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ABSTRACT: This paper describes the design and deployment of an agent community, which is responsible
for monitoring and assessing air quality, based on measurements generated by a meteorological station.
Software agents acting as mediators or decision makers deliver validated information to the appropriate desti-
nations. We outline the procedure for creating agent ontologies, agent types, and finally, for training agents
based on historical data volumes. The C4.5 algorithm for decision tree extraction is applied on meteorological
and air-pollutant measurements. The decision models extracted are related to the validation of incoming meas-
urements and to the estimation of missing or erroneous measurements. Emphasis is given on the agent training
process, which must embed these data-driven decision models on software agents in a simple and effortless
way. We developed a prototype system, which demonstrates the advantages of agent-based solutions for intelli-
gent environmental applications.

1 INTRODUCTION

1.1 Multi-agent systems for creating 
intelligent applications

In the last decade, autonomous agents were introduced
as a powerful metaphor for building software applica-
tions. Usually, agents are not developed as “stand-
alone” applications; rather they are implemented to
act within communities, called Multi-agent systems
(MAS). Agent technology is closely related to the
principles of Concurrent Programming (Agha 1986,
Agha & Hewitt 1988, Agha et al.1993), as each one of
the agents has its own thread of control.

MAS applications have been deployed in many
application domains, such as: manufacturing, process
control, telecommunication systems, air traffic con-
trol, traffic and transportation management, informa-
tion filtering and gathering, electronic commerce,
business process management, entertainment and
medical care (Wooldridge & Jennings 1999).

The agent paradigm in building Intelligent
Applications is summarized by Jennings et al. (1998)
as follows: “A MAS can be defined as a loosely 
coupled network of problem solvers that work

together to solve problems that are beyond the indi-
vidual capabilities or knowledge of each problem
solver. These problem solvers – agents – are auto-
nomous and may be heterogeneous in nature. The
characteristics of MAS are:

a. each agent has incomplete information, or capabil-
ities for solving the problem, thus each agent has a
limited viewpoint;

b. there is no global system control;
c. data is decentralized; and
d. computation is asynchronous.”

In the aforementioned context, agent-based solu-
tions have proven to be suitable for building intelli-
gent applications following the concurrent engineering
paradigm. An agent, as an autonomous entity, has a
view of its environment and based on its perceptions
is able to decide on certain actions. An agent, as a
member of a community of concurrently working
agents, contributes in the MAS common goals, which
are usually broader.

1.2 Data Mining for extracting inference models

Chen (1999) states that “the interplay between knowl-
edge reasoning and data retrieval can be achieved by* Corresponding author, email: ionathan@ee.auth.gr
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viewing retrieval as an extreme of reasoning and vice-
versa”. Based on the popular model of analogy, data-
driven reasoning models, such as Decision Trees or
Association Rules, could prove to be valuable in
domains, where inductive logic is not applicable.

In induction only the logical form of the argument
needs to be considered; whereas in deduction infor-
mation about the world must be added in order to
show that the conclusion follows with some degree of
probability (Yezzi 1992). In this manner, deductive
logic seems to be more suitable for agent-based solu-
tions, as agents have a viewpoint on its world. The
data mining approach introduces a set of tools and
methodologies for discovering patterns. These pat-
terns could be decision trees, association rules, neural
networks, etc. The extracted patterns can be imple-
mented as a knowledge model constituting an infer-
ence engine for taking decisions. This approach has
been adopted by a software platform for training intel-
ligent agents. This platform, called Agent Academy
(AA) is a software tool for deploying and training
multi-agent communities, as it supports the design,
creation and deployment of MAS.

1.3 Coupling MAS with DM results

This paper describes the procedure followed by 
the AA project for embedding data-driven reasoning
models on software agents in order to empower the
latter with domain-specific intelligence. More specif-
ically, the case of deploying a MAS for monitoring
air-quality indexes is presented.

In Section 2 the Agent Academy framework is pre-
sented in brief and in Section 3 the experimental case,
named O3RTAA, is presented. The procedure for
building the O3RTAA multi-agent system, with the
use of Agent Academy follows in Section 4, while in
Section 5 the agent community training is discussed.
Finally, experiences from the Agent Academy project
are underlined and some conclusions are made.

2 THE AGENT ACADEMY PLATFORM

Agent Academy1 is a framework for training intelli-
gent agents using data mining techniques. (Agent
Academy Consortium 2000, Mitkas et al. 2002).
More specifically, Agent Academy is an integrated
environment for embedding and improving intelli-
gence in newly created agents through the use of Data
Mining techniques performed on data derived from
monitoring agent data and agent behavior. Agent
Academy is a training facility that supports: (a) the

creation of agents with limited initial referencing
capabilities, and (b) the training of these agents in
order to augment their intelligence efficiently,
according to user specifications and preferences.

