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A B S T R A C T   

Machine learning models for crop yield forecasting often rely on expert-designed features or predictors. The 
effectiveness and interpretability of these handcrafted features depends on the expertise of the people designing 
them. Neural networks have the ability to learn features directly from input data and train the feature learning 
and prediction steps simultaneously. In this paper, we evaluate the performance and interpretability of neural 
network models for crop yield forecasting using data from the MARS Crop Yield Forecasting System of the 
European Commission’s Joint Research Centre. The selected neural networks can handle sequential or time series 
data and include long short-term memory (LSTM) recurrent neural network and 1-dimensional convolutional 
neural network (1DCNN). Performance was compared with a linear trend model and a Gradient-Boosted Decision 
Trees (GBDT) model, trained using hand-designed features. Feature importance scores of input variables were 
computed using feature attribution methods and were analyzed by crop yield modeling and agronomy experts. 
Results showed that LSTM models perform statistically better than GBDT models for soft wheat in Germany and 
similar to GBDT models for all other case studies. In addition, LSTM models captured the effect of yield trend, 
static features (e.g. elevation, soil water holding capacity) and biomass features on crop yield well, but struggled 
to capture the impact of extreme temperature and moisture conditions. Our work shows the potential of deep 
learning to automatically learn features and produce reliable crop yield forecasts, and highlights the importance 
and challenges of involving human stakeholders in assessing model interpretability.   

1. Introduction 

Crop yield forecasts provide useful information to many stake
holders, including farmers, policymakers and commodity traders, for 
strategic decisions related to food security and market access (Basso and 
Liu, 2019; Chipanshi et al., 2015). Crop yield is influenced by complex 
interactions among crop-specific, environmental and management- 
related factors. Such complexity makes understanding yield fore
casting models challenging but also critical. In recent years, machine 
learning methods have become popular in crop yield forecasting 
(Chlingaryan et al., 2018; van Klompenburg et al., 2020). Reliability of 
these methods depends on how well their forecasts can be interpreted in 
human understandable terms. 

Interpretability is defined as the degree to which humans can 

understand the causes of a decision (Miller, 2019; Doshi-Velez and Kim, 
2017). Interpretability is related to trust and trust is often based on 
understanding how model predictions change when inputs are changed. 
Accuracy and efficiency are two other requirements for interpretability 
(Rüping, 2006). Accuracy means the forecasts must be close to observed 
values; efficiency means humans must understand model behavior 
within a limited amount of time. The common solution to interpret
ability is to build simple and inherently understandable models, such as 
linear models, process-based models, or decision trees (Molnar, 2022; 
Ribeiro et al., 2016). Linear regression – with crop model outputs, 
weather variables and remote sensing indicators – is commonly used in 
crop yield forecasting due to its simplicity and interpretability (Lobell 
et al., 2015; van der Velde and Nisini, 2019; Statistics Canada, 2020). 
Focusing only on inherently interpretable models would limit the type of 
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relationships that can be modeled and hence result in less accuracy and 
usability (Ribeiro et al., 2016). 

Machine learning and deep learning models can learn complex re
lationships, but they are often seen as black boxes because of a lack of 
understanding about how they make predictions (McGovern et al., 
2019). Some methods, such as decision trees and their ensembles, are 
inherently interpretable. For other methods, including neural networks, 
feature attribution methods (Montavon et al., 2018; Ancona et al., 2018; 
Lundberg and Lee, 2017) provide an alternative to lack of inherent 
interpretability. They treat the original model as a black box and analyze 
predictions of the model to learn post-hoc explanations about relation
ships between predictors and crop yield. Interpretable machine learning 
and explainable artificial intelligence (explainable AI or XAI) are 
growing areas of research (Samek et al., 2019; McGovern et al., 2019; Xu 
et al., 2019; Molnar, 2022). With the help of feature attribution 
methods, deep learning models have become easier to understand and 
interpret. 

