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ABSTRACT: Software agent technology has matured enough to produce intelligent agents, which can be
used to control a large number of concurrent engineering tasks. Multi-agent systems are communities of agents
that exchange information and data in the form of messages. The agents’ intelligence can range from rudimen-
tary sensor monitoring and data reporting to more advanced forms of decision making and autonomous behav-
ior. The behavior and intelligence of each agent in the community can be obtained by performing data mining
on available application data and the respected knowledge domain. We have developed Agent Academy, a soft-
ware platform for the design, creation, and deployment of multi-agent systems, which combines the power of
knowledge discovery algorithms with the versatility of agents. Using this platform, we show how agents,
equipped with a data-driven inference engine, can be dynamically and continuously trained. We also discuss a
few prototype multi-agent systems developed with Agent Academy.

1 INTRODUCTION

The idea of using a systematic approach to the inte-
grated, concurrent design of products and their related
processes, including manufacture and support has
proven appealing. Concurrent Engineering (CE) is
intended to lead the developer, from the outset, to con-
sider all elements of the product lifecycle from concept
through disposal, including quality control, cost, sched-
uling and user requirements. The Integrated Product
Development (IPD) process that CE exploits is a phi-
losophy that systematically employs a teaming of func-
tional disciplines to integrate and concurrently apply all
necessary processes to produce an effective and effi-
cient product that satisfies customer needs. There is no
checklist for implementing IPD because there is no one
solution … each application can be unique.

Since IPD is, in fact, the splitting of a major deliv-
erable into many, simultaneous tasks (Figure 1), CE
can be thought of merely as multi-tasking, which has
efficiently been dealt with the flourishing and estab-
lishment of object-oriented programming. Allowing
changes with small computational cost and increas-
ing versatility, autonomy and heterogeneity has made
autonomous agents (state-of-the-art for objected-
oriented programming) to be introduced as a powerful
metaphor for building software applications. Usually,

these agents are not developed as “stand-alone” appli-
cations; rather they are implemented to act within
communities, called Multi-Agent Systems (MAS).

It is therefore safe to deduce, that since each of the
agents in a MAS has its own thread of control, with its
own beliefs and experiences, Agent technology can
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Figure 1. The process of Concurrent Engineering.
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be considered to emerge from the principles of
Concurrent Engineering (Agha 1986, Agha & Hewitt
1988, Agha et al. 1993).

In our attempt to justify our claim that a MAS can
deal with the problem of CE efficiently, we had to use
an agent development platform that could add some
form of intelligence in the CE oriented application.
Nevertheless, none of the existing development plat-
forms has fulfilled our demand to provide enhanced
capabilities in terms of the level of abstraction in the
design and development process of agent-oriented
applications (Nwana et al. 1999, Gutknecht et al.
2000, Suguri et al. 2001, Jeon et al. 2000). A quite
desirable effort was the creation of a software product
that combines all widely used mainstream technologies
in one tool. This is why we have developed Agent
Academy (AA) (Agent Academy Consortium 2000,
Mitkas et al. 2002), an integrated framework for con-
structing multi-agent applications and embedding
rule-based reasoning into agents, at the design phase.

The framework presented in this paper is imple-
mented upon the JADE (Bellifemine et al. 2000) infra-
structure, ensuring a relatively high degree of FIPA
compatibility, as defined in (FIPA 2000, Bellifemine
et al. 2000). AA is itself a multi-agent system, whose
architecture is based on the GAIA methodology
(Wooldridge et al 2000). It provides an integrated GUI-
based environment that enables the design of single
agents or multi-agent communities, using common
drag-and-drop operations. This capability of the AA
development environment helps agent application
developers to build a whole community of agents with
chosen behavior types and attributes in a few minutes.
Using AA, an agent developer can easily go into the
details of the designated behaviors of agents and pre-
cisely regulate communication properties of agents.
These include the type and number of the agent com-
munication language (ACL) messages exchanged
between agents, the performatives and structure of
messages, with respect to FIPA specifications (FIPA
2000, FIPA 2001, FIPA 2002), as well as the seman-
tics, which can be defined by constructing ontologies
with Protégé-2000 (Grosso et  al. 1999).

