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A B S T R A C T   

Digital twins are being adopted by increasingly more industries, transforming them and bringing new oppor
tunities. Digital twins provide previously unheard levels of control over physical entities and help to manage 
complex systems by integrating an array of technologies. Recently, agriculture has seen several technological 
advancements, but it is still unclear if this community is making an effort to adopt digital twins in its operations. 
In this work, we employ a mixed-method approach to investigate the added-value of digital twins for agriculture. 
We examine the extent of digital twin adoption in agriculture, shed light on the concept and the benefits it brings, 
and provide an application-based roadmap for a more extended adoption. We report a literature review of digital 
twins in agriculture, covering years 2017-2020. We identify 28 use cases, and compare them with use cases in 
other disciplines. We compare reported benefits, service categories, and technology readiness levels to assess the 
level of digital twin adoption in agriculture. We distill the digital twin characteristics that can provide added- 
value to agriculture from the examined digital twin applications in agriculture and in other disciplines. Then, 
inspired by digital twin applications in other disciplines, we propose a roadmap for digital twins in agriculture, 
consisting of examples of growing complexity. We conclude this paper by identifying the distinctive charac
teristics of agricultural digital twins.   

1. Introduction 

Digital twins (DT) are being increasingly adopted by several disci
plines, including the manufacturing (Kritzinger et al., 2018), automotive 
(Caputo et al., 2019) and energy (Sivalingam et al., 2018) sectors, for 
addressing multidisciplinary problems. DT are digital replicas of actual 
physical systems (living or not), interweaving solutions of complex 
systems analysis, decision support and technology integration. DT have 
gained prominence, partially due to the uptake of Internet of Things 
technologies, that allow for the monitoring of physical twins at high 
spatial resolutions, almost in real-time, through both miniature devices 
and remote sensing, that produce ever-increasing data streams. DT have 
been useful for converging the physical and virtual spaces (Tao et al., 
2018), guaranteeing information continuity through the system lifecycle 
(Haag and Anderl, 2018), system development and validation through 
simulation (Boschert and Rosen, 2016), and preventing undesirable 
system states (Grieves and Vickers, 2017). 

The DT concept was coined by M. Grieves in a white paper (Grieves, 
2014), as a unification of virtual and physical assets in product lifecycle 
management. Since then, several disciplines have adopted DT, each 
providing their own definition as there is no generally accepted defini
tion of DT. A working definition for this study considers DT as “a dy
namic virtual representation of a physical object or system, usually across 
multiple stages of its lifecycle, that uses real-world data, simulation, or ma
chine learning models combined with data analysis to enable understanding, 
learning, and reasoning. DT can be used to answer what-if questions and 
should be able to present insights in an intuitive way” (Clark et al., 2019). 

The benefits of DT applications include reduced production times 
and costs, hiding the complexity of integrating heterogeneous technol
ogies, creating safer working environments and establishing more 
environmentally sustainable operations. DT are utilized by several 
leading companies and organizations, including Siemens (Negri et al., 
2017), General Electric, NASA, US Airforce (Mukherjee and DebRoy, 
2019), Oracle, ANSYS, SAP, and Altair (Qi et al., 2018). Furthermore, 
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the recent availability of commercial software tools to develop DT, like 
Predix1 and Simcenter 3d2 (Negri et al., 2017), is an evidence in itself of 
increased interest in DT applications. 

Information and communication technologies can be leveraged to 
design and implement the next generation of data, models, and decision 
support tools for agricultural production systems (Janssen et al., 2017). 
Today, technologies like artificial intelligence (Patricio and Rieder, 
2018), big data (Wolfert et al., 2017) and Internet of Things (Elijah et al., 
2018) find their way in practice, and start to converge. Benefits of this 
convergence have been demonstrated in DT applications in other dis
ciplines. However, DT are hardly utilized in agricultural applications, 
and their added value has not yet been discussed extensively. As a result, 
questions emerge regarding the benefits of DT for agriculture, the 
characteristics that differentiate them from current practices, and their 
design and implementation. 

The purpose of this work is to investigate the potential added-value 
of DT in agriculture. To achieve this goal, we will first research the 
extent to which DT have already been explicitly adopted in agricultural 
applications, and investigate their reported benefits. Second, we 
examine the similarities between DT applications in agriculture and 
other disciplines, to identify opportunities of potential added-value for 
agricultural DT. Our research questions are formulated as:  

• RQ1: To what extent have digital twins been applied in agriculture?  
• RQ2: What is a potential application-based roadmap for the adoption 

of digital twins in agriculture? 

To address these questions, we employed a mixed-method approach, 
as exploratory research suggested DT have not been extensively used in 
agriculture. Thus, a literature review alone would not suffice due to the 
limited number of reported cases in the literature. Our approach consists 
of a literature review of existing DT in agriculture, and a survey of case 
studies in other domains, the latter added to compare with the DT 
adoption level in agriculture and investigate potential future applica
tions. We searched for DT use cases in agriculture, as well as in other 
disciplines to see how they employ DT. Note that we did not focus on 
identifying specific DT applications, rather we aimed at generalizing 
them into abstract, representative use cases. For the use cases identified, 
we explored the dimensions of maturity, service types and benefits 
offered. Our methodology is described in detail in Section 2 and the 
results are presented in Section 3. In Section 4, we discuss our findings 
concerning the current state of DT in agriculture, the added-value of DT, 
and we potential areas for future research. Section 5 concludes this 
work. 

2. Methodology 

To answer ‘RQ1: To what extent have digital twins been applied in 
agriculture?’, we identified existing DT use cases in agriculture and 
extracted attributes which helped us assess how advanced these appli
cations were. To identify use cases, we performed a literature review for 
DT in agriculture and extracted indicators of maturity, service type and 
benefits. Maturity captures the development stage of the application (e. 
g., idea, lab, production). Limited use cases of production level DT is an 
indicator of less widespread use of DT. On the other hand, increased 
research and deployed applications indicate that DT are still finding 

their way into agriculture. To describe the purpose of DT on an opera
tional level, we extracted the service type attribute. These services 
indicate the broader set of operations that DT perform. From the service 
type, we can understand the complexity of the DT operations, with 
higher complexity meaning potentially higher added value for the 
application domain. Also, the service category of DT in agriculture was 
compared with the service categories found in other disciplines to 
examine how advanced agricultural DT operations are. Next, to show 
what is the added-value of DT based on existing applications, we 
extracted the benefits attribute. Less materialized benefits from the ap
plications indicate limitations for adoption. Below we describe step-by- 
step how the literature review was performed. 

First, we searched in scientific databases and subsequently extended 
our search to grey literature. We included grey literature because a pre- 
literature search showed that the peer-reviewed corpus covering DT in 
agriculture is rather limited. By including grey literature, we also cover 
work in progress and commercial applications that have not been pub
lished in scientific literature. 

Second, we checked the corpus for relevance. In scientific publica
tions, we read the abstracts to verify that the topic was about agriculture 
with references to DT. For the grey literature, we scanned the entire 
articles to see whether they connect DT to agriculture. 

Third, we read all the selected articles and extracted use cases of DT 
applications. References to similar DT applications between multiple 
articles were considered only once to avoid redundance. We identified 
each use case with a number, summarized it in a single paragraph 
describing its functionality, and extracted the reported benefits. 

Fourth, we identified the services offered by each DT use case. We 
used the service classification initially proposed in (Tao et al., 2018), 
and subsequently aggregated in (Cimino et al., 2019). The categories we 
used for classifying the use cases are presented in Table 1. We catego
rized the use cases in this way to identify the complexity of operations 
that DT performed as operation complexity is an indicator of the 
advancement of DT in agriculture. Also, this categorization helped us 
compare the types of operation offered by DT in agriculture and other 
disciplines, and determine any potential gaps to further assess their 
adoption in agriculture. 

Fifth, we categorized the use cases based on their technology read
iness level (TRL) to examine whether they are in experimental stage, or 
if they have been used in production. We partitioned the European 
Union’s TRL scale (European Commission, 2014) into three generic 
levels shown in Table 2, and used them to tag the use cases. The first 
level represents DT which were still in a conceptual phase, the second 
consists of DT that had a working prototype even without the complete 
planned functionality, and the third level covers mature DT de
ployments in production. 

Sixth, we identified the physical twin, i.e. the physical system that 
was twinned in each use case. We classified them in the following cat
egories: living plants or trees, animals, agricultural products, i.e. har
vested fruits; agricultural fields, farms, landscapes, farm buildings, as 
barns, greenhouses or other agricultural buildings, agricultural ma
chinery, including equipment and tractor appliances, and food supply 
chains and logistics. 

Finally, we summarized in a table all the identified use cases, their 
respective descriptions and the extracted three dimensions - service 
categories, TRL, and physical twin - to depict the breadth of the appli
cation of DT in agriculture. Fig. 1 summarizes the methodology for 
answering RQ1. 

