
Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Improving predictive performance on survival in dairy cattle using an
ensemble learning approach

E.M.M. van der Heidea,⁎, C. Kamphuisa, R.F. Veerkampa, I.N. Athanasiadisc, G. Azzopardid,
M.L. van Peltb, B.J. Ducroa

aWageningen University & Research Animal Breeding and Genomics, P.O. box 338, 6700 AH Wageningen, the Netherlands
b Cooperation CRV, Animal Evaluation Unit, P.O. box 454, 6800 AL Arnhem, the Netherlands
cWageningen University & Research, Laboratory of Geo-Information Science and Remote Sensing, P.O. box 47, 6700 AA Wageningen, the Netherlands
dUniversity of Groningen, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, 9747 AG Groningen, the Netherlands

A R T I C L E I N F O

Keywords:
Ensemble
Machine learning
Survival
Dairy cow

A B S T R A C T

Cow survival is a complex trait that combines traits like milk production, fertility, health and environmental
factors such as farm management. This complexity makes survival difficult to predict accurately. This is probably
the reason why few studies attempted to address this problem and no studies are published that use ensemble
methods for this purpose. We explored if we could improve prediction of cow survival to second lactation, when
predicted at five different moments in a cow’s life, by combining the predictions of multiple (weak) methods in
an ensemble method. We tested four ensemble methods: majority voting rule, multiple logistic regression,
random forest and naive Bayes. Precision, recall, balanced accuracy, area under the curve (AUC) and gains in
proportion of surviving cows in a scenario where the best 50% were selected were used to evaluate the ensemble
model performance. We also calculated correlations between the ensemble models and obtained McNemar’s test
statistics. We compared the performance of the ensemble methods against those of the individual methods. We
also tested if there was a difference in performance metrics when continuous (from 0 to 1) and binary (0 or 1)
prediction outcomes were used. In general, using continuous prediction output resulted in higher performance
metrics than binary ones. AUCs for models ranged from 0.561 to 0.731, with generally increasing performance at
moments later in life. Precision, AUC and balanced accuracy values improved significantly for the naive Bayes
and multiple logistic regression ensembles in at least one data set, although performance metrics did remain low
overall. The multiple logistic regression ensemble method resulted in equal or better precision, AUC, balanced
accuracy and proportion of animals surviving on all datasets and was significantly different from the other
ensembles in three out of five moments. The random forest ensemble method resulted in the least significant
improvement over the individual methods.

1. Introduction

Cow survival is important from economic, animal welfare and en-
vironmental perspectives. When cows survive to reach a high number of
lactations, rearing costs are reduced for individual animals as well as
across the herd (Mohd Nor et al., 2015; Boulton et al., 2017). Older
cows in their third or fourth lactation also produce more milk than
young cows, increasing profit per cow (Lehmann et al., 2016) and re-
ducing environmental impact per litre of milk produced (Grandl et al.,
2019). A high farm average of number of lactations reached is also an
indication of good farm practices with respect to animal welfare
(Barkema et al., 2015). As there are many advantages to cows that live

long productive lives, it would be beneficial for farmers to keep only
those cows that are likely to thrive in a production environment. Se-
lecting cows that have a high probability to survive to higher lactations
would be possible by predicting the ability of a cow to survive early on.
However, prediction of survival is often not attempted because survival
is a very complex trait, combining cow traits such as milk production,
fertility and health (Heise et al., 2016) with environmental factors, such
as herd size (Shahid et al., 2015) and other farm management factors
(Svensson and Hultgren, 2008; Olechnowicz et al., 2016). Although
attempts have been made to predict survival in literature (Van Pelt
et al., 2015; Gaillard et al., 2016; van der Heide et al., 2019), the
complex nature of survival means the predictive performance of these

https://doi.org/10.1016/j.compag.2020.105675
Received 18 February 2020; Received in revised form 16 June 2020; Accepted 28 July 2020

⁎ Corresponding author.
E-mail address: esther.vanderheide@wur.nl (E.M.M. van der Heide).

Computers and Electronics in Agriculture 177 (2020) 105675

0168-1699/ © 2020 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2020.105675
https://doi.org/10.1016/j.compag.2020.105675
mailto:esther.vanderheide@wur.nl
https://doi.org/10.1016/j.compag.2020.105675
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2020.105675&domain=pdf


models remains low.
The prediction of survival may be improved by combining the

predictions of multiple (weak) prediction methods. This approach is
known as an ensemble method (Knutti et al., 2010; Woźniak et al.,
2014), also referred to as hybrid classifier (Woźniak et al., 2014), de-
cision fusion method (Sinha et al., 2008), or aggregation method
(Satopää et al., 2014). Ensemble methods aim to maximize the com-
plementary contribution of various classification models (Kotsiantis
et al., 2006; Witten et al., 2016). They improve prediction by taking
advantage of the underlying differences and strengths of the involved
methods. This gives ensemble methods several advantages over in-
dividual methods, such as better performance and more robustness
(Seni and Elder, 2010). Due to these advantages, ensemble methods are
used extensively in other fields like medicine, finance and meteorology
(Feldwisch-Drentrup et al., 2010; Tsai and Chen, 2010; Lavecchia,
2015). In the case of survival, ensemble methods have been successfully
applied for the prediction of survival in cancer patients (Hothorn et al.,
2005; Abreu et al., 2013; Leger et al., 2017). This success in other fields
inspires us to evaluate it in the prediction of survival in dairy cattle.