Deep learning also provides benefits of automatic feature learning. 
Standard machine learning methods involve a step to design features or 
predictors based on expert knowledge. Expertise-based feature design 
can produce meaningful features but has some shortcomings that limit 
its usefulness at large scale. First, except for certain features with well- 
defined formulas (e.g. vegetation indices), the feature design process 
is manual and time consuming (Bengio et al., 2013). Second, the effec
tiveness of handcrafted features depends on the expertise of the people 
designing them. Third, methods using handcrafted features often keep 
the feature design and prediction steps separate. This separation pre
vents updates to the feature design step when prediction models are 
trained with supervision labels (e.g. yield statistics). Neural networks 
can extract features or representations directly from input data. Auto
matic feature learning not only removes the dependence on expertise, 
but also optimizes both feature extraction and prediction steps using 
supervision signals from training labels. Such combined learning im
proves the discriminative power of learned features (Wang and Yang, 
2018). 

Many studies have used deep learning for crop yield forecasting 
(Gavahi et al., 2021; Nevavuori et al., 2019; Oikonomidis et al., 2022; 
van Klompenburg et al., 2020), and some of them have compared per
formance with standard machine learning methods and analyzed feature 
influence (Khaki et al., 2020; Nayak et al., 2022; Shook et al., 2021; 
Wolanin et al., 2020). However, they do not address challenges of 
explaining feature importance or model behavior to human stake
holders. Reasons explaining how forecasts were made are just as 
important as the forecasts themselves. We present an approach that 
involves human experts in the design of hand-crafted features as well as 
in the assessment of features and relationships learned by neural net
works. Using this approach, we evaluate the accuracy and interpret
ability of deep learning models for crop yield forecasting. In particular, 
we seek to answer two questions: (i) Given the same input data, how 
well do deep learning models perform compared to standard machine 
learning models that use expert-designed features? (ii) According to 
experts, do deep learning models make predictions based on expected or 
plausible relationships? To answer the first question, forecasting per
formance was compared with a Gradient-Boosted Decision Trees model. 
To answer the second question, interpretability was assessed by a 
combination of quantitative and qualitative methods. Feature impor
tance scores were obtained from post-hoc analysis of deep learning 
models and plotted to indicate the magnitude and direction (positive or 
negative) of impact on yield. The observed relationships and relative 
importance of features were analyzed by the same group of crop yield 
modeling and agronomy experts who previously provided input for 
feature design. Our approach provides a framework to compare per
formance between standard machine learning and deep learning 
methods, and includes human stakeholder feedback in interpretability 
assessment. Performance was compared for two crops – soft wheat and 
grain maize – and five countries: Germany, Spain, France, Hungary and 

Italy. Interpretability analysis was restricted to soft wheat and grain 
maize in France. Our work sheds light on the potential of neural net
works to automatically learn meaningful features and produce reliable 
crop yield forecasts. Automating feature extraction reduces the depen
dence on manual feature design for large-scale crop yield forecasting. 

The rest of the paper is structured as follows: Section 2 describes data 
and methods; Section 3 presents our results; Section 4 discusses our 
findings and outlines directions for future work; and Section 5 summa
rizes our conclusions. Appendix A provides details and supporting evi
dence not included in Section 2 (Methods), Section 3 (Results) and 
Section 4 (Discussion). 

2. Methods 

Our objective was to evaluate the accuracy and interpretability of 
deep learning methods for crop yield forecasting. Three types of models 
were built to assess the skill of neural networks to automatically learn 
features and produce accurate yield forecasts (Fig. 1). First, linear trend 
models provided a baseline (the “null” model) for prediction skill. Sec
ond, Gradient-Boosted Decision Trees (GBDT) models represented 
standard machine learning methods trained with expert-designed fea
tures. Other studies have compared performance with linear models, 
support vector machines (Boser et al., 1992; Cortes and Vapnik, 1995) 
and Random Forests (Breiman, 2001). In our case, the choice of GBDT 
was motivated by its performance in regional crop yield forecasting in 
Europe (Paudel et al., 2021, 2022). Third, deep learning models were 
built using architectures that can extract features from seasonal time 
series data. For interpretability, feature attribution methods were used 
to analyze the forecasts of deep learning models and extract quantitative 
measures of feature importance, indicating the magnitude and direction 
(positive or negative) of influence on crop yield. The relative importance 
of features and their influence on yield were analyzed and validated 
qualitatively by human experts based on their knowledge and 
experience. 