To answer the second research question, ‘RQ2: What is a potential 
application-based roadmap for the adoption of digital twins in agriculture?’, 
we searched in literature for use cases aiming to identify the ways in 
which DT have been successfully applied in other disciplines. Again we 
aimed at identifying use cases, and extracted indicators of benefits, 
maturity, discipline, and service type to understand the operations in 
which DT are most effective and what problems they can solve. First, we 
searched for peer-reviewed review papers of general DT applications. 

1 Predix is a software platform that facilitates data collection, processing and 
analytics for industrial applications. The product description can be found in 
https://www.predix.io/.  

2 Simcenter 3d is a software environment that integrates 3d modeling, 
simulation and data management. It includes modules to capture the dynamics 
of fluids, composites, acoustics and others. The product description can be 
found in https://www.plm.automation.siemens.com/global/en/products/ 
simcenter/simcenter-3d.html. 
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Second, we scanned the full texts for occurrences of the string ’digital 
twin’, to check if the reviews were related to DT. If DT were briefly 
mentioned and not the main point of the review paper, we considered 
the reference irrelevant. Third, the remaining articles were examined in 
alphabetical order based on their title to extract use cases. Repeated 
mentions of similar use cases were not considered. Fourth, we extracted 
a short summary of the use cases, the reported benefits that they offered, 
the discipline, maturity and service categories using the same frame
work as for research question 1, and the publication and application 
years. Fifth, we proposed areas of potential application in agriculture, 

and identified potential benefits based on the use cases in other disci
plines. Fig. 2 illustrates the methodology for answering RQ2. 

3. Results 

3.1. Literature review of digital twins in agriculture 

For the literature review of DT in agriculture, we first searched in 
Web of Science (Web of Science) using the query "digital twin*" 
AND (agri* OR crop* OR farm* OR aqua* OR animal*). This query 
returned results which contain DT and derivatives of agri, crop, farm, 
aqua, or animal, to capture cases of DT in subfields of agriculture. The 
query returned seven results. After the relevance scan the results were 
reduced to four (Smith, 2018; Tagliavini et al., 2019; Paraforos et al., 
2019; Tsolakis et al., 2019). We then extended the search to Google 
Scholar (Google Scholar) using the query "digital twin" agri
culture. The query returned 947 results. We examined them until five 
consecutive results were irrelevant (24 results examined), and checked 
for duplicate results from the previous search in Web of Science, thus 
reducing the number of results to nine (Tan et al., 1094; Jo et al., 2018; 
Kampker et al., 2019; Moghadam et al., 2020; Qi et al., 2019; Machl 
et al., 2019; Verdouw and Kruize, 2017; Gomes Alves et al., 2019; 
Delgado et al., 2019). Extending to the Google search engine (Google), 
we used the query "digital twin" agriculture which returned 
143.000 results. We examined them until five consecutive results were 

Table 1 
The digital twin service categories used to classify the use cases identified by the literature review. The column Typical components lists the components that are usually 
needed to implement the corresponding services.    

Typical components 

Service Categories Definition Monitoring Simulation User 
interface 

Learning Actuator Analytics 

Real-time monitoring Monitor and log the status of a system x  x    
Energy consumption 

analysis 
Analyze the energy consumption of the physical system and find 
ways to minimize it 

x x x   x 

System failure analysis 
and prediction 

Analyze the data coming from a system to identify the source of 
failure or when the system is going to need maintenance 

x x x x  x 

Optimization/update Find the optimal parameters for the operation of a system and 
update it to run with those parameters 

x x x x x x 

Behaviour analysis/ user 
operation guide 

Analyze human made operations and provide feedback x  x   x 

Technology integration Bring together different already deployed technologies under the 
same umbrella to control and visualize operations more easily 

x x x x x x 

Virtual maintenance Allow users to virtually test different maintenance strategies to 
find the least intrusive one  

x x   x  

Table 2 
The European union TRL grouped into three general levels. Concept level in
cludes European TRL 1–2, Prototype includes levels 3–6 and Deployed includes 
levels 7–9.  

Aggregated level European Union technology readiness levels 

concept 1 Basic principles observed 
2 Technology concept formulated 

prototype 3 Experimental proof of concept 
4 Technology validated in lab 
5 Technology validated in relevant environment 
6 Technology demonstrated in relevant environment 

deployed 7 System prototype demonstration in operational environment 
8 System complete and qualified 
9 Actual system proven in operational environment  

Fig. 1. The steps followed to search for use cases of digital twins in agriculture.  

Fig. 2. The steps we followed to find digital twin use cases in other disciplines so as to answer the second research question.  
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irrelevant or referring to previously found applications (38 results 
examined). We then checked the extracted results for duplicates from 
our searches in Web of Science and Google Scholar, eventually reducing 
the results to nine (Monteiro et al., 2018; IBM Research, 2018; R&D 
WORLD, 2019; Collins, 2019; Barnard, 2019; Chiu et al., 2019; Mokal 
and Sharma, 2020; Ohnemus, 2020; Wageningen University & Research, 
2020). In total our search yielded 22 sources for DT applications in 
agriculture. From this result-set, we identified 28 use cases. Following 
the methodology described in Section 2, we summarized each use case 
and extracted data about the expected benefits, TRL, physical twin, and 
service category. The results are reported in Table 3. 

Our search yielded 14 scientific articles. Nine of which were pub
lished in journals and five in conference proceedings. Additionally, we 
identified eight website articles from the grey literature search. Publi
cation outlets, titles and year of publication are summarized in Table 4. 
We observe that the first published references to DT in agriculture date 
back to 2017, and most of our sources are from 2019 onward. 

The use cases reside in different sub-fields of agriculture: In dairy 
farming we found DT for the detection of mastitis in cows. Related to 
apiculture, we found a DT of bee colonies aiming to control their welfare 
and honey production. In plant production, a DT of tomato crops in a 
greenhouse aimed to control the growing environment. In agricultural 
machinery, a DT of tractors was used to emulate their performance prior 
to purchasing. Other DT included orchards, pig farms and aquaponics 
production units. We noticed that DT of animals and fields, farms and 
landscapes are reported with less technical detail. In contrast, DT of 
agricultural machinery and food supply chains and logistics were often 
described with more details about their design and operation. 

The reported benefits varied, depending on the physical twins. For 
twins of living systems, like plants and animals, the benefits included 
early disease identification, production optimization and identification 
of factors that could degrade their welfare. For agricultural products the 
benefits were cost savings and improved product quality. Support in 
crop management decisions allowing for faster action was reported for 
agricultural fields and farms. Twins of agricultural buildings reported 
benefits related to growing conditions management and production in
crease. Lastly, DT in agricultural supply chains and logistics reported 
benefits included cost savings and more environmentally friendly op
erations (Table 3). 

Physical twins include both non-living subjects, like farm buildings 
such as farm bins or livestock barns, and living subjects, such as arable 
farms or individual animals. Most of the DT were found for physical 
twins of agricultural fields, farms, landscapes and buildings. Fewer were 
found for living plants and animals or agricultural products and the food 
supply chain. Fig. 3 illustrates the types of physical twins identified 
together with the maturity of the use cases as TRL level. 

Regarding the TRL, most DT identified in this study were on the 
conceptual level. In Fig. 3 we observe that DT of agricultural fields, 
farms and landscapes are mostly on the concept level. We also notice 
that DT in the food supply chain and agricultural machinery have sur
passed the concept level stage. Besides, none of the identified agricul
tural products DT have reached the deployment stage. 

Regarding the service categories, the identified use cases of agri
cultural DT perform energy consumption analysis, real-time monitoring, 
system failure analysis and prediction, optimization/update, and tech
nology integration. The majority of the DT perform monitoring and 
optimization operations (Fig. 4). We do not observe any pattern of the 
TRL levels across the service categories. 

3.2. Digital twins in other disciplines 

For the examination of DT in other disciplines we searched in Web of 
Science using the query TS="digital twin*" AND ALL=review. 
This query returned results that had DT mentioned in the title, abstract, 
or keywords and had the word review mentioned somewhere in the text. 
Instead of filtering the type of results to reviews only, we chose to search 

for the word review because some review papers are not always not 
explicitly tagged as such in Web of Science, or sometimes they miss the 
word review from their title. The query returned 37 results. After 
scanning the articles for relevance, the results were reduced to 23 
(Kaewunruen et al., 2018; Patterson and Whelan, 2017; Fraga-Lamas 
and Fernández-Caramés, 2019; Zheng et al., 2019; Tilbury, 2019; 
Dewitt et al., 2018; Bolton et al., 2018; Dong et al., 2019; Cohen et al., 
2019; Tomiyama et al., 2019; Qi and Tao, 2018; Tao et al., 2019; Lu 
et al., 2020; Raman and Hassanaly, 2019; Yi Wang et al., 2019; Paraf
oros et al., 2019; Pizzolato et al., 2019; Mabkhot et al., 2018; Cimino 
et al., 2019; Gupta and Basu, 2019; Ghobakhloo, 2018; Kim and Kim, 
2017; Longo et al., 2019). Following the methodology of Section 2, we 
identified 68 use cases, and extracted a short summary, benefits, 
maturity level, discipline, service categories, year of publication and 
year of application for each case, reported in Table 5. 