All of the aforementioned characteristics of our
development environment have been viewed from 
an agent-oriented software-engineering perspective,
since they provide essential elements for the design
and the construction of a multi-agent system with pre-
specified attributes. In addition to that, there is the AI
perspective that deals with the reasoning capabilities
of agents. In this context, our system implements a
“training module” that embeds essential rule-based
reasoning into agents. This kind of reasoning is based
on the application of data mining (DM) techniques on
possible available datasets. This methodology devel-
oped within AA, results in the extraction of agent
knowledge in the form of a decision model (e.g. a

decision tree). The extracted knowledge is expressed
in Predictive Modelling Markup Language (PMML)
(Data Mining Group 2001) documents and stored 
in a data repository, handled by our development
framework. The applied data mining techniques are,
by definition, updateable as new data come into the
repository. Thus, it is easy to update the knowledge
bases of agents, by performing agent “retraining”. This
capability can be especially exploited in environments
with large amounts of periodically produced data. 
A characteristic example of such an environment is
encountered in almost all enterprise IT infrastructures,
the vast majority of which are implemented following
traditional development paradigms. To this end, our
presented infrastructure is envisioned as a convenient
tool that will encourage the development of new
agent-based applications over the existing traditional
ones, by exploiting available data.

The paper is structured as follows. Section 2
describes the architecture of our framework and illus-
trates the development process and the use of tools
provided for the construction of a multi-agent system.
In section 3, a detailed presentation of the agent
“training” mechanism is given. Section 4 introduces
the three test case pilots of the platform, while section
5 concludes the paper and outlines future work.

2 THE AGENT ACADEMY DEVELOPMENT
FRAMEWORK

Our development framework acts as an integrated
GUI-based environment that facilitates the design
process of a MAS. It also supports the extraction of
decision models from data and the insertion of these
models into newly created agents. Developing an
agent application using AA involves the following
activities from the developer’s side:

1. the creation of new agents with limited initial rea-
soning capabilities;

2. the addition of these agents into a new MAS;
3. the determination of existing, or the creation of

new behavior types for each agent;
4. the importation of ontology-files from Protégé-

2000;
5. the determination of message recipients for each

agent.

In case that an agent application developer intends
to create a reasoning engine for one or more agents of
the designed MAS, two more operations are required
for each of those agents:

– the determination of an available data source of
agent decision attributes;

– the activation of the training procedure, by specify-
ing the parameters of the training mechanism.
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Figure 2 illustrates the Agent Academy main func-
tional diagram, which represents the main components
and the interactions between them. In the remaining
section, we discuss the Agent Academy architecture,
and we explain how the development process is
realized through our framework.

2.1 Architecture

An application developer launches the AA platform
in order to design a multi-agent application. The main
GUI of the development environment is provided 
by the Agent Factory (AF), a specifically designed
agent, whose role is to collect all required informa-
tion from the agent application developer regarding
the definition of the types of agents involved in the
MAS, the types of behaviors of these agents, as well
as the ontology they share with each other. For this
purpose, Agent Academy provides a Protégé-2000
front-end. The initially created agents possess no ref-
erencing capabilities (“dummy” agents). The devel-
oper may request from the system to create rule-based
reasoning for one or more agents of the new MAS.
These agents interoperate with the Agent-Training
Module (ATM), which is responsible for inserting a
specific decision model into them. The latter is pro-
duced by performing DM on data entered into Agent
Academy as XML documents or as datasets stored in
a database. This task is performed by the Data Mining
Module (DMM), another agent of AA, whose task is
to read available data and extract decision models,
expressed in PMML format.

AA hosts a database system for storing all infor-
mation about the configuration of the new created
agents, their decision models, as well as data entered

into the system for DM purposes. The whole AA 
platform was created as a MAS, which is executed
upon JADE.