The Agent Academy platform is comprised of four
modules:

a. the Agent Factory, for building (untrained) agents;
b. the Agent Use Repository, which stores agent-data;
c. the Data Miner (DM), that extracts knowledge

from AUR’s data;
d. the Agent Training Module (ATM), which is

responsible for training agents.

The AA architecture is shown in Figure 1. The pro-
cedure for creating a MAS starts by the definition of
the agent ontologies with the help of the Ontology
Design Tool. The information flow of each agent
behavior is defined through the Behavior Type Design
Tool. In the platform, it is possible to design generic
agent templates that can be further used while design-
ing different multi-agent systems. Finally with the
help of the Scenario Design Tool, the interactions
between the agents are defined, the specific agent
instances are created and the Multi Agent System
starts operating.

This work focuses on the AF functionalities for
creating the agent community and the DM-ATM
functionality for training intelligent agents. More
specifically, the procedure for embedding intelli-
gence extracted with Data Mining techniques on
Agents will be discussed. The Agent Training proce-
dure is described in Sections 4 & 5.

Agent Academy adopts a bouquet of state-of-the-art
technologies including:

a. JADE platform (for agent creation)
b. JESS engine (for rule execution)
c. Protégé (for ontology design and specification)
d. WEKA data mining tool (for knowledge extraction)
e. XML (for internal data exchange)
f. PMML (for knowledge model representation)
g. PostgreSQL RDBMS (for data and meta-data 

storage)
h. JMI (for meta-repository implementation).
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1Agent Academy: A Data Mining Framework for Training
Intelligent Agents is partially funded by the EU, under the
5th Framework for Research and Development
(IST–2000–31050).
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Figure 1. The Agent Academy architecture.
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Additionally, it should be mentioned that AA
agents are compliant with FIPA specifications.

The reader can refer to these technologies 
in Grosso et al. (1999), Witten & Frank (1999),
Bellifemine et al. (2000), FIPA (2000), Data Mining
Group (2001), Friedman-Hill (2003).

3 O3RTAA: AN AGENT-BASED SYSTEM 
FOR MONITORING AIR-QUALITY 
INDEXES

In this section the O3RTAA multi-agent system for
monitoring air-quality indexes in real-time is pre-
sented. The O3RTAA system will be deployed by
IDI-EIKON, Spain, and will be installed in the
Mediterranean Centre for Environmental Studies
Foundation (CEAM), in Valencia, Spain. The main
goal of O3RTAA is to operate in a “live” environment
and perform all appropriate tasks for detecting, ana-
lyzing and triggering ozone alarms to all concerned
stakeholders, according to different profiles.

Several agents co-operate concurrently in a distrib-
uted agent society, in order to monitor both meteoro-
logical and air quality attributes and thus, evaluate air
quality. The O3RTAA system is structured in three
agent layers, shown in Figure 2. Each one of the lay-
ers undertakes the responsibility to achieve one of the
system’s common goals.

The first layer is the Contribution Layer. This part
of the system is responsible for the acquisition and
conditioning of data captured automatically by field
sensors. Measurement validation, early alarm identi-
fication, sensor malfunction identification and quali-
tative estimation of the missing or erroneous values
are the main goals of this layer.

The second layer is the Management Layer. In 
this layer the task is to analyze the data and fire the
appropriate alarms. Additionally, the measurements
are properly stored in the database.

The third layer is the Distribution Layer, which is
responsible for sending the corresponding alarms to
the users registered in the service, according to their
profiles.

A set of agents in each layer is confronted with the
task to achieve the respective goals. Several agent
instances cooperate in each layer.

There are six different agent types:

a. Diagnosis Agents (DA).
b. Alarm Agents (ALA).
c. Short Prediction Agents (SPA).
d. Distribution Agents (DIA).
e. Feedback Agents (FA).
f. Database Agents (DBA).

Each one of the Diagnosis Agents is charged with
monitoring a specific meteorological or air quality
attribute, i.e. NO2, NOx, O3, etc. Moreover, DA is
responsible for ensuring the efficient operation of a
respective sensor. In case of a sensor breakdown, DA
is responsible for predicting the missing value(s).
Several DA instances are activated in the Contribution
Layer, each one of which handles data coming from
one sensor.

Alarm Agents evaluate the inputs and decide
whether an alarm should be triggered or not. Short
Prediction Agents take under account the current and
past measurements and try to identify how air quality
will evolve, based on certain patterns.