In this study, we investigated if using an ensemble method could
improve prediction of survival to second lactation in dairy cattle
(Fig. 1). We did not find any previous studies that used ensemble
methods to predict survival traits for individual dairy cows. We tested
four different ensemble methods, namely voting rule, random forest
(Breiman, 2001), naive Bayes (Jensen, 1996) and multiple logistic re-
gression (hereafter referred to as ‘regression’). We selected this com-
bination of methods because they are representatives of different types
of ensemble methods. Voting rule is the simplest method but is also the
most straightforward and transparent. Furthermore, simple methods
are not always outperformed by more complex ensemble methods
(Witten et al., 2016). Regression, random forest and naive Bayes were
selected as representatives of margin-based, decision tree-based and
probability-based prediction methods, respectively. Selecting these four
different ensemble methods resulted in an overview of the possibilities
of ensemble methods to improve prediction of survival in dairy cattle.

2. Materials and methods

2.1. Data

We used five data sets originating from a previous study that pre-
dicted survival to second lactation of individual cows (van der Heide
et al., 2019). These five data sets consisted of predictions on test data
sets from that previous study, a randomly selected 30% of all available
animals, stratified by survival (Fig. 2). The data used in the current
study is therefore the output from the methods used in the previous
study.

1) The input of the current study: the prediction outcomes of the va-
lidation data set of van der Heide et al. (2019). The performance

metrics for the individual methods were calculated from this data.
2) The input data sets were randomly shuffled three times, each shuffle

being divided into four folds.
3) An ensemble method was applied using four-fold cross validation on

each of the three shuffles (except for the voting rule, which was
applied directly after step 1).

4) The prediction outcomes were used to calculate the performance
metrics of the chosen ensemble method.

Prediction outcomes were obtained from five different datasets re-
flecting information available at five moments in the life of a cow: at
birth, at eighteen months of age, at first calving, at six weeks post first
calving and at two hundred days post calving. Each data set contained
between 2051 (at birth) to 1862 (at 200 days post calving) randomly
selected animals (Table 1). The total number of available animals de-
creased over time due to the removal of non-surviving animals if they
died prior to the next moment in life.

Probabilities of survival were estimated using three methods in the
previous study: logistic multiple regression, naive Bayes and random
forest. This resulted in three continuous prediction outcomes for each
animal, one from each method. In addition to the continuous prediction
outcomes, we also created binary prediction outcomes for survival
(either 0 or 1). For binary outcomes, animals were predicted to survive
(a score of 1) when the animal had a predicted probability of survival
equal to or above the observed mean chance of survival. Similarly, an
animal was predicted not to survive (a score of 0) if its predicted
probability was below the mean chance of survival, which varied be-
tween 0.86 and 0.92 for the regression and naive Bayes and set to 0.50
for the random forest (see also van der Heide et al., 2019) (Table 2).

2.2. Model and analysis

The data sets were analysed in the statistical program (R Core Team,
2016), where four different ensemble methods were tested. Voting rule
was applied using basic R functions, regression was applied using the
‘caret’ package (Kuhn, 2008), the random forest was applied using the
‘randomForest’ package (Liaw and Wiener, 2002) and the naive Bayes
was applied using ‘naivebayes’ (Majka, 2018).

The type of voting rule that we used is the majority voting rule
(Zhou, 2012); if at least two out of the three original predictions were
positive (i.e., animal will survive) the concerned cow is predicted to
survive, and any animal with two or more negative predictions is pre-
dicted to not survive. No training of the data was required to obtain
performance metrics for this method. All possible combinations of
outcomes for the voting rule are shown in Table 3.

For the regression, no interactions between the prediction outcomes
from the three individual methods tested significant. The models used
for the regression could therefore be described as:

= + + + +β β β βy X X X ei 0 1 i1 2 i2 3 i3 i

Fig. 1. Ensemble method as applied in this study. Three different methods are used to predict if an animal survives (o) or does not survive (x) based on the same
dataset. An ensemble method is then used to aggregate the results in a single prediction.
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where y is the survival status at second calving plus two weeks, Xi1

through Xi3 were the predicted outcomes of the three individual
methods studied previously (van der Heide et al., 2019), β1 through β3
were the regression coefficients for each method and β0 is the intercept,
plus an error term denoted by ei. For each of the five data sets (from
birth to 200 days post calving) a separate model was created.

For the random forest ensemble (Fig. 3), we further tested with
different hyperparameters, namely number of trees, number of vari-
ables selected at each split and if there was an effect of the seed used.
For the number of trees, we tested 1, 5, 10, 50, 100, 150, 200, 250, 300,
500 and 1000 trees in a preliminary study which 500 randomly selected
records drawn from the training set of the previous study. The number
of trees was subsequently set at 200 as there were no significant

changes in AUC of balanced accuracy if 150 or more trees were used,
regardless of the data set and whether binary or continuous input
variables were used. A number of variables equal to the square root of
the total number of variables was randomly sampled at each split. This
is the default setting for this random forest (Liaw and Wiener, 2002).
Selecting either 1 (the minimum) or 3 (the maximum) variables per
split did not result in significant differences. There were also no sig-
nificant differences between three randomly selected seeds for rando-
mization. In order to correct for the imbalanced classes for survival, we
used class weights set to the proportion of animals in the minority class.