2.2 Developing multi-agent applications

The main GUI of the development platform (Agent
Factory) consists of a set of graphical tools, which
enable the developer to carry out all required tasks for
the design and creation of a MAS, without any effort
for writing even a single line of source code. In partic-
ular, the Agent Factory comprises the Ontology Design
Tool, the Behavior Type Design Tool, the Agent Type
Definition Tool, and the MAS Creation Tool.

2.2.1 Creating agent ontologies
A required process in the creation of a MAS, is the
design of one or more ontologies, in order for the agents
to interoperate adequately. The Agent Factory pro-
vides an Ontology Design Tool, which helps develop-
ers adopt ontologies defined with the Protégé-2000, a
tool for designing ontologies. The RDF files that are
created with Protégé are saved in the AA database for
further use. Since AA employs JADE for agent devel-
opment, ontologies need to be converted into special
JADE ontology classes. For this purpose, our frame-
work automatically compiles the RDF files into
JADE ontology classes.

2.2.2 Creating behavior types
The Behavior Type Design Tool assists the developer
in defining generic behavior templates. Agent behav-
iors are modelled as workflows of basic building
blocks, such as receiving/sending a message, executing
an in-house application, and, if necessary, deriving
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Figure 2. Diagram of the Agent Academy development framework.
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decisions using inference engines. The data and con-
trol dependencies between these blocks are also 
handled. The behaviors can be modelled as cyclic 
or one-shot behaviors of the JADE platform. These
behavior types are generic templates that can be con-
figured to behave in different ways; the structure of
the flow is the only process defined, while the config-
urable parameters of the application inside the behav-
ior, as well as the contents of the messages can be
specified using the MAS Creation Tool. It should be
denoted that the behaviors are specialized according
to the application domain.

The building blocks of the workflows, which are
represented by nodes, can be of four types:

1. Receive nodes, which enable the agent to filter
incoming FIPA-SL0 messages.

2. Send nodes, which enable the agent to compose
and send FIPA-SL0 messages.

3. Activity nodes, which enable the developer to add
predefined functions to the workflow of the behav-
ior, in order to permit the construction of multi-
agent systems for existing distributed systems.

4. Jess nodes, which enable the agent to execute a
particular reasoning engine, in order to deliberate
about the way it will behave.

2.2.3 Creating agent types
After having defined certain behavior types, the Agent
Type Definition Tool is provided to create new agent
types, in order for them to be used later in the MAS
Creation Tool. An agent type is in fact an agent plus a
set of behaviors assigned to it. New agent types can be
constructed from scratch or by modifying existing
ones. Agent types can be seen as templates for creat-
ing agent instances during the design of a MAS.

During the MAS instantiation phase, which is real-
ized by the use of the MAS Creation Tool, several
instances of already designed agent types will be
instantiated, with different values for their param-
eters. Each agent instance of the same agent type can
deliver data from different data sources, communi-
cate with different types of agents, and even execute
different reasoning engines.

2.2.4 Deploying a Multi Agent System
The design of the behavior and agent types is fol-
lowed by the deployment of the MAS. The MAS
Creation Tool enables the instantiation of all defined
agents running in the system from the designed agent
templates. The receivers and senders of the ACL mes-
sages are set in the behaviors of each agent. After all
the parameters are defined, the agent instances can be
initialized. Agent Factory creates default AA Agents,
which have the ability to communicate with AF and
ATM. Then, the AF sends to each agent the necessary
ontologies, behaviors, and decision structures.

3 AGENT “TRAINING”

The initial effort for the implementation of such a
development framework as the one presented in this
paper, was motivated by the lack of an agent-oriented
software-engineering tool coupled with AI aspects, as
far as we know. The ability to incorporate background
knowledge into an agent’s decision–making process
is arguably essential for effective performance in dyna-
mic environments. However, agent-oriented software
engineering methodologies deal with, both high-
level, top-down iterative approaches and design meth-
ods for software systems (Witten et al. 2000). Thus,
the lack of tools that concern agent reasoning issues
in most high-level software design approaches is
excused when we examine these approaches from a
pure software-engineering point of view. Moreover,
building a MAS with a large number of agents usually
requires the reasoning to be distributed in many
agents of the MAS community, reducing the degree
of reasoning per agent. From our perspective, an
agent-oriented development infrastructure should
both provide high-level design capabilities and deal
with the internals of an agent architecture, in order to
be considered complete and generic.