Distribution Agents are in charge of delivering
alarms selectively, while Feedback Agents deliver
users’ response on an alarm.

Finally, the Database Agent is in charge of deliver-
ing accurate, validated data to the measurements
database.

In Section 4, the procedure for deploying the appli-
cation with the use of Agent Academy platform is
presented. Mainly, we concentrate on the deployment
of the Contribution Layer.

4 DEPLOYING O3RTAA USING AGENT
ACADEMY

The AA platform provides an easy way for deploying
multi-agent systems without any coding effort with
the help of the Agent Factory Module. Through a set
of graphical tools, it is possible to define all the nec-
essary details to allow the programmer to design and
create a MAS, either from scratch, or by making use
of existing applications. The created agents have the
ability to communicate with the AA components such
as Agent Training Module, Agent Factory, and to
report back to the Agent Use Repository.

The Agent Factory provides a set of tools to enable
these functionalities. More specifically, the Ontology
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Design Tool, the Behavior Type Design Tool, and the
Scenario Design Tool are used for building the system.
At the end, the multi-agent community is instantiated.
A more detailed description of the Agent Factory com-
ponent can be found in Laleci et al. (2003). In the fol-
lowing sections, the details of these functionalities
will be presented while designing and deploying the
O3RTAA System.

4.1 Creating agent ontologies

The first step in designing a MAS, is to define the
common language between the agents, i.e. the
Ontologies. The Agent Factory provides an Ontology
Design Tool, which helps users adopt ontologies
defined with the Protégé Tool (Grosso et al. 1999).
RDFS files created with Protégé are saved in the
Agent Use Repository for further use. As AA uses the
JADE agent development environment, agent ontolo-
gies must be converted into special JADE Ontology
classes. Whenever an AA agent is created, the corre-
sponding JADE Ontology classes are created after
retrieving the respective Ontology files from the
AUR, using a special tool, which compiles the RDFS
ontology files into JADE Ontology classes.

For the O3RTAA system, we have defined an
ontology specifying all of the necessary classes such
as pollutants, measurements, meteorological stations
and their attributes in terms of JADE Ontology con-
cepts, predicates and agent actions. For example in
Code Segment 1, the “StationInfo” is defined as a
JADE Concept, and its attributes calibration,
stationName, and status are specified.

4.2 Creating behavior types

Using the Behavior Type Design Tool provided, it is
possible to define generic behavior templates. Agent
behaviors are modeled as workflows of basic building
blocks, such as receiving/sending a message, execut-
ing an in-house application, and if necessary deriv-
ing decisions using inference engines. The data and
control dependencies between these blocks are also
handled. The behaviors can be modeled as cyclic 
or one-shot behaviors of the JADE platform. These
behavior types are generic templates that can be con-
figured to behave differently; only the structure of the
flow is defined, the configurable parameters of the
application inside the behavior, as well as the contents
of the messages will be specified using the Scenario
Design Tool while the behaviors are specialized
according to the domain.

In order to explain the functionalities of this tool,
we will go over the design process of the Diagnosis
Behavior Type.

The first action in the Diagnosis Behavior is receiv-
ing the measurement from the respective Agent, so

using the panel presented in Figure 3, a receive block
is added to the flow of the agent behavior.

After receiving the measurement, the Diagnosis
Agent validates this data by checking its conformity to
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Code Segment 1. A part of the O3RTAA Ontology.

Figure 3. Behavior Design Tool.
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data-driven patterns, extracted from historical data.
The rules have been previously generated by the Data
Miner Module, and the corresponding Decision Struc-
ture has been registered to the Agent Use Repository.
In order to execute these rules and derive a decision,
an inference engine has to be added to the flow of the
behavior, specifying the decision structure that will 
be used by this inference engine. Hence, the initial
rules are loaded to the agent, containing the Validation
Decision Model. However, this model (i.e. rules) may
be updated in the future by the Data Miner Module,
and loaded to the agent by the Agent Training Module;
in this way the agent can adapt to the changing aspects
of its environment, while running. (This is the case of
retraining an agent using the AA platform).

An “if ” block is added to the flow of behavior, to
specify the actions that will be performed, depending
on the validity of data. If the data is valid, the data is
checked to see if it causes an “early” alarm. Therefore,
an “action block” is added to the “true branch” of the
“if ” block. The parameters of the action block, i.e. the
application that will be executed and its parameters
are specified. If an early alarm is produced by the
activity, this alarm should be sent to the distribution
agent (DIA). Therefore, an “if ” block is added, the “if
statement” is specified through the editor provided,
and a “send block” is added to the “true branch” of
the “if ” block. The performative and the ontology 
of the message are specified. However, the receiver 
of this message is not set yet, since the exact agent
instance that will receive the message will be assigned
in the Scenario Design Tool.