For the naive Bayes classification model, no fine-tuning was re-
quired as this method is naturally robust to imbalance and uses no
hyperparameters. The prediction using naive Bayes can be described as
the predicted range of values for the individual model outcomes given
the value for the trait of interest, survival.

Fig. 1 shows a schematic representation of the steps in the analysis.
Cross validation was performed to avoid overfitting to the training data
(Arlot and Celisse, 2010). We used four-fold cross validation to test the
random forest, regression and naive Bayes ensemble methods. We re-
peated this four-fold cross validation step three times to get a reason-
able range of performance metrics to test for significance (Fig. 1, step
2). The four-fold cross validation was done for each data set by splitting
each of the three shuffles into four parts, where three of the parts (75%)
were used for training the model, and the remaining part (25%) was
used for validation. A different seed was used for each shuffle. We used

Fig. 2. Schematic depiction of the analysis that was repeated for all data sets: from birth to 200 days post calving, using either continuous or binary outcomes.

Table 1
Distribution of survivors and non-survivors in each data set.

Data set Survivors Non-survivors Total number of animals

Birth 1764 287 2051
18 months of Age 1736 287 2023
First calving 1741 202 1943
6 weeks post first calving 1743 200 1943
200 days post first calving 1723 139 1862

Table 2
Mean and standard deviation of the individual method outcomes used as input
in this study.

Regression Random Forest Naive Bayes

Mean St.dev Mean St.dev Mean St.dev

Birth 0.856 0.041 0.525 0.052 0.798 0.233
18 months 0.866 0.064 0.535 0.062 0.774 0.287
First calving 0.891 0.056 0.532 0.053 0.761 0.315
6 weeks post calving 0.891 0.085 0.535 0.066 0.785 0.330
200 days post calving 0.924 0.083 0.552 0.078 0.815 0.329

Table 3
All possible combinations and outcomes for the majority voting rule.

Individual method outcomes Voting rule outcome

Multiple linear regression Random forest Naive Bayes

Survives Survives Survives Survives
Survives Survives Culled/dies Survives
Survives Culled/dies Survives Survives
Culled/dies Survives Survives Survives
Survives Culled/dies Culled/dies Culled/dies
Culled/dies Culled/dies Survives Culled/dies
Culled/dies Survives Culled/dies Culled/dies
Culled/dies Culled/dies Culled/dies Culled/dies

Fig. 3. Example of a decision tree as it might appear in the random forest en-
semble method in this study. This tree splits twice, once on the outcomes from
the individual naive Bayes and once on the outcomes of the individual random
forest method. Values shown for each split are examples. The prediction of this
tree is shown in the round end-nodes.
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three x four folds instead of the usual 10-fold cross validation because
the number of non-surviving animals in the data set was low. Dividing
the data into 10 folds would result in folds with very few non-surviving
cases. The model performance metrics for the regression, naive Bayes
and random forest ensemble methods are averaged across these twelve
validation runs.

Each ensemble method was evaluated by measuring the recall,
precision, AUC, balanced accuracy and the proportion of surviving
animals when the 50% highest scoring animals were selected. Precision
(also known as the positive predictive value) here is the proportion of
the correct predictions of non-survivors to the total number of predicted
non-survivors. The recall (or sensitivity), which is the proportion of
correct predictions of non-surviving cows to the total of non-surviving
cows in the entire test set. Both of these metrics quantify the ability of
the ensemble method to identify non-surviving animals. As these me-
trics require a classification, not a probability, animals were divided
into the two classes (surviving and non-surviving) using a cut-off de-
termined by the optimal cut-off using the Youden criteria from the re-
ceiver-operator curve (Fluss et al., 2005). Balanced accuracy and the
AUC are both metrics of overall model performance. The AUC re-
presents the accuracy of the model for all combinations of specificity
and sensitivity and was calculated using the R package ‘pROC’ (Robin
et al., 2011). Balanced accuracy is based on the average accuracy from
the survivors and non-survivors taken separately (Brodersen et al.,
2010). We compared the performance metrics of the ensemble methods
to the performance metrics of the individual methods, as published in
van der Heide et al, (2019). The proportion of surviving animals when
the 50% highest scoring animals were selected is a measurement of the
possible effect of these methods in practice. This metric was calculated
by selecting the 50% highest scoring animals for a particular method
and determining the proportion of animals from that selection that
reached second lactation. This mimics how the models could be used in
practice; farmers could use the outcomes from the (ensemble) methods
to determine which animals to keep (the top 50%) and sell or cull the
animals with poor outcomes (the bottom 50%). The percentage of an-
imals kept cannot be too small, as the farmer needs young cows to re-
place older cows in the herd and was therefore set at 50%.