We observed that DT in other disciplines performed energy con
sumption analysis, real-time monitoring, system failure analysis and 
prediction, optimization/update, technology integration and virtual 
maintenance. Most of them performed monitoring and system failure 
analysis operations (Fig. 5). The TRL varied by the year. The earliest 
documented DT application (2011) was that of an aircraft, which was 
used in production. From 2011 to 2016, new use cases were scarce. After 
2016, many DT applications emerged at the concept and prototype 
levels, as well as some deployed ones. Applications in the concept stage 
were more frequent than the ones at the prototype and deployed stages. 
The reported benefits included cost reductions, energy savings, reduced 
equipment downtime, quantification of system reliability and safer 
working environments for personnel. 

3.3. Threats to validity 

The results of the literature review for DT in agriculture showed that 
there are only a few DT use cases reported in scientific literature. 
Moreover, 13 (Table 3, uc. 11–16, 20–26) out of 28 DT use cases were 
used in the commercial sector and 7 (Table 3, uc. 20–26) out of those 13 
were documented only in non-scientific literature. This may imply that 
the industry is ahead of academia in the development of DT. 

Also, we limited our search to Google Scholar and Google to appli
cations up to 5 consecutive irrelevant or duplicate results. More DT 
could potentially be found if we examined more results or additional 
sources. 

Another factor that the literature review of this work does not 
consider is the existence of agricultural applications which are not 
defined as DT in literature. There are potentially applications that are 
used as DT but for unknown reasons they were not tagged as such and as 
a result they were not included in our results. 

Besides, in our literature review we included conceptual level DT 
applications, which means that they are not established applications, 
but work in progress. 

4. Discussion 

4.1. Current state of DT in agriculture 

In this section, we investigate the state of DT in agriculture by 
comparing it to the state of DT in other disciplines. The results of the 
literature review in agriculture show that the available literature is 
limited. Considering the year of publication, DT have been discussed in 
other disciplines since 2011 (Table 5, uc. 54), while in agriculture the 
first references occurred in 2017. Our interpretation for this delay to 
investigate DT, is that agricultural researchers are more risk-averse than 
in other disciplines. A reason may be that in agricultural applications, 
firms are often small and medium farms. Such farms can bear less risk 
than bigger companies in other industries, who can afford to experiment 
and innovate, and thus pioneered DT. Also, DT in other domains are 
mostly concerned with non-living physical twins, as complex industrial 
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Table 3 
The use cases of agricultural DT. Use cases are referred as “uc” and their corresponding numbers in the text. The numbering of the use cases continues for the use cases 
in other disciplines.       

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

1 of a cow having 
access to historical 
and real-time data, 
able to predict the 
probability of 
developing mastitis 
as a function of 
various 
management and 
treatment 
decisions. 

a data 
organization 
system for each 
entity 
individually 
which is also 
queryable and 
identifies the best 
response to each 
query 

animal concept x x    Smith (2018) 

2 of picked mango 
fruit that captures 
its temperature 
variability and 
biochemical 
response 
throughout the 
cold chain, to 
evaluate quality 
losses along the 
cold chain like 
firmness and 
vitamin content. 

insight into the 
remaining quality 
attributes of 
picked mango 
fruit 

agricultural 
product 

concept x x    Tagliavini 
et al. (2019) 

3 of a field using data 
coming from 
ISOBUS sensors, 
other field related 
data, human 
expertise and 
machine learning 
to provide better 
field prognostics 
and act faster in the 
presence of 
predicted 
deviations. 

continuous 
detailed crop and 
soil information 
that allows for 
faster actions 
when anomalies 
occur 

agricultural 
field, farm, 
landscape 

concept x x    Paraforos 
et al. (2019) 

4 to emulate the use 
of unmanned 
ground vehicles in 
fields. It accepts the 
actual landscape of 
a field as input by 
utilizing digital 
elevation models 
retrieved from 
Open Street Maps. 
It recreates the 3D 
model of the field 
along with possible 
additions like trees 
and static objects. 
It contains a 
predefined 
selection of 
commercially 
available 
unmanned ground 
vehicles which a 
farmer can test on 
the virtual field to 
find the most 
efficient for their 
case. 

economic and 
environmental 
benefits for the 
farmers since they 
can choose the 
optimal machine 
for their specific 
field 

agricultural 
machinery 

prototype   x x  Tsolakis 
et al. (2019) 

5 of a self-contained 
aquaponics 
production unit. 
The purpose of this 
digital twin is to 
balance the fish 

production 
maximization, 
waste 
minimization, 
water 

agricultural 
building/ 
agricultural 
machinery 

prototype x x x  x Tan et al. 
(1094) 

(continued on next page) 
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Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

stock and plants in 
the unit by 
monitoring them 
and controlling the 
unit automatically. 
The digital twin 
uses temperature, 
light intensity, 
water flow, pH and 
dissolved salts 
sensed data. The 
virtual unit 
performs 
simulations of fish 
feed, fish weight 
gain, pH, nitrates 
and plant growth as 
what if scenarios to 
find optimizations 
on the behavior of 
the whole system. 
It does this for 
production 
maximization, 
waste 
minimization, 
water 
conservation, meet 
quality standards 
and other 
production goals. 

conservation, 
quality standards 

6 of a pig farm to 
monitor pig health 
status and prevent 
diseases. The 
digital twin 
operates by 
deciding which of 
the sensed data are 
useful, performing 
simulation to find 
the optimal 
working conditions 
of the farm, a 
control system gets 
the results of the 
simulations to 
apply them to the 
physical system. 
The digital twin 
consists of a layer 
handling the 
connectivity 
between the 
sensors and their 
configuration, and 
a layer analyzing 
the given 
conditions in the 
farm, performing 
simulations, data 
handling and 
visualization. The 
analysis includes 
machine/ deep 
learning methods, 
the results of the 
simulations are 
used to control the 
farm and are 
presented in an 
intuitive interface. 

improved animal 
welfare, disease 
cost reduction 

animal/ 
agricultural 
building 

concept x x    Jo et al. 
(2018) 

(continued on next page) 
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Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

7 of a harvested 
potato to gain 
insight into 
harvester damage 
to potatoes. During 
harvesting shocks 
have the greatest 
economic impact 
and potential 
damage to 
potatoes. The 
digital twin of the 
potato is a plastic 
object with the 
weight and size of a 
real potato, 
equipped with 
sensors to detect 
impacts and 
rotations. The data 
is analysed in real 
time on the 
harvester and 
presented to the 
machine user. 

less damage to 
potatoes and 
higher profits for 
the farmers 

agricultural 
product 

prototype x     Kampker 
et al. (2019) 

8 of a tree and its 
surrounding in an 
orchard. The 
authors created a 
system that can 
create a digital 
twin for every tree 
in an orchard by 
using spinning 3D 
cameras. These 
cameras monitor 
the condition of 
every plant in 3D 
by capturing 
indicators that 
show their health, 
structure, and fruit 
quality among 
others. These 
digital twins allow 
the continuous 
monitoring of 
orchard production 
systems to predict 
stress, disease and 
crop losses, and 
develop a self- 
learning system. 
This self-learning 
system can be 
queried 
automatically to 
analyse varying 
scenarios based on 
environmental and 
management 
parameters. 

discovery of 
higher orchard 
density layouts, 
detection of plant 
degrading 
indicators 

living plant 
or tree 

prototype x  x   Moghadam 
et al. (2020) 

9 of any agricultural 
entity, using 
holographic 
devices, 
augmenting the 
world with camera- 
based imaging, 
placing 2D or 3D 
content in the real 
world, simulating 

enables the users 
to see the 
complete picture 
of a system 
leading in 
improved 
decision making 

agricultural 
field, farm, 
landscape 

concept x x x x x Qi et al. 
(2019) 

(continued on next page) 
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Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

them, and creating 
logs and 
maintenance 
events. 

10 of the cultivated 
landscape for 
supporting 
planners in 
designing 
agricultural road 
networks. The 
digital twin finds 
the road network 
segments with high 
relevance for 
agricultural 
transportation 
helping planners to 
modernize these 
segments 
according to the 
agricultural needs. 
The digital twin 
creates an 
information model 
(described as a 
UML class) by 
coupling 
spatiotemporal 
information of the 
cultivated 
landscape with 
complex analytical 
methods. 

optimal 
agricultural road 
planning, a 
landscape 
representation 
model of high 
quality that can be 
reused for other 
causes 

food supply 
chain and 
logistics 

prototype  x x x  Machl et al. 
(2019) 

11 of a cow that makes 
predictions for 
heat, estrus and 
health according to 
its behaviour. It is 
working based on 
data from a 
pedometer 
attached to the cow 
as well as company 
provided location 
services that 
accurately detect 
the cow’s 
movement. 

animal health 
analysis and 
prevention of 
diseases 

animal deployed x x    Kruize 
(2018) 

12 of feed silos for 
livestock to 
monitor their 
status. It works by 
placing an IoT 
device on top of the 
silos and a cloud 
platform that 
allows the 
stakeholders to 
access the silo’s 
status through 
various apps. When 
the silo stock 
reaches a certain 
threshold an alarm 
is send to the 
stakeholders 
phones. It also 
provides the ability 
to organize the 
stock 

supply 
replenishment 
optimization, cost 
saving by 
reducing labour 
and transport 
costs, reduction of 
CO2 from 
transport 
emissions by 25% 

food supply 
chain and 
logistics 

deployed x  x   Kruize 
(2018) 

(continued on next page) 
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Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

replenishment with 
a simple action. 