2.1. Data 

Our data came from the MARS Crop Yield Forecasting System 
(MCYFS) of the European Commission’s Joint Research Centre (EC-JRC, 
2022; MARSWiki, 2021) and Eurostat (Eurostat, 2021). Seasonal time 
series indicators (for every dekad or ~10-day period) included outputs 
of the WOFOST crop model (De Wit et al., 2019; van Diepen et al., 1989; 
Supit et al., 1994), weather variables and remote sensing indicators 
aggregated to NUTS3 regions (Table 1). NUTS is a system of dividing the 
EU territory for statistical and policy purposes (Eurostat, 2016). Yield 
values of five previous years were used to learn the yield trend, which 
captures the effect of technological improvements. Static data on soil 
water holding capacity, elevation, slope, field sizes and irrigated area 
were used to capture spatial differences among regions not covered by 
seasonal data (Paudel et al., 2022). In addition, agro-environmental 
zones were added as categorical variables to account for other 
agro-climatic differences. Case studies covered two crops – soft wheat 
and grain maize – and five countries: Germany (DE), Spain (ES), France 
(FR), Hungary (HU) and Italy (IT) (Fig. A.1). Models were trained with 
NUTS3 yield statistics as ground-truths. Remote sensing data and yield 
data determined the total data size, which ranged from 300 labeled in
stances for grain maize (HU) to 1950 for soft wheat (DE), and in most 
cases covered the years 1999 to 2018. The test set consisted of the most 
recent 30 % of available years. Model hyperparameters were optimized 
using a fivefold sliding validation scheme (Fig. A.5). 

2.2. Trend and GBDT models 

The trend models fitted a line through yield values of five previous 
years. GBDT represents a standard machine learning algorithm that re
quires expertise-based features. GBDT is an ensemble of decision trees 
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that relies on boosting (Friedman, 2001) for growing the trees. For 
GBDT, the crop calendar was inferred from WOFOST-simulated devel
opment stages and used to design features that capture the impact of 
various predictors during different crop calendar periods (Paudel et al., 
2021; Fig. A.2). We requested five experts to complete a survey about 
important predictors of crop yield in each period: pre-emergence (p0), 
emergence (p1), vegetative (p2), flowering (p3), yield formation (p4), 
maturity (p5). Section 2.5.2 provides some details about the experts. For 
each period, they provided the seasonal indicators that influence crop 
growth and development and affect final crop yield. Results of the sur
vey and follow-up discussions were used to design features for GBDT. 
The indicators selected for feature design are shown in Table 2. Except 
for the step to extract seasonal features (Fig. 2), the input data and 
training and test splits (Fig. A.5) for both GBDT and deep learning 
models were identical. 

2.3. Deep learning models 

The same set of seasonal indicators considered important by experts 
were passed to deep learning models, but without feature design. 
Selected architectures included long short-term memory (LSTM) recur
rent neural network and 1-dimensional convolutional neural network 
(1DCNN), which can automatically learn features from sequential data. 
LSTM processes sequential input one time step at a time and has a notion 

of memory to maintain or forget information from previous time steps. 
1DCNN uses kernels or filters that slide across the input to create sum
maries of inputs covered by the size of the filter. Section A.3 provides 
additional information on LSTM and 1DCNN architectures. Features 
learned by LSTM or 1DCNN were combined with yield trend and static 
data and passed to the output layer (Fig. 2). The model parameters or 
weights were optimized using the Adam optimizer (Kingma and Ba, 
2014), with a batch size of 16. The hyperparameters learning rate and 
weight decay (aka L2-penalty) lambda were optimized using custom 5- 
fold validation (Fig. A.5; Paudel et al., 2022). Models trained with 
optimal hyperparameters were evaluated on the validation set with 
early stopping: training stopped after the validation error increased for 
two successive epochs. The optimized hyperparameters and early stop
ping epochs were used to evaluate the models on the test set. 