To determine significance of the ensemble methods’ performance
metrics compared to the individual methods, we constructed a 95%
confidence interval using the mean and standard deviation obtained
from the 12 replications for each method. This confidence interval
could then be used to determine if the ensemble results were statisti-
cally different from the results of the individual methods. We further
calculated the correlation between the ensemble methods and the in-
dividual methods and performed the McNemar's test to determine sta-
tistical significance in performance between methods. The correlations
were calculated using the continuous outcomes. The correlations for the
voting rule or the binary datasets were not calculated due to the limited
number of possible prediction outcomes. We calculated correlations to
investigate if any of the statistical ensemble methods resulted in dif-
ferent predictions for individual animals compared to the individual
methods. This both shows if there were differences between the in-
dividual predictions used as input, as well as if there are still non-
random differences between the ensemble methods. The McNemar’s
test statistic was calculated as

=
−

+

X b c
b c

( )2
2

where b is the number of cases where method A correctly predicted
survival but method B did not and c is the number of cases where
method B predicted survival correctly but method A did not (Table 4).
Table 4 also includes an example of McNemar’s test on our data
McNemar’s test statistics were shown only for the data set with raw
probabilities. The McNemar’s test indicates significant differences be-
tween methods in cases that one method classified correctly and the
other does not. It does not indicate which of the two tested methods

performs significantly better. To determine which prediction method
was superior, the paired t-tests of Section 3.2 of the results are more
suitable.

3. Results

First, we will discuss the results of voting rule (the fourth row in
Tables 5a through 5e), as this method was conceptually difference from
the other ensemble methods. The performance metrics for the other
ensemble methods are shown in Section 3.2 and Section 3.3, for the
data sets with continuous outcomes and binary outcomes respectively
(Tables 5a–5e). In the final section of the results we describe the cor-
relations between the ensemble methods and the individual methods.

3.1. Voting rule

Because the voting rule only produces binary output and no prob-
abilities, two metrics could not be calculated for voting rule: the AUC
and proportion surviving if the top 50% best animals are selected.
Voting rule had the highest precision at 18 months of age, first calving,
6 weeks post calving and 200 days post calving. However, this came at
the cost of having the lowest recall of all methods (individual and en-
semble) on those datasets. Voting rule resulted in a lower balanced
accuracy (0.001 to 0.018 lower) at birth, 18 months and first calving
compared to the next worst performing method. The balanced accuracy
of the voting rule was lower than at least one of the individual methods
at 6 weeks and 200 days post calving.

3.2. Continuous outcomes

Using continuous prediction outcomes, the naive Bayes and re-
gression ensemble methods both significantly outperformed all three
individual methods on balanced accuracy at birth and 18 months
(Tables 5a and 5b). Furthermore, both outperformed all three in-
dividual methods at precision at 18 months. At 6 weeks post first cal-
ving, the regression ensemble method significantly outperformed (p less
than 0.05) all three individual methods on balanced accuracy
(Table 5d). At birth, regression outperformed at least one individual
method on all metrics but recall, where it was outperformed by the
individual random forest method (Table 5a). From 18 months onward,
the regression ensemble improved on at least one individual method at
all metrics, and never performed significantly worse than any in-
dividual method (Table 5b–5e). Naive Bayes did similarly well, im-
proving on at least one individual method on all performance metrics
except for recall at birth and proportion of surviving heifers at 200 days
past calving (Tables 5a–5e). The random forest ensemble method never
outperformed all three individual methods on any of the metrics in any
dataset. It also had less consistent performance than the other two
ensemble methods. For example, at 200 days post calving this method
significantly improved on at least one individual method in precision
and balanced accuracy, but resulted in significantly worse recall, AUC
and proportion of heifers surviving than at least one individual method.

Table 4
Schematic representation of McNemar’s test as performed in this study. An
example of a McNemar’s test as performed in this study is shown below in italics
at 200 days post calving. The test statistic for this example was 1.291
(p = 0.256).

Method A

Incorrect Correct

Method B Incorrect a
294

b
176

Correct c
199

d
1193
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The random forest ensemble performed best at first calving, out-
performing at least one individual method on all metrics except AUC.

3.3. Binary outcomes

In general, using binary outcomes resulted in lower performance
metrics than using continuous outcomes, and no ensemble method
outperformed all three individual methods using this data type. Despite
often improving precision, all three ensemble methods were sig-
nificantly worse at AUC and precision than at least one individual
method from first calving onwards. At birth, naive Bayes scored better
than at least one method on all performance metrics available
(Table 5a). At 18 months, all three ensemble methods improved on
recall, and regression and naive Bayes also improved on balanced ac-
curacy over the regression individual method (Table 5b). There were no
significant differences from the individual methods on the other me-
trics. From first calving onwards, all ensemble methods performed
equal or better than the individual methods at precision (Tables 5c–5e).
Regression was the only ensemble method that did not improve preci-
sion over at least one individual method at 6 weeks post calving but was
also the only method to outperform at least one individual method on
balanced accuracy at 200 days post calving. At first calving, naive Bayes
also improved balanced accuracy in addition to precision. For binary
outcomes, the proportion of surviving animals is listed as NA as the
animals could not be properly ranked using only binary outcomes. This
is due to more than 50% of the animals getting the maximum of 3
positive predictions regardless of the data set.