13 that allows users to 
identify pest and 
diseases in plants. 
It is based on a 
mobile app with an 
on-the-field and 
on-the-fly systems 
for fast 
identification. The 
user takes photos of 
the plant and 
describes the 
problem, those two 
constitute the 
digital twin of the 
plant. Based on this 
digital twin a 
community of 
experts supports 
with their opinions 
to help identify the 
disease. 

fast identification 
of pest and 
diseases in plants 
based on expert 
opinions 

living plant 
or tree 

deployed x     Kruize 
(2018) 

14 of a field and its 
machinery. It 
provides online 
visualization of the 
current position of 
any machine in the 
field along with 
historical 
movement data. It 
allows the real- 
time monitoring of 
machines and their 
energy 
consumption and 
evaluation of the 
economic 
efficiency of the 
crop management 
treatment. 

insight into how 
the use of 
machinery for 
cropping affects a 
farmer’s 
economics 

agricultural 
field, farm, 
machinery/ 
agricultural 
machinery 

deployed x  x  x Kruize 
(2018) 

15 of olive trees to 
monitor olive fly 
occurrence. The 
digital twin is 
accompanied by an 
application which 
uses automated 
real-time imaging 
to capture images 
of pest traps that 
are then 
transferred to the 
digital twin twin. 
Olive growers can 
monitor the crop 
status remotely 
through the 
application. 

allows for timely 
reactions to save 
the crop and 
product quality, 
reduce pesticide 
and labour cost 

living plant 
or tree 

deployed x     Kruize 
(2018) 

16 of bee colonies. The 
digital twin is 
created based on a 
GPS tracking 
system along with 
sensors for 
humidity, exterior 
& interior apiary 
temperature, brood 
temperature and 
weight. It provides 

maintain healthy 
bee colony 
population, 
prevent pests, 
nectar flow 
monitoring 

animal/ 
agricultural 
building 

deployed x x x   Kruize 
(2018) 

(continued on next page) 
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Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

real-time 
continuous apiary 
monitoring that 
enables beekeepers 
to remotely control 
them and make 
management 
decision that 
interact with the 
bees as little as 
possible. It allows 
the beekeepers to 
manage the food 
storage reserves, to 
identify disease 
and pest infections, 
to inspect if 
queenless and 
swarming states 
exist, it provides an 
anti-theft 
mechanism, and 
insight into the 
colony status and 
hygiene. 

17 of a smart farm. 
The digital twin is 
built around small 
services and 
connects them 
together. These 
services provide 
information of 
particular systems 
such as the 
irrigation and 
seeding systems. 
The services use 
sensed data from 
soil probes, 
weather stations, 
irrigation systems 
and equipment 
analyzing and 
storing them using 
cloud services. The 
digital twin then 
uses these data for 
visualizations and 
for decision making 
actions which are 
then applied to the 
physical system 
through 
programmable 
logic controllers 
(PLAs). 

sustainable 
development, 
insight into farm 
operations 

agricultural 
field, farm, 
landscape 

concept x  x   Gomes Alves 
et al. (2019) 

18 of the globe’s 
agricultural 
systems using the 
WebGIS framework 
as an organizing 
principle that 
connects local, site- 
specific data 
generators to a 
regional and global 
view of agriculture 
using technologies 
like AI, IoT, drones, 
robots and Big 
Data, to aid in the 

supports 
agricultural 
industry and 
government 
policy makers, 
increases incomes 
and global 
sustainability of 
agricultural 
systems 

agricultural 
field, farm, 
landscape 

concept x  x x x Delgado 
et al. (2019) 

(continued on next page) 
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Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

development of 
site-specific 
conservation and 
management 
practices. 

19 of a vertical farm. 
The virtual and 
physical 
components are 
interconnected 
through sensors 
embedded in the 
materials of the 
farm structure that 
monitor 
temperature, 
humidity, 
luminosity and 
CO2. Embedding 
the sensors to the 
materials allows 
the digital twin to 
weight the data 
closest to the point 
of interest and 
establish an ideal 
value and 
variations for it. If 
the measured value 
is not in the 
expected range the 
digital twin 
controls actuators 
like air 
conditioning, air 
extraction, lighting 
and misting 
system. The data 
gathered by the 
sensors are 
analysed in the 
cloud and provide 
recommendations 
to producers to 
improve their 
production process. 

structure 
sustainability, 
decision support, 
more profitable 
vertical farming 

agricultural 
building 

prototype x x x  x Monteiro 
et al. (2018) 

20 of the world’s 
agricultural 
resources. The 
digital twin will 
give instant access 
to critical data on 
the world’s 
farmland. It will 
allow to share 
insights, materials 
and connection 
with the food 
supply chain. 

data 
democratization, 
more equitable 
farming economy, 
more food at 
lower cost 

agricultural 
field, farm, 
landscape 

prototype   x x  IBM 
Research 
(2018) 

21 of a greenhouse 
which aids in 
decision making. It 
monitors the status 
of the greenhouse’s 
fans, windows, 
sprayers and 
shading net as well 
as environmental 
factors like CO2, 
temperature, pH 
and solar radiation 
to analyze them 

decision support agricultural 
building 

concept x  x   R&D 
WORLD 
(2019) 

(continued on next page) 
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Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

and simulate 
different scenarios 
of decisions. It then 
visualizes the 
results to help the 
user take the 
optimal decision. 

22 of a parch of land. 
It makes multiple 
high resolution 
simulations of the 
cultivation 
procedure in 
parallel, taking into 
account 
information from 
many different 
sources. It does that 
continuously to 
account for several 
inputs, actions and 
stresses. 

best response 
identification 

agricultural 
field, farm, 
landscape 

concept x  x   Collins 
(2019) 

23 of an indoor garden 
that calculates the 
ideal conditions for 
plants to grow. It 
uses the data 
gathered by a 
gardening robot 
such as humidity 
and nutrient 
content of the soil 
as well as 
simulations to 
determine what the 
robot has to do to 
ensure that each 
plant gets exactly 
the right quantity 
of nutrients and 
water it needs for 
ideal growth. The 
data gathered, the 
algorithms and the 
digital twin itself 
are saved in the 
cloud. 

ideal plant 
growing 
conditions 

agricultural 
building 

prototype x  x   Barnard 
(2019) 

24 for aquaculture 
combining human 
intelligence and 
artificial 
intelligence to help 
fishermen develop 
accurate digital 
decision-making 
process for 
production 
management. 

productivity 
increase, cost 
reductions 

agricultural 
building 

prototype x  x x  Chiu et al. 
(2019) 

25 for livestock that 
uses a computer 
vision system 
installed on the 
dairy farm along 
with deep learning 
to monitor animal 
behavior and farm 
operations. It 
monitors the cows 
24/7, sends 
notifications to the 
farmer’s phone 
about event in the 

constant cattle 
monitoring, 
shows where 
there is room for 
improvement, 
improved milk 
production and 
animal well-being 

animal/ 
agricultural 
building 

deployed x  x x  Mokal and 
Sharma 
(2020) 

(continued on next page) 
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and manufacturing applications. In agriculture, even the non-living 
physical twins, as those of agricultural buildings, still indirectly 
interact with plants or animals. The direct or indirect interactions with 
living systems introduce more challenges for DT in agriculture. 

We identified only two overlapping use cases between our searches 
for agricultural DT, and DT in other disciplines. Use cases (uc. 83, 84) 
correspond to (uc. 6, 3). We expected a larger number of overlapping use 
cases, especially as our search of DT in other disciplines did not exclude 
agriculture-related use cases. This may be an indication that agricultural 
DT have not been adopted extensively, as they are not selected as 
representative use cases in DT reviews. 

The benefits of the applications mentioned in the agricultural use 
cases include cost reductions (uc. 6), more detailed information (uc. 3), 
catastrophe prevention (uc. 15), positive economic impacts (uc. 7), aid in 
decision making (uc. 4) and more efficient management operations (uc. 
12). Looking at the benefits of DT in other disciplines, we observe that 
they have a broader range. They also include safer human-machine 
interaction (uc. 58), building cost and energy efficiency estimation (uc. 
35), and insights into complex multidisciplinary systems (uc. 94). DT in 
agriculture have not yet reached the point to demonstrate similar 
benefits. 