2.4. Feature attribution methods 

We considered three post-hoc feature attribution methods: Occlusion 
(Zeiler and Fergus, 2014), Integrated Gradients (Sundararajan et al., 
2017) and GradientShap (Lundberg and Lee, 2017). Occlusion is similar 
to sensitivity analysis in that it replaces a portion of feature data with 
baselines (zeros or random values) and compares the differences in 
prediction errors. Integrated gradients computes feature importance by 
approximating the integral of gradients (or partial derivatives) of the 

Fig. 1. Framework to assess performance and interpretability of deep learning models. 
Performance was compared with a trend model and a GBDT model. Features for GBDT were designed by experts while deep learning models extracted features 
automatically. Long Short-Term Memory (LSTM) and 1-dimensional Convolutional Neural Network (1DCNN) were selected to learn features from time series of 
seasonal indicators. Static (e.g. elevation) and yield trend features were the same for both GBDT and deep learning. Feature importance scores learned by post-hoc 
analysis of deep learning model predictions represented quantitative measures of interpretability. They indicated the size of feature influence and the positive or 
negative impact on yield. Human experts with knowledge about factors affecting yield analyzed and provided feedback on the relative importance of features and the 
relationships with yield. 
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model outputs to the inputs along a path from baselines to inputs. The 
baselines can be zeros or random values. Ancona et al. (2018) found that 
Occlusion better identifies a small number of important features, but 
Integrated Gradients is better at capturing global nonlinear effects and 
interactions among features. We selected GradientShap, based on SHAP 
(Shapley Additive Explanations, Lundberg and Lee (2017)), to include 
desirable properties of Shapley values from cooperative game theory. 
Shapley values (Shapley, 1953) capture feature importance for linear 
models in the presence of multicollinearity (Lipovetsky and Conklin, 
2001). GradientShap uses expected gradients to approximate Shapley 
values. Expected gradients can be considered an approximation of In
tegrated Gradients with many baselines and one point in the path be
tween the input and the baseline. The explanations produced by 
GradientShap and Integrated Gradients are additive. For GradientShap, 
summing the contributions of each feature approximates the output of 
the original model (Lundberg and Lee, 2017). For Integrated Gradients, 
contributions of features add up to the difference between output at the 
input and output at the baseline (Sundararajan et al., 2017). Gradient
Shap assumes that input features are independent. This assumption 
makes analysis of feature contributions easier, but ignores feature 

interactions. In this paper, all methods were used as implemented in 
Captum (Kokhlikyan et al., 2020) - a model interpretability framework 
for PyTorch (Paszke et al., 2019). 

2.5. Evaluation 

We evaluated performance and interpretability of deep learning 
models in three steps. First, three types of models were built as described 
in Section 2.2 and 2.3. Forecasts from deep learning models were 
compared with the trend model and GBDT model. Second, feature 
attribution methods were used to extract importance scores of inputs 
passed to deep learning models. Third, human experts analyzed the 
interpretability of extracted relationships between features and yield as 
well as relative importance of features. In the case of deep learning, we 
use the term features loosely to mean the features learned from seasonal 
data as well as trend features and static data. 

2.5.1. Evaluation of yield forecasts 
Model performance was compared using normalized root mean 

squared error (NRMSE), defined to be the RMSE divided by the average 
yield of the test set. To produce early season forecasts, both GBDT and 
deep learning models used seasonal data up to 60 days before harvest. 
Both GBDT and deep learning predictions were collected from ten 
models to account for the effect of random seed or weight initializations. 
We used the average NRMSE of ten models to compare performance of 
trend, GBDT and deep learning methods (LSTM and 1DCNN). Similarly, 
prediction residuals used for boxplots and statistical tests were averaged 
across the ten models. Significance of model performance was evaluated 
using the Mann-Whitney U test (Mann and Whitney, 1947), which is a 
non-parametric version of Student’s t-Test for independent samples. 
Variance and outliers were analyzed using boxplots of prediction re
siduals (predicted yield - reported yield). Spatial variability of yields and 
yield forecasts was qualitatively analyzed for the test years in France. 

2.5.2. Evaluation of feature importance and interpretability 
We selected five experts to provide input on important predictors of 

crop yield. Among them, four of them also participated in evaluation of 
feature importance and interpretability. Experts were selected based on 
familiarity with factors affecting soft wheat and grain maize, specifically 
in France. One of them is from Wageningen Plant Production Systems 

Table 1 
Data sources summary. 
Case studies covered two crops and five countries: soft wheat (Germany, Spain, 
France, Italy) and grain maize (Spain, France, Hungary, Italy).  