3.4. Correlations between methods

The naive Bayes and regression ensemble methods resulted in pre-
dictions that remained strongly correlated with one or more of the in-
dividual methods (Table 6). The regression ensemble method had a
correlation of at least 0.692 with the corresponding individual method.

Similarly, the naive Bayes ensemble method was correlated at least
0.745 with the naive Bayes individual method. This indicates that both
the naive Bayes and regression ensemble methods made similar pre-
dictions as their corresponding individual methods. The random forest
ensemble method had the lowest correlations with individual methods,
ranging from 0.442 to 0.736. The random forest individual method had
the lowest correlations with the ensemble methods. This indicates that
the random forest ensemble method used all methods to a similar extent
and relied least on the results of one individual method out of all the
ensemble methods. The highest correlation found overall was 0.970,
between the regression ensemble method and the naive Bayes in-
dividual method at 18 months of age. The lowest correlations were
found at birth, where the regression ensemble method and the naive
Bayes ensemble method were both correlated less than 0.5 with the
random forest individual method.

3.5. McNemar’s test

We further applied the McNemar’s test to determine if the differ-
ences in classifications between the methods were significant or not
(Table 7). For the majority of comparisons between methods there were
statistically significant differences, which was as expected as significant
differences between ensemble methods in many performance metrics
(Tables 5a–5e). At birth, only the comparison between the individual
regression and regression ensemble method was not significant, which
is surprising as this ensemble did achieve significantly better recall than
the individual regression (Table 5a). However, as there is a trade-off
between recall (sensitivity) and specificity, it is possible that the spe-
cificity of this ensemble was also significantly worse than the individual
method, resulting in no net difference.

There were no obvious patterns in non-significant differences in the
later moments, although ensembles and individual methods using the
same underlying method were more likely to not be statistically dif-
ferent than combinations using different methods. Voting rule was also

Table 5a
Performance metrics of the predictions on the data set gathered at birth.

Data type Recall Precision Balanced accuracy AUC Proportion surviving if best 50% are selected

Individual methods
Regression 0.446 0.201 0.579 0.599 0.892
Random Forest 0.690 0.159 0.549 0.561 0.881
Naive Bayes 0.432 0.200 0.576 0.598 0.888
Ensemble methods
Voting rule 0.321 0.168 0.531 NA NA
Regression continuous 0.563acx 0.212b 0.603abc 0.606b 0.901b

binary 0.552acx 0.188b 0.579 0.576x NA
Random Forest continuous 0.614ac 0.184bx 0.580b 0.576x 0.890

binary 0.630acx 0.186bx 0.585b 0.590b NA
Naive Bayes continuous 0.583acx 0.196b 0.598abc 0.601b 0.898b

binary 0.622ac 0.187b 0.582b 0.585b NA

Table 5b
Performance metrics of the predictions on the data set gathered at 18 months.

Data type Recall Precision Balanced accuracy AUC Proportion surviving if best 50% are selected

Individual methods
Regression 0.505 0.211 0.597 0.611 0.897
Random Forest 0.610 0.200 0.604 0.615 0.904
Naive Bayes 0.575 0.223 0.622 0.643 0.904
Ensemble methods
Voting rule 0.397 0.231 0.589 NA NA
Regression continuous 0.554ax 0.250abc 0.638abc 0.643ab 0.908a

binary 0.588a 0.212 0.613a 0.628 NA
Random Forest continuous 0.600a 0.221 0.618a 0.623 0.905

binary 0.566a 0.218 0.612a 0.626 NA
Naive Bayes continuous 0.572 0.245abc 0.636abc 0.641ab 0.910a

binary 0.580a 0.214 0.610 0.626 NA
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more likely to have little or no difference with the individual prediction
methods but was always significantly different from the other ensemble
methods. This is likely due to the worse performance of the voting rule
compared to the other ensembles (Tables 5a–5e). At birth, all ensembles
performed significantly different from each other. In the last decision
moment, there was no significant difference between any of the en-
sembles with the exception of voting rule. In two occasions a pair of
methods performed identically, at first calving, between the naive
Bayes individual method and voting rule and at 200 days post calving
between the multiple regression and naive Bayes ensemble (Table 8).
This meant that the diagonal (cases where only one method predicts
correctly) is equal for the two methods.

4. Discussion

We investigated if the prediction of survival to second lactation in
dairy cattle could be improved by using ensemble methods. In our
study, regression as an ensemble method always resulted in equal or
better performance on precision, AUC, balanced accuracy and propor-
tion of surviving animals. It also performed better than at least one
individual method on the precision metric from first calving onwards.
Comparing the results of the current study to other studies predicting
survival was difficult, because even though there are many studies
studying factors that describe survival (Brickell and Wathes, 2011; De
Vries and Marcondes, 2020), few studies actually predict survival
(Shmueli, 2010). Furthermore, in studies where survival was predicted,
the trait of interest was often continuous, predicting for example life-
span in days (Cruickshank et al., 2002; Caraviello et al., 2004), which
makes it difficult to compare results from literature to our own results.
Instead, we could compare the results of the current study to studies
predicting binary traits that are important components of survival, such
as insemination outcome (Pinedo et al., 2010). Insemination outcome is
an important component for survival, as fertility problems are the main
cause of culling in the Netherlands (Zijlstra et al., 2013; Compton et al.,