Regarding the TRL, we were initially surprised to see that all levels 
are approximately equally represented. This large number of field- 

deployed or production-level DT could indicate a high adoption level 
in agriculture. However, upon closer inspection, we noticed that 6 out of 
8 deployed DT were extracted from a single article (Verdouw and Kru
ize, 2017), reporting on the results of the FIWARE Accelerator Pro
gramme (FIWARE Foundation, 2020), whose purpose was to create 
applications using the FIWARE platform.3 Apart from the DT deployed 
by the FIWARE program, we observe that there has been little progress 
in advancing DT beyond the concept and prototype levels to the pro
duction level, where they can be used in real-world conditions. A reason 
for this may be that in other disciplines there are greater financial in
centives, and larger research capacity to try out new technologies, or 
report their findings at earlier stages. Also, some applications on the 
conceptual level were described abstractly without any detailed tech
nical design reporting, i.e. uc. 1, 3, 9. To our knowledge, Wageningen 
University and Research has recently introduced an investment theme 
on Digital Twins, developing twins of tomato crops and arable and dairy 
farms, but they are still on a conceptual stage (uc. 27, 28). 

Another interesting finding from Fig. 3 was that the supply chain and 
logistics and agricultural machinery twins were the only ones that did 

Table 3 (continued )      

Service category  

Use 
case 
No. 

A digital twin: Benefits Physical 
twin 

Technology 
readiness 

level 

Real-time 
monitoring 

System 
failure 

analysis 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Citation 

farm, and provides 
interpretations 
using analytic 
techniques to point 
which operations 
can be optimized. 

26 of tractors. Tractors 
are fitted with IoT 
sensors that 
monitor how they 
operate in real-time 
and proactively 
prevent 
malfunctions. 

prevent 
equipment 
malfunctions, 
improve asset 
uptime 

agricultural 
machinery 

deployed x  x x  Ohnemus 
(2020) 

27 of tomato crops. 
The digital twin 
consists of a 3D 
simulation model 
fed with real-time 
sensor data from a 
greenhouse. The 
interactions of the 
crop variety, the 
environmental 
factors and crop 
management are 
simulated in the 
virtual model. 

prediction 
refinement to 
make better 
choices for the 
real crop 

living plant 
or tree 

concept x  x   Wageningen 
University & 

Research 
(2020) 

28 of an arable or 
dairy farm to 
monitor the 
existing nitrogen 
cycle. The digital 
twin consists of 
crop growth 
models, soil models 
and business 
management 
systems which are 
linked with a 
variety of data like 
company, weather 
and sensor data. 

improved 
decisions on 
whether to 
supplement 
nitrogen or to 
prevent losses 

agricultural 
field, farm, 
landscape 

concept x x x x  Wageningen 
University & 

Research 
(2020)  

3 A framework of open source components to develop applications for the 
Internet of Things. 
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not have any use cases on the conceptual level. While this could be 
circumstantial, it may also indicate that agricultural DT targeting these 
sectors are more mature than others. As DT of agricultural supply chains 
and logistics build upon relatively similar deployments in other supply 
chains and manufacturing, this could explain their relatively higher 
level of maturity. However, we did not check thoroughly to what extent 
DT of agricultural supply chains are concerned with perishables. This 
argument also pinpoints a significant challenge of DT in agriculture: 
Most agricultural operations have to do with living subjects, like animals 
and plants or perishable products, and creating DT for such systems is 
harder than for non-living human-made systems. 

Another reason why most DT are on concept and prototype level 
might be that agriculture is a slow adopter of technology, partly due to 
the growing complexity of information technology (Delgado et al., 
2019). To successfully develop DT, the community must become 
familiar with a variety of related technologies including Internet of 
Things, machine learning and big data. Most of these technologies are 
still considered new fields of experimentation in agriculture (Basso and 
Antle, 2020), and once the community gains confidence around them 
and adopt best practices for their application, we are likely to see more 
DT emerging in prototype and deployed levels. 

Considering the service categories, most of the agricultural DT offer 
monitoring and optimization services. Other service categories reported 

Table 4 
The source, article type and publication year of the use cases for the literature 
review in agriculture.  

Citation Use case 
No. 

Source Article 
type 

Year Title 

Smith (2018) 1 Web of 
Science 

journal 2018 Getting value 
from artificial 
intelligence in 
agriculture 

Tagliavini 
et al. 

(2019) 

2 Web of 
Science 

journal 2019 Multiphysics 
modeling of 
convective 
cooling of non- 
spherical, multi- 
material fruit to 
unveil its quality 
evolution 
throughout the 
cold chain 

Paraforos 
et al. 

(2019) 

3 Web of 
Science 

journal 2019 ISO 11783- 
compatible 
industrial sensor 
and control 
systems and 
related research: 
A review 

Tsolakis et al. 
(2019) 

4 Web of 
Science 

journal 2019 AgROS: A Robot 
Operating System 
Based Emulation 
Tool for 
Agricultural 
Robotics 

Tan et al. 
(1094) 

5 Google 
Scholar 

journal 2019 Digital Twin 
Technology for 
Aquaponics: 
Towards 
Optimizing Food 
Production with 
Dynamic Data 
Driven 
Application 
Systems 

Jo et al. 
(2018) 

6 Google 
Scholar 

conference 2018 Smart Livestock 
Farms Using 
Digital Twin: 
Feasibility Study 

Kampker 
et al. 

(2019) 

7 Google 
Scholar 

conference 2019 Business Models 
for Industrial 
Smart Services - 
The Example of a 
Digital Twin for a 
Product-Service- 
System for Potato 
Harvesting 

Moghadam 
et al. 

(2020) 

8 Google 
Scholar 

journal 2020 Digital Twin for 
the Future of 
Orchard 
Production 
Systems 

Qi et al. 
(2019) 

9 Google 
Scholar 

journal 2019 Enabling 
technologies and 
tools for digital 
twin 

Machl et al. 
(2019) 

10 Google 
Scholar 

journal 2019 Planning 
Agricultural Core 
Road Networks 
Based on a Digital 
Twin of the 
Cultivated 
Landscape 

Kruize (2018) [11–16] Google 
Scholar 

conference 2017 Digital twins in 
farm 
management: 
illustrations from 
the FIWARE 
accelerators  

Table 4 (continued ) 

Citation Use case 
No. 

Source Article 
type 

Year Title 

SmartAgriFood 
and Fractals 

Gomes Alves 
et al. 

(2019) 

17 Google 
Scholar 

conference 2019 A digital twin for 
smart farming 

Delgado et al. 
(2019) 

18 Google 
Scholar 

journal 2019 Big Data Analysis 
for sustainable 
Agriculture on a 
Geospatial Cloud 
Framework 

Monteiro 
et al. 

(2018) 

19 Google conference 2018 Towards 
Sustainable 
Digital Twins for 
Vertical Farming 

IBM Research 
(2018) 

20 Google website 2018 #twinning: 
Farming’s digital 
doubles will help 
feed a growing 
population using 
less resources 

R&D WORLD 
(2019) 

21 Google website 2019 Digital Twin 
Solutions for 
Smart Farming 

Collins (2019) 22 Google website 2019 Agility in Digital 
Farming 

Barnard 
(2019) 

23 Google website 2019 In the digital 
indoor garden 

Chiu et al. 
(2019) 

24 Google website 2019 ”Digital Twin 
Solutions for 
Smart Farming”, 
the III 
Development AI 
+ HI Total 
Solution, 
Awarded R&D 
100. 

Mokal and 
Sharma 
(2020) 

25 Google website 2020 Use Cases: Digital 
Twin in Livestock 
Farming 

Ohnemus 
(2020) 

26 Google website 2018 Digital Twin 
Excellence: Two 
Shining Examples 

Wageningen 
University 
& Research 

(2020) 

27, 28 Google website 2020 WUR is working 
on Digital Twins 
for tomatoes, food 
and farming  
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were related to energy consumption analysis, and a few of the DT acted 
as technology integration tools. In other disciplines, we also came across 
the virtual maintenance category which was absent in agricultural DT. A 
reason for this gap could be that implementing an advanced technology 
like DT with more complex operations can be expensive (Delgado et al., 
2019), at least in the early experimental phase of its adoption. Appli
cations of DT performing virtual maintenance could be useful for 
determining the optimal repair/maintenance strategy of agricultural 
machinery before laying hands on it, similar to repairing subsea 
equipment in (uc. 75). 

Regarding the variety of the applications, from Fig. 3 we observe that 
a variety of applications like livestock farming (uc. 6), cropping (uc. 4) 

and apiculture (uc. 16) are encompassed. Yet, we believe that there is 
more room for DT to grow in each subfield. In our view, one of the 
reasons for not having a wider range of applications is the added 
complexity of the systems that DT pursuit to digitize, especially as this 
domain is lagging in digitization. Many agricultural systems are living 
systems, comprising of complex processes, which are harder to model 
than DT of products or human-made systems. This is in agreement with 
our findings related to DT in healthcare, another domain that also has to 
do with living physical twins: Only two use cases were identified related 
to healthcare (uc. 22, 46). Challenges related to living physical twins 
include capturing underlying processes that are still not well- 
understood, and accurately monitoring certain processes, for example 

Fig. 3. Classification of physical twins in agriculture. The colors indicate the maturity level of the DT.  

Fig. 4. Service categories of DT use cases in agriculture. The colors show the maturity level based on TRL.  
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Table 5 
The use cases of DT in all disciplines. Use cases are referred as “uc” and their corresponding numbers in the text. The numbering of the use cases continues from the use cases in agriculture.       