Data Type of data Indicators, Source 

WOFOST crop 
model outputs 

Seasonal time 
series (dekadal) 

Water-limited dry weight biomass 
(WLIM_YB, kg ha− 1), water-limited dry 
weight storage organs (WLIM_YS, kg 
ha− 1), water-limited leaf area index 
(WLAI, m2 m− 2), development stage (DVS, 
0–200), root-zone soil moisture as % of 
water holding capacity (RSM). Source: 
MCYFS. See Lecerf et al. (2019). 

Meteo Seasonal time 
series for 
(dekadal) 

Maximum daily air temperature (TMAX, 
℃), minimum daily air temperature 
(TMIN, ℃), average daily air temperature 
(TAVG, ℃), average sum of daily 
precipitation (PREC, mm), sum of daily 
evapotranspiration of short vegetation 
(ET0, mm) (Penman-Monteith, Allen et al., 
1998)), climate water balance (CWB =
PREC - ET0, mm). Source: MCYFS. See  
Lecerf et al. (2019). 

Remote Sensing Seasonal time 
series (dekadal) 

Fraction of absorbed photosynthetically 
active radiation (Smoothed) (FAPAR). 
Source: MCYFS. See Copernicus GLS 
(2020). 

GAES Static Agro-environmental zone identifiers. 
Source: Global agro-environmental 
stratification (Mücher et al., 2016). 

Irrigated area Static Irrigated total area (IRRIG_AREA_ALL, ha) 
and irrigated grain maize area 
(IRRIG_AREA2, ha) and irrigated cereals 
area as proxy for soft wheat 
(IRRIG_AREA90, ha). Source: EC-JRC 
(2022). 

Elevation, slope Static Average elevation (AVG_ELEV, m), 
standard deviation of elevation ( 
STD_ELEV, m), average slope 
(AVG_SLOPE, degrees), standard deviation 
of slope (STD_SLOPE, degrees). Source:  
USGS-EROS (2021). 

Soil Static Soil water holding capacity (SM_WHC). 
Source: MCYFS. See Lecerf et al. (2019). 

Field Size Static Average field size (AVG_FIELD_SIZE, ha), 
standard deviation of field size 
(STD_FIELD_SIZE, ha). Source: Lesiv et al 
(2019). 

Yield Yearly Yield at regional NUTS3 level (t/ha). 
Source: DE-RegionalStatistiks (2020), EC- 
JRC (2022), Eurostat (2021), FR-Agreste 
(2020).  

Table 2 
Feature design table for GBDT. 
The feature design table from Paudel et al. (2022) was updated based on expert 
survey and follow-up discussions. Experts identified the indicators that were 
important at different stages of crop growth and development. WOFOST in
dicators: Water-limited dry weight biomass (WLIM_YB), water-limited dry 
weight storage organs (WLIM_YS), water-limited leaf area index (WLAI), root- 
zone soil moisture (RSM). Weather variables: maximum, minimum, average 
daily air temperature (TMAX, TMIN, TAVG); sum of daily precipitation (PREC); 
climate water balance (CWB). Remote sensing indicator: Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR).  

Period Maximum 
values 

Average values, 
*Average of cumulative 
values 

Z-scores 
(extreme 
values) 

Pre-emergence 
(p0)  

CWB*  

Planting, 
Emergence 
(p1)  

TAVG, CWB* TMIN, PREC 

Vegetative (p2) WLIM_YB, WLAI RSM, TAVG, CWB*, 
FAPAR 

RSM 

Flowering (p3)   RSM, PREC, 
TMAX 

Yield Formation 
(p4) 

WLIM_YB, 
WLAI, WLIM_YS 

RSM, FAPAR RSM 

Maturity, 
Harvest (p5)  

PREC PREC  
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and has a background in agronomy and yield gap analysis. Two of them 
are senior researchers at Wageningen Environmental Research with 
experience in crop modeling. Two of them are from the European 
Commission’s Joint Research Centre at Ispra where they work as MCYFS 
analysts to produce national-level crop yield forecasts. All experts know 
the input data well and have experience building crop yield forecasting 
models. However, they have not used deep learning methods and did not 
participate in the design of the deep learning architecture or selection of 
feature attribution methods. 