2017). Therefore, to predict if a cow will survive to the next lactation, a
model indirectly also predicts if a cow or heifer will get pregnant in that
lactation. Insemination outcome is further similar to survival as it is
also an unbalanced binary trait as it is measured in success or failure
and the majority of cows requires more than one insemination to be-
come pregnant (Rutten et al., 2016). There are many studies attempting
to predict insemination outcome using a variety of different methods.
Hempstalk et al. (2015) used a range of different methods including
naive Bayes, Bayesian network, logistic regression, support vector ma-
chines, partial least squares regression and random forest and reported
AUC values ranging from 0.487 to 0.675. Several studies using re-
gression found similar AUCs, ranging from 0.58 to 0.65 on a variety of
data sets (Fenlon et al., 2016; Blavy et al., 2018; Toledo-Alvarado et al.,
2018; Delhez et al., 2020). Shahinfar et al. (2014) used naive Bayes,
Bayesian networks, bagging in combination with random forest
amongst other methods on a much larger data set and reported AUC
values ranging from 0.61 to 0.76. In our study, AUC values ranged from
0.561 (for the individual random forest method at birth) to 0.713 (for
the individual regression at 200 days post calving). This is similar to
AUC values found for insemination success, especially at the later
moments. AUC values prior to first calving were lower, but this was
expected as much less data was available prior to first calving. Higher
AUC values than those found in our study did occur in literature as well,
for example an AUC of 0.859 for the prediction of insemination success
using hormone concentrations in milk (Faustini et al., 2007). The high
AUC in this study could be due to the use of variables like hormone
concentrations, which were accurate measures for the trait of interest
but not routinely collected. The variables at the basis of the ensemble in
this study were routinely collected on a large number of farms and
therefore no expensive or difficult to measure traits were included,
which excluded some very relevant variables.

The goal of this study was to improve the prediction of survival so
that it could be used for selection or replacement heifers in practice.
While there appeared to be a benefit of applying the regression

Table 5c
Performance metrics of the predictions on the data set gathered at first calving.

Data type Recall Precision Balanced accuracy AUC Proportion surviving if best 50% are selected

Individual methods
Regression 0.465 0.152 0.582 0.608 0.920
Random Forest 0.654 0.142 0.597 0.622 0.931
Naive Bayes 0.619 0.175 0.641 0.657 0.939
Ensemble methods
Voting rule 0.352 0.177 0.581 NA NA
Regression continuous 0.688a 0.175ab 0.647ab 0.658ab 0.941ab

binary 0.509x 0.182ab 0.613ax 0.620x NA
Random Forest continuous 0.632a 0.165b 0.628a 0.623 0.934a

binary 0.516x 0.181ab 0.614ax 0.620x NA
Naive Bayes continuous 0.649a 0.174ab 0.643ab 0.655ab 0.939a

binary 0.622x 0.187ab 0.582a 0.585x NA

Table 5d
Performance metrics of the predictions on the data set gathered at 6 weeks post first calving.

Data type Recall Precision Balanced accuracy AUC Proportion surviving if best 50% are selected

Individual methods
Regression 0.575 0.214 0.666 0.702 0.944
Random Forest 0.640 0.149 0.611 0.634 0.931
Naive Bayes 0.490 0.219 0.645 0.671 0.935
Ensemble methods
Voting rule 0.440 0.222 0.631 NA NA
Regression continuous 0.616c 0.228ab 0.678abc 0.701bc 0.944bc

binary 0.507x 0.226 0.651bx 0.658x NA
Random Forest continuous 0.555cx 0.240b 0.670bc 0.702bc 0.944bc

binary 0.545x 0.207b 0.650bx 0.664x NA
Naive Bayes continuous 0.624c 0.212b 0.669bc 0.695bc 0.948bc

binary 0.530x 0.211b 0.650bx 0.664x NA
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ensemble method, performance metrics remained low overall. In lit-
erature, other studies also show only small or inconsistent improve-
ments in predictive performance when using an ensemble method
(Knutti et al., 2010; Larsen et al., 2019). Similarly, there are studies
where ensemble methods are outperformed by individual methods in
certain situations (Barbareschi et al., 2015). Although it is difficult to
quantify exactly how good a model must be before it is useful in
practice, there are two metrics which are especially relevant: the pro-
portion of surviving heifers if the top 50% scoring heifers is selected
and the precision. The proportion of surviving heifers indicates the
increase in heifers reaching second lactation when the model is used for
selection vs. random selecting 50%, the intended effect of the model in
practice. Although some ensembles improved on individual methods for
proportion of surviving heifers, none of the ensembles improved con-
sistently over all the individual methods. Precision is important for the
practical application of the models in this study because this metric
indicated how often the model made a false prediction that an animal
would not survive to second lactation. For a farmer, a false prediction
for a surviving cow would be more damaging than a false prediction for
a non-surviving cow. If the model predicts a cow will not survive, that

cow would be sold or slaughtered, resulting in the irrevocable loss of
that animal. If the model predicts a cow will survive but in reality, it
does not, a farmer would have more opportunities to sell or cull the cow
after that prediction moment. In our study, the highest precision found
was 0.250. This means that only a quarter of animals predicted to not
survive to second lactation would actually fail to do so. Even if the
ensembles do significantly improve over the individual models, it is
unlikely that farmers would follow the advice to sell a young animal
knowing the model is wrong 75% of the time.