Service category    

Use 
case 
No. 

A digital twin: Benefits Technology 
readiness 

level 

Discipline Real-time 
monitoring 

System 
failure 

analysis 
and 

prediction 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Virtual 
maintenance 

Citation Publication 
year 

Application 
Year 

29 as an installer base 
management system 
to manage machines 

assist in data 
structuring and 
management of 
machines 

prototype manufacturing x x x    Cimino et al. 
(2019) 

2019 2019 

30 for the organization of 
the production line 

handle 
flexibility of 
production 
system 

prototype manufacturing x  x    Cimino et al. 
(2019) 

2019 2018 

31 for machine 
reconditioning 

machine 
reconditioning 

prototype manufacturing x x     Cimino et al. 
(2019) 

2019 2018 

32 performing machine 
optimization in the 
design phase 

– prototype manufacturing   x    Cimino et al. 
(2019) 

2020 2018 

33 monitoring the 
interaction of humans 
and machines to 
prevent accidents 

human safety 
in workplace 

prototype manufacturing   x    Cimino et al. 
(2019) 

2019 2019 

34 for workplace 
redesign 

improved 
working 
conditions, 
improved 
productivity 

prototype industry   x    Cimino et al. 
(2019) 

2019 2019 

35 of a building 
providing ways to 
make it more energy 
efficient 

building cost 
and energy 
consumption 
estimation, 
discovery of 
technical issues 
that may arise 

prototype construction     x  Kaewunruen 
et al. (2018) 

2018 2018 

36 simulating different 
scenarios of a biology 
model to verify its 
credibility 

provide a 
traceable route 
to model 
credibility and 
acceptance 

concept biology    x   Patterson 
and Whelan 

(2017) 

2017 2017 

37 of a vehicle providing 
historical information 
and recreating past 
states and estimating 
future states 

monitor 
current state, 
recreate past 
and future 

prototype automotive industry x x     Fraga-Lamas 
and 

Fernández- 
Caramés 
(2019) 

2019 2017 

38 for the optimal 
organization of a shop 
floor 

improved 
resource 
management 

concept manufacturing   x    Zheng et al. 
(2019) 

2019 2017 

39 of the production 
process performing 
simulations to find the 
optimal parameters of 
the production process 

trace process 
performance, 
find potential 
improvement 

concept manufacturing   x    Zheng et al. 
(2019) 

2019 2017 

40 for product service 
systems calculating 
the optimal 

autonomous 
interaction and 
further 

concept business   x    Zheng et al. 
(2019) 

2019 2018 

(continued on next page) 
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Table 5 (continued )      

Service category    

Use 
case 
No. 

A digital twin: Benefits Technology 
readiness 

level 

Discipline Real-time 
monitoring 

System 
failure 

analysis 
and 

prediction 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Virtual 
maintenance 

Citation Publication 
year 

Application 
Year 

parameters for the 
system 

optimization of 
the 
components 

41 for the monitoring of a 
shop floor and the 
identification of 
anomalies 

improve 
visibility of 
real-time 
operations, 
faster and more 
accurate 
identification 
of anomalies 

deployed manufacturing x x     Tilbury 
(2019) 

2019 2017 

42 calculating optimal 
assembly schedules 

optimal 
assembly 
schedules 

concept manufacturing x  x    Tilbury 
(2019) 

2019 2018 

43 for the product design 
stage 

– prototype manufacturing   x    Tilbury 
(2019) 

2019 2017 

44 for 3D printing 
monoliths 

insight into 
heat and mass 
transfer during 
solidification 

concept biomolecular 
engineering 

x      Dewitt et al. 
(2018) 

2018 2017 

45 of a ship that allows 
for the assessment of 
the vessel before its 
construction 

virtually assess 
the safety and 
performance of 
vessels 

concept shipping   x   x Bolton et al. 
(2018) 

2018 2017 

46 of a country that helps 
bring together 
different aspects of 
management and take 
optimal decisions 

– concept management x  x    Bolton et al. 
(2018) 

2018 2017 

47 of a mobile network 
that finds the optimal 
parameters to reduce 
energy consumption 

lower power 
consumption 

prototype telecommunications     x  Dong et al. 
(2019) 

2019 2019 

48 of a manufactured 
product detecting 
surface anomalies 

improved 
detection 
surface 
anomalies 

concept manufacturing x      Cohen et al. 
(2019) 

2019 2019 

49 of a smart product 
monitoring its status 

monitoring 
through 
product 
lifecycle, aid in 
decision 
making for 
maintenance 
and end of 
product life 

concept manufacturing x x x    Tomiyama 
et al. (2019) 

2019 2019 

50 to represent an array 
of contributors and 
verify the reliability of 
their operations 

reliability 
verification 

concept manufacturing x      Tomiyama 
et al. (2019) 

2019 2019 

51 concept manufacturing  x     2018 2017 

(continued on next page) 
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Table 5 (continued )      

Service category    

Use 
case 
No. 

A digital twin: Benefits Technology 
readiness 

level 

Discipline Real-time 
monitoring 

System 
failure 

analysis 
and 

prediction 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Virtual 
maintenance 

Citation Publication 
year 

Application 
Year 

for the product design 
phase that helps tot 
optimize product 
parameters and 
identify potential 
flaws 

optimize 
design scheme, 
forecast and 
verify product 
functions 

Qi and Tao 
(2018) 

52 for the monitoring of a 
manufactured product 
for the assessment of 
its performance and 
identification of flaws 

predict 
lifetime, 
performance, 
faults 

concept manufacturing x x     Qi and Tao 
(2018) 

2018 2017 

53 to proactively 
maintain aircraft 
structure and virtually 
diagnose problems 

reduce cost, 
improve 
reliability 

prototype aerospace 
engineering 

x x     Qi and Tao 
(2018) 

2018 2012 

54 for the monitoring of 
the aircraft structure 
and the prediction of 
its service life 

facilitate the 
management of 
aircraft service 
life 

deployed aerospace 
engineering 

x x     Tao et al. 
(2019) 

2019 2011 

55 for monitoring the 
degradation of 
machine equipment 

monitor 
machine 
operation and 
predict surface 
roughness 

prototype manufacturing x x     Tao et al. 
(2019) 

2019 2017 

56 for the organization of 
the production line 

more reliable, 
flexible, 
predictable 
production 
process 

concept manufacturing   x    Tao et al. 
(2019) 

2019 2016 

57 analyzing aircraft 
wing structural 
damage 

predict fatigue 
cracks in wings 

prototype aerospace 
engineering 

x x     Tao et al. 
(2019) 

2019 2015 

58 bringing many aspects 
of the manufacturing 
process under the 
same umbrella for 
optimization 

smooth 
interactions 
among human, 
machine, 
product 

concept manufacturing   x    Tao et al. 
(2019) 

2019 2017 

59 optimizing parameters 
for a magnet insertion 
process 

production 
optimization 

prototype manufacturing   x    Tao et al. 
(2019) 

2019 2017 

60 for geometry 
assurance of 
manufactured 
products 

– concept manufacturing x x     Tao et al. 
(2019) 

2019 2017 

61 to reduce material 
waste and prolong 
machine lifetime 

reduce material 
waste, prolong 
machine 
lifetime 

concept manufacturing x x     Tao et al. 
(2019) 

2019 2017 

62 monitoring the 
operational state of 
wings  

prototype aerospace 
engineering 

x x     Tao et al. 
(2019) 

2019 2017 

(continued on next page) 
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Table 5 (continued )      

Service category    

Use 
case 
No. 

A digital twin: Benefits Technology 
readiness 

level 

Discipline Real-time 
monitoring 

System 
failure 

analysis 
and 

prediction 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Virtual 
maintenance 

Citation Publication 
year 

Application 
Year 

63 predicting the time of 
failure for aircraft tires 

improved 
prediction of 
probability of 
failure of tire 

prototype aerospace 
engineering 

x x     Tao et al. 
(2019) 

2019 2017 

64 for predicting 
manufacturing 
parameters 

more accurate 
predictions 
than classic 
models 

deployed additive 
manufacturing   

x    Tao et al. 
(2019) 

2019 2017 

65 for a driver assistance 
system 

reduce 
complexity, 
increase 
flexibility 

concept automotive industry   x    Tao et al. 
(2019) 

2019 2017 

66 a system to control 
multiple digital twins 
of wind turbines 

– concept renewable energy x      Tao et al. 
(2019) 

2019 2018 

67 to control the cooling 
of a power system 

– prototype renewable energy x  x    Tao et al. 
(2019) 

2019 2018 

68 simulating different 
scenarios for the 
construction of a 
power system 

automation, 
data 
visualization, 
decision 
making 

deployed power systems x  x    Tao et al. 
(2019) 

2019 2017 

69 for the monitoring and 
energy efficient use of 
the pipes of a 
wastewater treatment 
plant 

energy saving, 
forecast faults 

deployed wastewater plant x    x  Tao et al. 
(2019) 

2019 2018 

70 optimizing the 
operations of a wind 
farm 

operation 
efficiency 
increase by 
20% 

prototype renewable energy   x    Tao et al. 
(2019) 

2019 – 

71 of a locomotive form 
its design to its end of 
life for monitoring and 
optimization of its 
parameters 

timely 
operation 
optimization 

deployed rail industry x x x    Tao et al. 
(2019) 

2019 2016 

72 of a hospital used for 
bed planning and 
work allocation 

– deployed healthcare   x    Tao et al. 
(2019) 

2019 – 

73 for maintaining oil/ 
gas facilities in remote 
areas 

improve 
reliability of oil 
facility 

deployed oil industry x x     Tao et al. 
(2019) 

2019 2018 

74 for the optimization of 
an aircraft assembly 
line 

optimize 
operation 
efficiency 

concept manufacturing   x    Tao et al. 
(2019) 

2019 2017 

75 producing prognostics 
for subsea equipment 

cost 
effectiveness, 
security of 
equipment 

concept subsea cable      x Tao et al. 
(2019) 

2019 2017 

76 prototype automotive industry x x x    2019 – 

(continued on next page) 
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Table 5 (continued )      

Service category    

Use 
case 
No. 