The survey about important predictors of crop yield was conducted 
before running deep learning experiments. Therefore, the experts pro
vided their prior knowledge about how each feature influenced yield. 
The scale used for the survey was: strong negative influence (-1), mild 
negative influence (-0.5), no influence (0), mild positive influence (0.5), 
strong positive influence (1). Experts scored how static features and 
seasonal indicators in different periods of the crop growing season 
affected the final yield. Among seasonal indicators, water-limited leaf 
area index (WLAI) and precipitation (PREC) were not included in the 
expert survey, mainly because they were correlated with other biomass 
and moisture indicators. They were later added based on the suggestions 
of experts during a follow up discussion. 

To assess interpretability of deep learning models, we relied on 
quantitative importance scores from feature attribution methods and 
qualitative agreement scores from experts. For each feature, feature 
importance scores were plotted against feature values to show the pos
itive or negative influence of the feature on yield. High importance for 
high feature values indicated a positive influence, while high impor
tance for low feature values indicated a negative influence. We summed 
feature importance scores from a hundred runs – ten runs of a feature 

attribution method for ten models – to account for random initialization 
of weights and random baselines. Because the feature importance scores 
are additive, they can be seen as the contribution (positive or negative) 
of each feature to the yield prediction. 

Feature importance scores were analyzed for soft wheat and grain 
maize in France. France data is relatively large and of sufficiently high 
quality (Schauberger et al., 2018). Yields in France also show significant 
spatial and temporal variability. Yield variability is commonly divided 
into three components: average yield, yield trend and deviation from the 
trend (e.g. Dagnelie et al. (1983)). Inputs to deep learning models 
included static data to capture regional variation in average yields 
caused by topography, management and some agro-climatic differences. 
Trend features accounted for the multi-annual yield trend attributed to 
technological improvements. Seasonal features learned from dekadal 
time series were expected to capture yearly deviations from the trend. In 
line with expected effects on yield, importance scores were summarized 
for five classes of features: static data, yield trend features, seasonal 
biomass features, seasonal temperature features and seasonal moisture 
features. The importance of seasonal features was summarized by crop 
calendar periods (Fig. A.2): pre-emergence (p0), emergence (p1), 
vegetative (p2), flowering (p3), yield formation (p4), maturity (p5). 

Experts evaluated the interpretability of feature importance from 
deep learning based on their knowledge of factors affecting crop yield 
and the interactions among them. In particular, they provided scores 
representing whether they agreed or disagreed with the positive or 
negative impact of features on yield (Direction), and the relative 
magnitude of feature influence on yield (Magnitude) (Fig. 3). Yield 
referred to the end-of-season yield, and relative magnitude meant how 
the scores of one feature compared with those of another. As an extra 

Fig. 2. Deep learning framework (b) compared with the GBDT setup (a). 
In the case of GBDT, seasonal features were designed by experts. For deep learning, seasonal features were learned by training a Long Short-Term Memory (LSTM) or 
1-dimensional Convolutional Neural Network (1DCNN) on seasonal indicator data. Yield trend features and static features were concatenated with seasonal features 
and passed to the output layer. The framework is kept as similar as possible with the GBDT setup. 
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option, they could indicate that they did not understand the relation
ships shown by feature importance plots. Interacting effects of multiple 
features were analyzed in a discussion session. When completing surveys 
to enter their scores, experts were requested to provide short notes 
explaining their scores, especially for disagreements. 

3. Results 

For performance comparison, we ran deep learning models with both 
LSTM and 1DCNN layers using data from 60 days before harvest. Most of 
the results reported in this paper correspond to the LSTM version due to 
its superior performance in the validation set (Fig. A.6). Results for 
interpretability analysis are for LSTM and GradientShap. We selected 
GradientShap because the importance scores had lower variance across 
multiple runs (Table A.3). Scores from GradientShap were similar to 
those from Integrated Gradients based on Wasserstein distances. The 
distances between GradientShap and Integrated Gradients scores were 
0.005 for soft wheat (FR) and 0.004 for grain maize (FR). The corre
sponding distances between GradientShap and Occlusion scores were 
0.215 and 0.287. 