There are several possible reasons why the ensemble methods did
not result in a large increase in model performance. The correlation
between the input data, in this case the output from the three individual
models, is an important indicator for the added value of using an en-
semble (Woźniak et al., 2014). If the methods in an ensemble are too
strongly correlated, combining them does not result in improved pre-
dictive ability (Pena and van den Dool, 2008; Knutti et al., 2010). In our
current study, the correlations of the prediction outcomes used as input
data were between 0.417 and 0.700 (van der Heide et al., 2019). This
was lower than expected as the three methods were trained on the same
data set. However, it is possible that the correlations were still too high,
limiting the variability among the prediction outcomes. In a study
predicting lameness in dairy cows, a trait related to survival, even much
lower correlations of 0.17 to 0.40 between input methods similarly
resulted in only marginal improvement if an ensemble was used, from
an AUC between 0.73 and 0.75 to an AUC of 0.76 when using an en-
semble (Warner et al., 2020). In any case, significant differences be-
tween the input methods did exist as the McNemar’s test statistic
proved there were differences between all of the input methods in our
study except between the naive Bayes and regression models at first
calving and 6 weeks post calving (Table 7). Correlations between input
variables can also cause additional difficulties when selecting an en-
semble method. The naive Bayes ensemble method, for example, as-
sumes independence among the input variables (Friedman et al., 1997).
Correlations between input variables could thus have caused under-
performance of the ensemble methods. The voting rule may also not be
as effective in cases where methods are correlated or where a limited
number of models were combined (Oza and Tumer, 2008). Class im-
balance in the trait of interest was another potential reason ensembles
did not result in sufficient improvement over the individual methods
(Stefanowski, 2016). In the case of survival, most animals survive to
second lactation (86%), whereas a minority (14%) do not. As there are
fewer examples, this minority is more difficult to predict, despite being
the class of interest. Although the use of ensemble methods is in fact a
popular solution to imbalance problems (Haixiang et al., 2017), an
ensemble using only three methods as input may not have been robust

Table 5e
Performance metrics of the predictions on the dataset gathered at 200 days post first calving.

Data type Recall Precision Balanced accuracy AUC Proportion surviving if best 50% are selected

Individual methods
Regression 0.547 0.183 0.675 0.713 0.960
Random Forest 0.770 0.115 0.647 0.687 0.966
Naive Bayes 0.547 0.135 0.632 0.657 0.956
Ensemble methods
Voting rule 0.425 0.189 0.639 NA NA
Regression continuous 0.706ab 0.165b 0.680bc 0.709c 0.965c

binary 0.488x 0.190bc 0.659c 0.664x NA
Random Forest continuous 0.554x 0.178bc 0.662c 0.678x 0.954x

binary 0.515x 0.186bc 0.660x 0.672x NA
Naive Bayes continuous 0.702ac 0.166b 0.682bc 0.704c 0.962

binary 0.516x 0.184bc 0.662bcx 0.673cx NA

Note: significance could not be calculated for voting rule results.
a significantly outperforms the individual method multiple logistic regression.
b significantly outperforms the individual method random forest.
c significantly outperforms the individual method naive Bayes.
x significantly worse than one or more of the three individual methods.

Table 6
Average correlations between the results of the three statistical ensemble
methods and the results of the three individual methods. The abbreviation p.c.
stands for post calving.

Dataset Ensemble
method

Regression
individual
method

Random Forest
individual
method

Naive Bayes
individual
method

Birth Regression 0.849 0.494 0.801
Naive Bayes 0.696 0.663 0.890
Random
Forest

0.591 0.442 0.568

18 months Regression 0.692 0.736 0.970
Naive Bayes 0.769 0.727 0.867
Random
Forest

0.549 0.626 0.753

First calving Regression 0.709 0.714 0.911
Naive Bayes 0.785 0.606 0.749
Random
Forest

0.536 0.603 0.720

6 weeks p.c. Regression 0.891 0.588 0.759
Naive Bayes 0.788 0.702 0.806
Random
Forest

0.733 0.602 0.666

200 days p.c. Regression 0.921 0.736 0.658
Naive Bayes 0.733 0.602 0.666
Random
Forest

0.718 0.696 0.551
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enough. Furthermore, class imbalance is especially problematic in cases
where there are few samples and the classes are difficult to separate (Ali
et al., 2015), both of which played a role here. In this study, the in-
dividual methods and the ensemble methods were adapted separately
to the class imbalance problem. For future studies, (ensemble) algo-
rithms specifically designed to cope with class imbalance such as RUS
boosted trees could be considered (Galar et al., 2011). These methods
allow for a more systemic approach to coping with the class imbalance
problem, potentially increasing the effectiveness of the ensembles.