For this reason, we have implemented, as a separate
module of the overall agent-oriented development
environment a mechanism for embedding rule-based
reasoning capabilities into agents. This is realized
through the ATM, which is responsible for embedding
specific knowledge into agents. This knowledge is
generated as the outcome of the application of DM
techniques into available data. The other module,
whose role is to exploit possible available datasets in
order to extract decision models, is the DMM. Both
ATM and DMM are implemented as JADE agents
who act in close collaboration.

These two basic modules, as well as the flow of the
agent training process are shown in figure 3. At first,
let us consider an available source of data formatted
in XML. The DMM receives data from the XML doc-
ument and executes certain DM algorithms (suitable
for generating a decision model), determined by the
agent-application developer. The output of the DM
procedure is formatted as a PMML document.

PMML is an XML-based language, which pro-
vides a rapid and efficient way for companies to
define predictive models and share models between
compliant vendors’ applications. It allows users to
develop models within one vendor’s application, and
use other vendors’ applications to visualize, analyze,
evaluate or otherwise use the models. The fact that
PMML is a data mining standard defined by DMG
(Data Mining Group) provides the Agent Academy
platform with versatility and compatibility to other
major data mining software vendors, such as Oracle,
SAS, SPSS and MineIt.

14
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The PMML document represents a knowledge
model that expresses the referencing mechanism of
the agent we intend to train. The resulted decision
model is translated, through the ATM, to a set of facts
executed by a rule engine. The implementation of the
rule engine is provided by JESS (Friedman-Hill 2003),
a robust mechanism for executing rule-based reason-
ing. Finally, the execution of the rule engine becomes
part of agent’s behavior.

As shown in figure 3, an agent that can be trained
through the provided infrastructure encapsulates two
types of behaviors. The first is the basic initial behav-
ior predefined by the AF module. This may include a
set of class instances that inherit the Behavior class
defined in JADE. The initial behavior is created at the
agent generation phase, using the Behavior Design
Tool, as described in the previous section. This type of
behavior characterizes all agents designed by Agent
Academy, even if the developer intends to equip them
with rule-based reasoning capabilities. This essential
type of behavior includes the set of initial agent
beliefs.

The second supported type of behavior is the rule-
based behavior, which is optionally created, upon
activation of the agent-training feature. This type of
behavior is dynamic and implements the decision
model. In the remaining section, we present the

details of the data mining procedure and we describe
the mechanism for embedding decision-making capa-
bilities into the newly trained agents.

3.1 Mining background data for creating 
Decision Models

The mechanism for extracting knowledge from avail-
able data, in order to provide agents with reasoning, is
based on the application of DM techniques on back-
ground application-specific data (Symeonidis et al.
2002). From our experience with the application of
our framework to an industrial scenario about supply
chain management (Symeonidis et al. 2003), we ascer-
tained that the enterprise IT infrastructures generate
and manipulate a large amount of data on a perma-
nent basis, thus becoming suitable data providers that
satisfy the purposes of DMM.

In the initial phase of the DM procedure, the 
developer launches the GUI-based wizard depicted 
in figure 4.a and specifies the data source to be
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loaded and the agent decision attributes that will be
represented as internal nodes of the extracted decision
model. In figure 4.b the developer selects the type of
the DM technique from a set of available options. In
order to clarify the meaning of agent decision attrib-
utes, let us consider the decision model in figure 5. 
A certain decision is made when some or all input
attributes are satisfied. In figure 5 we see an input
vector of M attributes and an output vector with N
attributes, which comprises the overall decision that
an agent makes. One part of agent decision attributes
is identical to the set of inputs that an agent receives,
while the remaining part represents the outputs (deci-
sion nodes) of the agent.