If the inference engine decides that the measure-
ment is not valid, then the agent tries to estimate the
erroneous (missing) value of the measurement, by exe-
cuting a second inference engine, containing the
Estimation Decision Model. This Decision Model has
as inputs measurement values that the agent handles in
the past, and also the measurements of other Diagnosis
Agents nearby, monitoring other related attributes.
Hence, several send and receive blocks have been
added to the flow of the behavior, for receiving those
appropriate values. The Diagnosis Agent, after receiv-
ing the measurements, estimates the missing value,
running the second inference engine, which uses a
Decision Structure derived by the Data Miner Module.
Hence, an inference engine is added to the flow and the
necessary parameters are set using the editor.

The “activity block” after the “if ” block is added
to convert the measurements into their semantic rep-
resentation. The application that will be executed in
this activity block and its parameters are specified
using the editor. Finally, a “send block” is added in
order to send this semantic representation to the
Alarm Agent (ALA).

The other necessary behavior types are also
designed in a similar fashion.

4.3 Creating agent types

The goal of the AF is to facilitate the development of
multi agent systems, so after having defined certain
behavior types, this tool is engaged in order to create
new agent types, which will be used later in the
Scenario Design Tool. An agent type is in fact an
agent plus a set of behaviors assigned to it. New agent
types can be constructed from scratch or by modify-
ing existing agent types. Agent types can be seen as
templates that can be instantiated as agent instances
while designing a scenario. For the O3RTAA system,
we have defined six agent templates, one for each
agent type, mentioned in the previous section.

While creating a multi-agent system, using the AA
Scenario Design Tool, several instances of these agent
types will be instantiated, having different values in
their parameters. Each agent instance of the same agent
type may have to deliver data from a different sensor,
or communicate with other agents, or run different
decision models, or access a different database and so
on. These kinds of parameters are defined while
deploying the MAS using the Scenario Design Tool.

4.4 Deploying the multi agent system

After designing the behavior types and the agent
types, the deployment of the multi agent system fol-
lows. With the help of the Scenario Design Tool, all
the agents running in that system are instantiated
using the predefined agent templates. The receivers
and senders of the messages in the behaviors of the
agents are set, defining the interactions between the
agents. Agent behaviors are also configured by set-
ting all the necessary parameters, as inputs of the
applications and content of the messages. For exam-
ple, for the O3RTAA system, one diagnosis agent is
initialized for each sensor. The DAs are configured
for listening to different sensors located in different
geographic locations.

After all the parameters are defined, the agent
instances are initialized. Agent Factory creates Default
AA Agents, which have the ability to communicate
with AF, ATM and AUR. Then, the AF sends each of
these agents the necessary ontologies, behaviors, and
decision structures. Each agent parses the RDF
Ontologies into JADE ontology classes using the tool
provided, loads its behaviors, and starts operating.

5 TRAINING THE AGENT COMMUNITY

5.1 Extracting data-driven decision models

While describing the Diagnosis Behavior Type, it was
mentioned that there are two kinds of data-driven deci-
sion blocks. The first one checks the validity of data,
while the second one estimates missing or erroneous
measurements. These blocks are equipped with decision
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models extracted using the AA Data Miner Module.
More specifically, the C4.5 algorithm (Quinlan 1993)
for extracting decision trees was applied on historical
data. The ONDA dataset supplied by CEAM, contained
data from a meteorological station in the district of
Valencia, Spain. More specifically, several meteoro-
logical attributes and air-pollutant values, along with
validation tags, were recorded on a quarter-hourly basis
during years 2000 and 2001. There are about 70,000
records in the volume.

The first set of experiments aimed to extract a
decision model for evaluating an incoming measure-
ment. The ONDA dataset was preprocessed in order
to contain attributes as the current value of a specific
pollutant and the corresponding validation tag, along
with a set of previous values and measures. These
measures are shown in Table 1.

Quinlan’s C4.5 algorithm for decision tree extrac-
tion was applied on the data. Data recorded in year
2000 were used as the training set and data recorded
in 2001 were used as the test set. The pruning option
for support 25% was selected after exhaustive experi-
ments, producing a decision model with more than
99% accuracy for both training and test sets. The
Confusion Matrix for the test set is shown in Table 3.