A digital twin: Benefits Technology 
readiness 

level 

Discipline Real-time 
monitoring 

System 
failure 

analysis 
and 

prediction 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Virtual 
maintenance 

Citation Publication 
year 

Application 
Year 

to analyze engine 
speed, oil pressure and 
other parameters to 
prevent vehicle 
breakdowns 

prevent 
breakdowns, 
more efficient 
engine 
development 

Tao et al. 
(2019) 

77 to monitor equipment 
status 

enhance 
operation 
resilience and 
flexibility 

concept manufacturing x x     Lu et al. 
(2020) 

2020 2020 

78 of human workers to 
monitor their health 
and working 
conditions and 
provide productivity 
optimizations 

worker health, 
production 
performance 

concept manufacturing   x    Lu et al. 
(2020) 

2020 2020 

79 of a factory creation of self 
organizing 
factories, with 
complete 
operational 
visibility, 
flexibility 

concept manufacturing   x    Lu et al. 
(2020) 

2020 2020 

80 providing insight into 
production network 
operations 

unprecedented 
visibility into 
operation 
performance, 
predict future 
needs in the 
network 

concept manufacturing   x    Lu et al. 
(2020) 

2020 2020 

81 to monitor a gas 
turbine, detect 
anomalies and 
perform what-if 
scenarios 

real-time 
monitoring, in- 
depth analysis 
of deviation, 
scenario 
assessment 

concept chemical 
engineering 

x x x    Raman and 
Hassanaly 

(2019) 

2019 2019 

82 for material 
fabrication 

growth of 
material 
knowledge 

concept material science    x   Yi Wang 
et al. (2019) 

2019 2019 

83 to monitor pig health 
and prevent diseases 

reduced animal 
disease costs 

concept agriculture x x     Paraforos 
et al. (2019) 

2019 2018 

84 using ISOBUS sensors 
to provide better field 
prognostics 

continuous 
detailed crop 
and soil 
information 

concept agriculture x x     Paraforos 
et al. (2019) 

2019 2018 

85 of a 
neuromusculoskeletal 
system to estimate 
optimal muscle 
activation patterns 

estimate 
optimal muscle 
activation 
patterns 

concept neurorobotics   x    Pizzolato 
et al. (2019) 

2019 2019 

86 to easily reconfigure 
production lines 

– concept manufacturing x  x    Mabkhot 
et al. (2018) 

2018 2017 

(continued on next page) 
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Table 5 (continued )      

Service category    

Use 
case 
No. 

A digital twin: Benefits Technology 
readiness 

level 

Discipline Real-time 
monitoring 

System 
failure 

analysis 
and 

prediction 

Optimization 
/ update 

Technology 
integration 

tool 

Energy 
consumption 

analysis 

Virtual 
maintenance 

Citation Publication 
year 

Application 
Year 

87 as a test bench for a 
benching beam 

– prototype manufacturing   x    Mabkhot 
et al. (2018) 

2018 2018 

88 to monitor the 
production line 

trace process 
performance, 
find potential 
improvement 

prototype manufacturing   x    Mabkhot 
et al. (2018) 

2018 2017 

89 to easily reconfigure 
production lines 

trace process 
performance, 
find potential 
improvement 

prototype manufacturing   x    Mabkhot 
et al. (2018) 

2018 2018 

90 of a vertical milling 
machine monitoring 
its health status 

avoid sudden 
downtime 

prototype manufacturing x x     Mabkhot 
et al. (2018) 

2018 2017 

91 of an aluminium 
smelter 

energy 
reduction, 
insight into 
performance 
and deviations 
from target 

prototype manufacturing   x  x  Gupta and 
Basu (2019) 

2019 2019 

92 for the optimization of 
the production line 

optimize 
production line 
functionality 

concept manufacturing   x    Ghobakhloo 
(2018) 

2018 2018 

93 for the monitoring and 
evaluation of a 
product during its 
lifetime 

status of 
product 
through its 
lifecycle for 
consumers. 
Evaluation of 
product for 
companies 

concept manufacturing x      Ghobakhloo 
(2018) 

2018 2018 

94 of a city to manage it 
based on lifestyle and 
prevent disasters 

forecast issues 
related to 
lifestyle and 
disasters 

concept management   x    Kim and Kim 
(2017) 

2017 2017 

95 of tourism 
destinations to assess 
different parameters 

assess positive 
and negative 
impact of 
tourism, also in 
sustainability 

concept management x      Kim and Kim 
(2017) 

2017 2017 

96 serving detailed 
information about the 
whole production 
process 

reduced 
downtime, 
reduced 
maintenance 
costs, machine 
setup time 
reduction 

prototype manufacturing   x    Longo et al. 
(2019) 

2019 2019  

C. Pylianidis et al.                                                                                                                                                                                                                              



Computers and Electronics in Agriculture 184 (2021) 105942

22

nitrogen leaching in crop systems. In agricultural systems, it is also 
common that certain processes are not digitized because there are no 
financial incentives for doing so. 

Another aspect affecting the adoption of DT in agriculture is that the 
community has to build trust in the interplay of the DT components for 
its correctness. This trust is essential to create DT that can accurately 
represent the inner workings of a system, propose maintenance strate
gies and alternative ways of management. Yet, building this trust in 
agriculture is difficult, because many decisions affect living systems 
where, unlike in other disciplines, consequences can be hard to reverse. 

The lack of data culture also slows the adoption of DT in agriculture. 
DT require large amounts of data to operate, and the expected benefits 
are not eminent in small-scale deployments. In this respect, the lack of a 
data culture (Jones et al., 2017) and compartmentalization of agricul
tural systems understanding inhibits DT development and decreases 
potential for adoption. As a last note, integrating DT components and 
updating them in real-time can be daunting. For a community that is 
highly interdisciplinary and less information technology-oriented 
(Brown et al., 2019), this is a major turnoff. 

4.2. The added-value of digital twins 

This review identified few applications of DT in agriculture, with 
several of them being only superficially described in the corresponding 
articles. This suggests that DT benefits have not been clearly commu
nicated to the agricultural community yet. Consequently, the commu
nity has not yet had the chance to investigate how they could utilize 
them and include them in their current practices. In this section, we 
pinpoint in the form of characteristics the benefits that DT can bring to 

agriculture. The characteristics can be seen in Fig. 6. 
The vision behind DT is to offer personalized curation of complex 

systems. This means that DT can account for local system idiosyn
crasies, that are often too complex to be accounted for in a generic 
model. DT adapt to local conditions in each individual physical twin, by 
fusing data and learning from them. DT are customized to mimic the 
individual characteristics of each system instance and deployment, and 
expose the system under different perspectives like system health, 
operation effectiveness, and profitability. 

Streamlining of operations is another characteristic of DT. They 
offer an automated pipeline of operations like data acquisition from 
sensors, performing simulations, creating reports and controlling actu
ators. These operations are executed continuously, without requiring the 
attention, time and expertise of the users. DT bring together operations 
that previously were offered by a range of tools, hide their complexity, 
save time and remove context switching obstacles for the users. In this 
way, DT democratize technology and make it available to a wider range 
of stakeholders. 

A key aspect of DT is information fusion, as they integrate and 
enrich information originating from several heterogeneous sources. DT 
observe physical twins from different perspectives by using multiple 
sources of data and assessing possible outcomes of actions. Information 
fusion combined with the continuous nature of operations depicts the 
complete picture of the past and current state of the system, and allows 
to estimate future states. 

Uncertainty quantification is another characteristic of DT. DT can 
take into account the cumulative effect of the involved uncertainties 
since they observe systems from different angles. This information can 
then be customized and communicated to the stakeholders according to 
their expertise. 

DT often embed permission level controls. The type of reports and 
controlling mechanisms can vary, based on the user of the application. 
This makes it possible to create different levels of transparency, 
depending on the sensitivity of the handled data and the importance of 
the operations taking place. 