3.1. Performance comparison 

Soft wheat LSTM models were better than GBDT models for DE (p- 
value 0.001) and statistically similar to GBDT models for other cases (p- 
values between 0.373 and 0.71). They were significantly better than 
trend models for all countries (Table A.1). Similarly, per-country 
average NRMSEs were similar for GBDT and LSTM (differences less 
than 1 %) (Fig. 4a), and they were lower than trend NRMSEs. Grain 
maize performance was less impressive. LSTM forecasts were still sta
tistically similar to GBDT (p-values between 0.298 and 0.566) 
(Table A.2), and both GBDT and LSTM models had lower average 
NRMSEs than the trend model (Fig. 4b). However, p-values from Mann- 
Whitney U Test (between 0.396 and 0.996) showed that GBDT and 
LSTM models were not significantly better than the trend model. For 
both crops, LSTM models showed more variability across the ten runs (i. 
e. a higher standard deviation) than GBDT. Evidently, weight initiali
zations had a bigger impact on deep learning models than random seed 
had on GBDT. 

Boxplots of prediction residuals and spatial maps for FR also showed 

similar patterns of performance differences between the two crops. In 
the case of soft wheat, prediction residuals from GBDT and LSTM models 
had lower spread and fewer outliers than those from trend models 
(Fig. 4c). For soft wheat (DE), LSTM residuals were closer to zero than 
GBDT ones. For others, there were no significant differences between 
LSTM and GBDT. Spatial maps for soft wheat (FR) (Fig. A.6) showed that 
both GBDT and LSTM predictions were close to the yield statistics for all 
test years except 2016, when there were significant yield losses in the 
north of FR (see Ben-Ari et al. (2018)). For grain maize, prediction re
siduals for GBDT and LSTM had slightly lower spread than trend models 
for ES, FR and HU (Fig. 4d); for IT, the boxplots of all models were 
similar. GBDT and LSTM forecasts for grain maize (FR) (Fig. A.7) were 
quite different from reported yields not only in 2015, when there were 
yield losses in Central Europe, but also in 2014, 2016 and 2017. Overall, 
grain maize forecasts were less accurate than soft wheat. 

3.2. Interpretability of feature importance 

Feature importance scores showed that trend features had the 
highest importance (Fig. A.10). In general, static features ranked second 
after trend, and seasonal features had quite small importance values. 
Most experts agreed with this relative importance ranking. Trend and 
static features reduce model bias and set the yield level, so they have 
high importance. Year-to-year deviation from the trend is usually rela
tively small, and hence seasonal features have low importance. This was 
particularly evident for grain maize; trend models produced statistically 
similar forecasts to GBDT and LSTM models, and the importance of most 
seasonal features were close to zero. 

3.2.1. Static features 
Agro-environmental zone (AEZ) features or AEZ identifiers captured 

the regional variation in average yields for both soft wheat and grain 
maize (Fig. A.9). For soft wheat, feature importance plots showed that 
AEZs in the north had a positive relation with yield, which is reflected by 
the high average yields. Similarly, AEZs in the south had a negative 
relation with yield. For grain maize, the pattern was generally reversed: 
AEZs in the south had higher average yields and a positive relation 
indicated by importance plots. 

Among other static data, experts expected soil water holding ca
pacity (SM_WHC), average field size and irrigated areas to have a pos
itive influence; elevation and slope to have a negative influence (Fig. 5a 
(i), Fig. 5b(i)). For soft wheat, feature importance plots showed expected 
relations except for total irrigated area (Fig. 5a(ii)). After discussing 
potential interactions among features, experts agreed that the negative 
relation is due to high irrigated areas in the south where average soft 
wheat yields are low. Some experts disagreed with the negative influ
ence of elevation and positive influence of field size (Fig. 5c(i)). The 
effect of elevation was later explained by the negative correlation with 
SM_WHC, which had a positive influence on yield. Similarly, the positive 
influence of field size was interpreted in conjunction with higher 
average yields in the north of France and lower average yields in the 
south. For grain maize, the negative relation with grain maize irrigated 
areas and positive relation with elevation were difficult to understand 
(Fig. 5b(ii), Fig. 5c(ii)). 