Regarding the technical details of the DMM, we
have developed the DM facility in our framework, by
incorporating a set of DM methods based on the
WEKA library and tools and we further extended the
WEKA API in order for it to support PMML (a later
version of the WEKA API will have our extension
included). Some other new DM techniques have also
been developed but we will not mention them here, as
this would be out of this paper’s scope. For further
information on the developed DM algorithms, please
see (Athanasiadis et al. 2002).

3.2 Embedding intelligence into agents

The completion of the training process requires the
translation of the DM resulted decision model into 
an agent-understandable format (Figure 2). This is
performed by the ATM, which receives the PMML
output as an ACL message sent by the DMM, as soon
as the DM procedure is completed, and activates the
rule engine. Actually, the ATM converts the PMML
document into JESS rules and communicates, via
appropriate messages, with the “trainee” agent, in
order to insert the new decision model into it. After
the completion of this process, our framework auto-
matically generates Java source code and instantiates
the new “trained” agent into the predefined MAS.
The total configuration of the new agent is stored in
the development framework, enabling future modifi-
cations of the training parameters, or even the retrain-
ing of the already “trained” agents.

4 DEVELOPED TEST CASES

The AA consortium is developing three test cases, in
order to prove out the AA hypothesis. Through the
test cases the platform usability and added value to
the users- developer companies is revealed. The three
test cases are deployed in the following domains:

– In-house Supply Chain Management
– Real-time environmental monitoring and assessment
– Web-based Distributed Service Management

The first test case scenario addresses issues con-
cerning Supply Chain Management (SCM). This field
is of great interest to a series of companies throughout
Europe, as SCM depends on several output-significant
variables. Based on an existing agent-based applica-
tion for production planning, an agent-based SCM
add-on on an ERP system is being developed.

The second test case scenario’s purpose is to eval-
uate the use of AA trained agents in a real-time con-
text. More specifically, the O3 RTAA system, a
real-time Ozone Monitoring and Alarming applica-
tion is under development.

Finally, the third test case scenario addresses web-
based applications for distributed service manage-
ment (DSM). A fast growing number of companies
worldwide face the need for establishing a DSM sys-
tem for matching their customers’ needs in the after
sales phase. An intelligent agent based application is
proposed for rendering this kind of services.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented Agent Academy, a
multi-agent development framework for constructing
multi-agent systems, or single agents. We argued that
the existing tools and infrastructures for agent devel-
opment are especially focused on the provision of
high-level design methodologies, leaving out the
details of agents’ decision-making abilities. In con-
trast, our framework can provide both a GUI-based,
high-level MAS authoring tool and a facility for
extracting rule-based reasoning from available data
and inserting it into agents. The produced knowledge
is expressed as PMML formatted documents. We
have presented the functional architecture of our
framework; we shortly demonstrated an indicative
scenario for deploying a MAS and, finally, we dis-
cussed the details of the agent “training” process.

Through our experience with Agent Academy, we
are convinced that this development environment sig-
nificantly reduces the programming effort for building
agent applications, both in terms of time and code effi-
ciency, especially for those MAS developers who use
JADE. For instance, one MAS, that requires the writ-
ing of almost 6,000 lines of Java code, using JADE,
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requires less than one hour to be developed with Agent
Academy. This test indicates that AA meets the
requirement for making agent programs in a quicker
and easier manner. On the other hand, our experiments
with the DMM have shown that the completion of the
decision model generated for agent reasoning is highly
dependant on the amount of available data. In particu-
lar, a dataset of more than 10,000 records is adequate
enough for producing high-confidence DM results,
while datasets with fewer than 3,000 records have
yielded non-consistent arbitrary output.

The AA framework is the result of a development
effort, which begun two years ago. Currently, a beta
version exists, which is not yet publicly available. The
first stable implementation of AA is planned to come
out on July 2003, as an open-source product. Our near
future work involves the finalization of the integra-
tion process for AA, as well as the exhaustive testing
of the platform, by implementing three large-scale
applications in the domains of real-time notification,
web-based applications, and supply-chain manage-
ment, respectively.
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