The second decision structure extracted with the
AA Data Miner Module is the one for estimating a
missing measurement of a certain pollutant. Input
attributes were selected to be previous values of the
same pollutant or concurrent values of other pollutants,
as shown in Table 2. Invalid records or records with
inconsistent history were excluded from the ONDA
dataset, leaving a volume of 12,000 records.

Once more, Quinlan’s (1993) C4.5 algorithm for
classification was used. Cross-folds training for 10
folds was performed. The decision tree extracted with
pruning support 0,025 provided accuracy greater than
90%. The Confusion Matrix is shown in Table 3.

We have discussed elsewhere (Athanasiadis et al.
2003) a slightly different approach in estimating miss-
ing measurements using different types of decision
models as Decision Trees, Neural Networks or Fuzzy
Lattice Model.

The decision models extracted with the Data
Miner are forwarded to the ATM using PMML 2.0
format and finally embedded on running agents as
JESS Rules, as described in the following paragraph.

5.2 Embedding decision models on agents

There are two circumstances in which a decision
model is loaded to an AA-produced agent. In the case
of training, a newly created agent is configured to
have a decision structure and ATM loads the decision
model into it by obtaining the decision structure con-
tent from Agent Use Repository. In the second case,
the case of retraining, the AA agent already uses the

decision structure and the Data Miner Module comes
out with an update of the latter. In such case, DMM
composes an ACL message containing the updated
decision structure in PMML format (Data Mining
Group 2000) and sends it to the Agent Training
Module.

In both cases, after receiving the message either
from AUR or DMM, ATM converts the PMML docu-
ment into JESS rules and determines the AA agents
that use the decision structure. Finally, the JESS rules
are sent to the appropriate Agents via ACL messages
and they insert (or update) their decision structures,
accordingly. An example PMML decision model and
its corresponding JESS rules are depicted in Code
Segments 2–3 respectively. More on Jess engine can
be found in Friedman-Hill (2003).
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Table 1. Attributes used for the validation decision model.

O3 The current ozone value
O3_30 The ozone value 30 min ago
O3_90 The ozone value 90 min ago
MinMax60 The difference between the maximum and

the minimum ozone value in the last 60 min
MinMax150 The difference between the maximum and

the minimum ozone value in the last
150 min

O3val The corresponding validation tag
(valid/erroneous)

Table 2. Attributes used for the estimation decision model.

NO The concurrent value of NO concentration
NO2 The concurrent value of NO2 concentration
NOx The concurrent value of NOx concentration
TEM The concurrent value of Temperature
HR The concurrent value of Relative Humidity
O3_15 The ozone value 15 min ago
O3_30 The ozone value 30 min ago
O3Class The (missing) ozone value level (low/med)

Table 3. Decision model statistics.

Validation Decision Model
Records classified as: valid erroneous
No. records in class ‘valid’: 34,454 21
No. records in class ‘erroneous’: 63 420
Size of decision tree: 29 (15 Leaves)
Correctly classified records: 99.71%

Estimation Decision Model
Records classified as: low med
No. records in class ‘low’: 9,905 2,351
No. records in class ‘med’: 752 4,384
Size of decision tree: 29 (15 Leaves)
Correctly classified records: 93.80%
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In the training and retraining process, Agent
Training Module plays an important role. ATM holds
all the information (such as, the behavior ids of an
agent, decision structures of an agent) about the agents
to be trained. The information is used to manipulate
the agents in the Agent Academy platform.

6 DISCUSSION

In the present paper the procedure followed for build-
ing a Multi-Agent System that monitors Air-Quality
Indexes using the AA platform was presented.
Procedures, that in the traditional approach for

deploying a MAS required significant human effort
in terms of code programming, are now automated
using graphical tools provided by the Agent Academy
platform. Furthermore, the procedure of training and
retraining agents using historical data and data-
mining techniques is an advanced feature, incorpo-
rated in the AA platform. An experimental prototype
for building such a MAS employs agents to be trained
from historical data is the O3RTAA case. Agents act-
ing as mediators, deliver validated information to the
appropriate stakeholders in a distributed environment.
The Diagnosis Agent for monitoring ozone measure-
ments in the O3RTAA system was designed, deployed
and trained using the C4.5 algorithm.

Furthermore, the use of C4.5 algorithm yielded
trustworthy decision models for validating incoming
measurements and estimating the erroneous ones in
the described application.

Future steps are concentrated towards adding intel-
ligence (i.e. inference engines) in the distribution
module of the O3RTAA system, for delivering alarms
in a more efficient manner.

29

Code Segment 2. An example PMML file.

Code Segment 3. The JESS rules generated.
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