michael C. Schatz. 2009. CloudBurst: Highly sensitive read mapping with
MapReduce. Bioinformatics 25, 11 (2009), 1363-1369. https://doi.org/10.1093/

bioinformatics/btp236
André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi Kallio, Eija Ko-

rpelainen, Gianluigi Zanetti, and Keijo Heljanko. 2014. SeqPig: Simple
and scalable scripting for large sequencing data sets in Hadoop. Bioin-
formatics 30, 1 (2014), 119-120. https://doi.org/10.1093/bioinformatics/btt601
arXiv:arXiv:1307.2331

SURF - Collaborative organization for ICT in Dutch education and research.
2016. SURFsara. https://www.surf.nl/en/about-surf/subsidiaries/surfsara/.
(2016). [Online; last accessed 23-Feb-2017].

Marek S. Wiewiorka, Antonio Messina, Alicja Pacholewska, Sergio Maffioletti,
Piotr Gawrysiak, and Michal J. Okoniewski. 2014. SparkSeq: Fast, scalable
and cloud-ready tool for the interactive genomic data analysis with nucleotide
precision. Bioinformatics 30, 18 (2014), 2652-2653. https://doi.org/10.1093/
bioinformatics/btu343

Matei Zaharia, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
Ion Stoica, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, and Shivaram Venkataraman. 2016.
Apache Spark: a unified engine for big data processing. Commun. ACM 59, 11
(Oct. 2016), 56—65. https://doi.org/10.1145/2934664

https://github.com/BigDataWUR/tomatula
http://dx.doi.org/10.5281/zenodo.582145
https://doi.org/10.1111/tpj.12616
https://doi.org/10.3389/fmicb.2016.01061
https://doi.org/10.3389/fmicb.2016.01061
http://hadoop.apache.org/
http://hadoop.apache.org/
http://parquet.apache.org/
http://parquet.apache.org/
http://spark.apache.org/
http://spark.apache.org/
https://doi.org/10.1038/nature15393
http://arxiv.org/abs/15334406
https://doi.org/10.5281/zenodo.582145
https://doi.org/10.5281/zenodo.582145
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btv179
https://doi.org/10.1093/bioinformatics/btx010
https://doi.org/10.1093/bioinformatics/btx010
https://doi.org/10.1093/bib/bbv051
https://doi.org/10.1186/gb-2010-11-8-r83
https://doi.org/10.1186/gb-2009-10-11-r134
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.1093/bioinformatics/btw179
https://doi.org/10.1093/bioinformatics/btw179
https://doi.org/10.1093/bioinformatics/btv048
https://doi.org/10.1093/bioinformatics/btv048
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
https://doi.org/10.1093/bioinformatics/btt528
https://doi.org/10.1186/s12864-015-2269-7
https://doi.org/10.1186/s12864-015-2269-7
https://doi.org/10.1093/bioinformatics/btp236
https://doi.org/10.1093/bioinformatics/btp236
https://doi.org/10.1093/bioinformatics/btt601
http://arxiv.org/abs/arXiv:1307.2331
https://www.surf.nl/en/about-surf/subsidiaries/surfsara/
https://doi.org/10.1093/bioinformatics/btu343
https://doi.org/10.1093/bioinformatics/btu343
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Big data tools
	2.2 VCF files and tools
	2.3 The conversion tool
	2.4 Experimental setup on a cluster with Apache Hadoop and Apache Spark
	2.5 Experimental Design
	2.6 Querying applications

	3 Results
	3.1 Cluster size
	3.2 Replication factor
	3.3 Converting files with Tomatula
	3.4 Accessing allele frequencies with Tomatula
	3.5 Increased input size

	4 Discussion
	Acknowledgments
	References