In general, improving the predictive performance of ensembles is
done by increasing the underlying diversity of the ensemble (Dietterich,
2000; Tang et al., 2006; Sagi and Rokach, 2018). It is also possible to
change the method which is used to build the ensemble, as there are
dozens of different methods which can be used to build an ensemble
(Zhou, 2012). However, the benefit of using a different method to build
the ensemble is often minimal compared to the benefit of using an
ensemble method over an individual method (Džeroski and Ženko,
2004; Berk, 2006). Furthermore, using more complex methods to

aggregate the method results in less interpretable results and requires
larger training datasets (Ren et al., 2016). There are several approaches
to increase the underlying diversity of an ensemble. One approach is to
add additional methods to the ensemble. New models included in the
ensemble should also be decent stand-alone prediction methods and
preferably use a different approach from the methods already in the
ensemble (Haixiang et al., 2017). Candidate methods to be included in
our ensemble are for example a K-nearest neighbour (Guo et al., 2003)
or a neural network approach (Paliwal and Kumar, 2009; Liakos et al.,
2018) both of which are different from the methods already included in
the ensemble. If no additional methods are used, the diversity of the
ensemble can also be increased by obtaining multiple models from the
same method and training individual models on different subsets of the
data (Ren et al., 2016). Popular ensemble methods such as bootstrap
aggregation (bagging), Adaptive boosting (AdaBoost) and random
subspace approaches make use of this approach (Freund and Schapire,
1996; Zhou, 2012). In this way itis unlikely to result in major gains in
accuracy in our study because the data set was small and unbalanced,
which would cause difficulties if it were split into sub-sets. Further-
more, the random forest method, which is also based on this approach
(Breiman, 1996, 2001), resulted in the worst performing ensembles.

The last approach to increase the performance of the ensemble
method is by increasing the number of available variables. The reason
why survival traits are very difficult to predict is the variety of different
factors involved. Not all of the different potential causes of death or
culling of dairy cows could be predicted using the original data set (van
der Heide et al., 2019). For example, there was no information on
disease occurrence available in the original data set, which is obviously

Table 7
p-values of the McNemar’s tests between pairs of prediction methods. The rows show the methods per moment in life and the columns indicate the corresponding
methods. Values below 0.005 were considered statistically significant. Post calving is abbreviated to ‘p.c.’.

Individual methods Ensemble methods

Naive Bayes Random Forest Regression Voting rule Naive Bayes Random Forest Regression

Birth Naive Bayes 0.000 0.000 0.000 0.000 0.000 0.000
Random Forest 0.000 0.000 0.000 0.000 0.000
Regression 0.000 0.000 0.000 0.239
Voting rule 0.000 0.000 0.000
Naive Bayes ensemble 0.000 0.000
Random Forest ensemble 0.002
Regression ensemble

18 months Naive Bayes 0.000 0.000 0.000 0.000 0.000 0.000
Random Forest 0.000 0.000 0.000 0.000 0.236
Regression 0.000 0.428 0.537 0.003
Voting rule 0.000 0.000 0.000
Naive Bayes ensemble 0.958 0.000
Random Forest ensemble 0.000
Regression ensemble

First calving Naive Bayes 0.000 0.622 0.999 0.000 0.000 0.000
Random Forest 0.000 0.000 0.000 0.000 0.000
Regression 0.495 0.000 0.000 0.000
Voting rule 0.000 0.000 0.000
Naive Bayes ensemble 0.000 0.462
Random Forest ensemble 0.000
Regression ensemble

6 weeks p.c. Naive Bayes 0.000 0.036 0.123 0.000 0.000 0.000
Random Forest 0.000 0.000 0.000 0.288 0.721
Regression 0.171 0.000 0.000 0.000
Voting rule 0.000 0.000 0.000
Naive Bayes ensemble 0.000 0.000
Random Forest ensemble 0.087
Regression ensemble

200 days p.c. Naive Bayes 0.000 0.001 0.116 0.000 0.000 0.000
Random Forest 0.000 0.000 0.006 0.312 0.006
Regression 0.001 0.000 0.000 0.000
Voting rule 0.000 0.000 0.000
Naive Bayes ensemble 0.231 0.999
Random Forest ensemble 0.256
Regression ensemble

Table 8
Table for McNemar’s test for the multiple regression and naive Bayes ensemble
methods at 200 days post calving (p value = 0.999).

Multiple regression ensemble prediction

Incorrect Correct

Naive Bayes
ensemble prediction

Incorrect 435 59
Correct 58 1310
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an important cause of death for dairy cows (Svensson et al., 2006). So,
while it was possible to take advantage of the differences between the
methods using ensemble methods, there are likely limitations to in-
creasing model performance by varying the method alone. Increasing
the amount of data is more resource intensive than changing the pre-
diction method, but also often the best option to increase predictive
accuracy for a particular prediction problem (Domingos, 2012).

5. Conclusion

Using logistic multiple regression as an ensemble method resulted in
equal or better precision, AUC, balanced accuracy and improvement in
proportion of animals surviving. Naive Bayes was the second-best en-
semble method, and the random forest ensemble method resulted in the
least significant improvement over the individual methods. Precision,
AUC and balanced accuracy values improved significantly over all
methods at specific datasets for naive Bayes and logistic multiple re-
gression ensembles, although they remained low overall (AUC’s ranged
from 0.561 to 0.731, increasing as more variables became available).
Where multiple prediction models are available, regression can be a
useful method to investigate the additional value of using ensemble
methods.
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