Finally, DT may demonstrate human-centered intelligence to 
control mechanisms for aspects that were neglected in the past, like 
human-machine interaction for safer working environments. 

4.3. The future of digital twins in agriculture 

The added value of DT has not yet materialized in agricultural ap
plications. DT could be used pervasively, on different spatial and tem
poral scales and with varying levels of complexity, depending on their 

Fig. 5. The DT service categories for DT in other disciplines. The majority of the proposed DT perform monitoring, optimization and system failure anal
ysis operations. 

Fig. 6. The characteristics of DT that can benefit agricultural applications.  
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components and the desired functionality. We expect that the future of 
DT will evolve from simpler cases, exhibiting fewer components, to 
more sophisticated ones. We propose a roadmap for the development of 
DT in agriculture, starting from simple DT applications, with fewer 
components and simpler functionality, gradually adding components 
and functionality, to demonstrate the full potential of DT. 

On a fundamental level, a DT will include monitoring, user interface 
and analytic components. These components are the first step towards 
empowering a DT to monitor and analyze agricultural systems and offer 
a continuous stream of operations. An example DT with these compo
nents could be deployed to monitor the microclimate of a greenhouse 
and provide insights for its management. In this case, the DT would 
monitor environmental conditions, like solar radiation, humidity and 
CO2, analyze them according to user-defined thresholds and report its 
findings, similar to the use case (uc. 21). 

A slightly enhanced DT could include actuator components to control 
fans and windows in a greenhouse. The monitoring and control opera
tions would be performed continuously, notifying different stakeholders 
with information that is relevant to them. For instance, in the case of 
consecutive stormy days, the DT would notify the farmer that it closed 
the windows because the temperature dropped, and notify the supply 
chain stakeholders that the production will be delayed because the 
plants cannot grow fast enough with the current weather. Also, the DT 
will report which indicators surpassed certain thresholds, thus taking 
specific actions using its actuators, and consequently assuring the 
stakeholders of its correct operation. Similar twins could be deployed to 
food silos (uc. 12) to keep track of their stock and autonomously orga
nize their proactive replenishment, notifying the supply chain stake
holders and farmers respectively, and to livestock farms to keep track of 
environmental indicators that are known to affect animal welfare (uc. 
25). 

Further enhancing DT with simulation components is necessary for 
them to support decision-making based on past and future predicted 
states of the physical twin. A dairy farm DT could use simulation to 
forecast the occurrence of mastitis due to intensive milking for each 
individual cow. Utilizing this DT, a farmer could evaluate multiple 
milking scenarios and choose the one that strains the cow the least (uc. 
1). Data analysis and simulation would happen in local or guaranteed 
cloud infrastructure to ensure data privacy. More advanced, simulations 
could investigate factors that have already lead to the appearance of 
mastitis, and result in improved breeding decisions. On an agricultural 
farm, DT of fields could use simulation to approximate the behavior of 
equipment in local conditions (uc. 4). Utilizing such a DT, a farmer could 
test a harvester, before purchasing it, on her local field with different 
weather scenarios to measure fuel consumption and plant damage. 

Incorporating a learning component brings agricultural DT to the 
next level. A learning component may allow DT to assist in management 
operations for systems where the underlying mechanisms are unclear. In 
the case of a livestock farm, a DT with learning capabilities would be 
able to find patterns in real-time and in historical environmental data 
that could facilitate the onset and spread of diseases like swine fever. 
This would help stakeholders to take proactive measures to prevent not 
only the spread but also the appearance of diseases (uc. 6). Additionally, 
the DT would identify the most important variables shaping these pat
terns, estimate related risks, and clearly communicate the involved 
uncertainties, by presenting probability metrics for example. 

Towards Digital Earth (Goodchild et al., 2012), a large-scale DT of an 
agricultural landscape, may consist of multiple DT of individual farms, 
each with several learning components. Such a DT will be able to 
consider the inter-field dynamics regarding water flow, fertilizer 
dispersion and nutrient leaching. It would provide variable fertilizer 
rates, based on site-specific intelligence, for example what amount can 
be absorbed by each field without being dispersed to other fields, and 
how much each field should be irrigated considering groundwater 
levels, and the availability of irrigation infrastructure. This would 
happen by learning from historical data about how the amount of 

fertilizer and irrigation affected the crop yield and depleted the nutrients 
of each field in the past. Ultimately, the DT would constantly improve 
itself in defining the acceptable fertilizer amounts and irrigation through 
continuous learning, also learning from the past decisions of the indi
vidual farmer. Besides, capitalizing on this information would lead to 
the creation of better cropping patterns, using different constraints like 
weather, profitability and field nutrient replenishment rate. 

Further improving agricultural twins with a human-machine inter
face component would allow the establishment of safer working envi
ronments. A DT of a harvester with a human-machine interface 
component could trace the position of the workers and their actions to 
ensure that the machine is distant enough to avoid injuries (uc. 33). Also, 
a DT of grain bins could detect human presence inside the bin with 
cameras, and stop the procedures that cause grain movement to prevent 
entrapment. This is crucial as a large number of injuries occur every year 
with agricultural equipment due to the lack of safety measures (Jadhav 
et al., 2016). 

Overall, DT can be applied to several agricultural subfields like plant 
and animal breeding, aquaponics, vertical farming, cropping systems 
and livestock farming. Adopting DT can start with simple setups, that 
can be gradually enhanced with more components to make them more 
intelligent and autonomous. 

4.4. Considerations regarding the application of DT in agriculture 

The application of DT in agriculture also involves potential pitfalls. 
As mentioned in (Smith, 2018), controlling physical twins through their 
virtual counterparts may lead to a lack of attention to the real-world 
systems. In agriculture, such neglect could cause irreversible damage, 
as DT are applied to living physical twins, among other things. 

There are also cases where DT are not yet feasible, due to the large 
amount of resources they require to be developed, and the high 
complexity of the physical twins (West and Blackburn, 2017). This could 
be the case of some agricultural system interactions that cannot be 
accurately quantified yet. There are also concerns about the technology 
skills required to create DT (Lohtander et al., 2018). DT development 
requires specialized knowledge from several technology domains, which 
can be a serious threat in an already multidisciplinary domain like 
agriculture. 

Synchronization between the physical and virtual twins is another 
target that is difficult to achieve (Talkhestani et al., 2018). In agricul
ture, human-made systems like agricultural equipment could be easier 
to synchronize with the virtual system, unlike natural systems such as 
animals or land parcels. 

Also, the integration of DT components can be difficult (Kurth et al., 
2019). In agriculture, this could be the case for combining the simula
tion and monitoring components for crops, as they rely on different in
frastructures, software and end-users. 

Last but not least, the widespread success of DT in agricultural ap
plications does not only depend on technology, skills, or data in
frastructures and availability but the involved business aspect. As with 
any new technology that is to be introduced in a farm, DT need to 
demonstrate their added value and the return on investment. 

5. Conclusion 

Returning to our first research question, we found that there are 
already a few applications of DT in agriculture. However, they are in 
primary stages and are not designed thoroughly enough to offer the 
benefits that other disciplines enjoy. Exceptions included some deployed 
applications that were part of a European Union-funded program. We 
believe that there is still a long way to go before the agricultural com
munity can fully seize the benefits of DT. Agricultural researchers and 
stakeholders should make an effort to stay up-to-date with technological 
advancements and seek to find links between agricultural problems, and 
problems that are solved with DT in other disciplines. 
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Regarding the second research question, we proposed a roadmap of 
applications, starting from DT with simpler functionality, incrementally 
adding components to gradually demonstrate the benefits that are 
already present in other disciplines. As for the twins themselves, we 
foresee that there will be some confusion in the coming years about what 
a DT is and when a technology can be considered a DT. Research has 
been done to classify technologies based on how close they are to 
becoming DT (Kritzinger et al., 2018), but it is still difficult to identify 
when a system can be called a DT. For the needs of most agricultural 
applications, we suggest that a DT should have at least the monitoring, 
interface and analytic components. 

We identified two distinctive characteristics of DT in agriculture 
while reviewing the use cases and proposing our application roadmap. 
The first difference is that many agricultural DT involve directly or 
indirectly living systems and perishable products. While DT are ideal to 
provide insights into such complex systems and incorporate non- 
deterministic processes, their integration with the physical twin can 
be difficult. This is further amplified due to the idiosyncrasies of living 
physical twins. The second difference lies in the spatio-temporal 
dimension of their operation. DT in other disciplines range between 
the size of an airplane to that of a factory. Agricultural DT range from 
individual plants and animals to twins of land parcels, farms, or regions. 
As such, one may need to consider effects across these scales. On the 
temporal dimension, agricultural DT differ due to the slower response 
rates of their physical twins. Agricultural processes like the growing of 
plants tend to evolve relatively slow, so at least initially there is no need 
for high-frequency interactions between physical and digital twins. 
These two characteristics of agricultural DT need to be considered when 
developing DT inspired by DT in other disciplines. 

As a final note, given the potential for the adoption and the benefits 
of applying DT in agriculture, we strongly believe that they have the 
prospect to bring a technological breakthrough in the near future. 
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