3.2.2. Seasonal features 
The LSTM network learned seasonal features from a matrix of ten 

seasonal indicators and thirty dekadal values per indicator. For inter
pretability, importance scores for each indicator were summarized ac
cording to crop calendar periods. The importance scores showed clear 
relationships between features and soft wheat yields: the biomass fea
tures were important later in the season, while temperature and mois
ture features were influential in early season as well (Fig. 6a). 
Furthermore, the influence of temperatures and two moisture features 
(precipitation (PREC) and climate water balance (CWB)) flipped from 
negative to positive around the vegetative period (p2). For grain maize, 

Fig. 3. Agreement, disagreement quadrants for expert evaluation of 
interpretability. 
The quadrants represent agreement between experts and feature importance 
scores in two dimensions: the direction (positive or negative) of feature impact 
on yield (Direction), and the relative magnitude of feature influ
ence (Magnitude). 
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the influence of biomass features were still understandable, but the ef
fects of temperature and moisture features were less clear (Fig. 6b). In 
the rest of this section, we compare importance scores from deep 
learning models with expert scores and summarize the interpretability 
ratings from experts for each class of seasonal features. 

Biomass features: Experts expected biomass features to have a pos
itive influence on yield from vegetative period (p2) onwards (Fig. 6a(i), 
Fig. 6b(i)). For soft wheat, all four biomass features (water-limited dry 
weight biomass (WLIM_YB), water-limited dry weight storage organs 
(WLIM_YS), water-limited leaf area index (WLAI), fraction of absorbed 
photosynthetically active radiation (FAPAR)) had positive relationships 
with yield in flowering (p3) and yield formation (p4) (Fig. 6a(ii), Fig. 7a 
(ii)). Experts generally found these relationships interpretable (Fig. 6c 
(i)). One expert who disagreed noted that biomass features are not good 
predictors of national level yields. For grain maize, biomass features had 

smaller importance scores (almost 10x compared to soft wheat) and the 
influence of WLIM_YB was not clear until yield formation (p4). WLAI 
had a consistent positive influence from vegetative period (p2) onwards, 
and WLIM_YS had the expected positive influence during yield forma
tion (p4) (Fig. 6b(ii), Fig. 7b). Most of the experts agreed with the 
importance of WLAI, but not other indicators (Fig. 6c(ii)). Contrary to 
expert expectations, FAPAR did not show up as an important feature. 
FAPAR is less important when WLAI is above a certain threshold (see 
Gitelson et al. (2014)), which is likely because grain maize has high 
WLAI. 

Temperature features: For soft wheat, temperatures (minimum 
(TMIN), maximum (TMAX), average daily temperature (TAVG)) had a 
negative relation with yield until the vegetative period (p2) and positive 
relation around flowering (p3) and later (Fig. 6a(ii), Fig. 8a(ii)). This 
means lower temperatures were preferred early in the season; higher 

Fig. 4. Performance comparison 60 days before harvest. 
(a), (b): Average Normalized RMSE of deep learning models for different countries compared with a trend model and GBDT. (c), (d): Boxplots of prediction residuals 
(yield predictions - yield statistics). Prediction residuals and NRMSE were computed using predictions for all regions within a country in all test years. The values 
were then averaged across ten models. The error bars in (a) and (b) indicate the standard deviation of NRMSEs for the ten models. 
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temperatures contributed to higher yields later in the season. For grain 
maize, the effect was mixed and very small throughout the season 
(Fig. 6b(ii), Fig. A.11a(ii)). Experts expected very low temperatures 
around emergence (p1) and vegetative (p2) periods and very high 
temperatures around flowering (p3) and yield formation (p4) to have a 
negative influence on yields of both crops (Fig. 6a(i), Fig. 6b(i)). Some of 
them agreed with feature importance plots because temperatures in 
France could be optimal for the crops (Fig. 6c). In any case, effects of 
extreme temperatures were not captured by feature importance from 
deep learning (Fig. 6a, Fig. 6b; Fig. 8a; Fig. A.11a). High temperatures 
had high importance scores for soft wheat around flowering (p3) and 
yield formation (p4). For grain maize, temperatures did have some 
negative influence around flowering, but the importance scores were 
very close to zero (Fig. 6b(ii), Fig. A.11a(ii)). 

Moisture features: Experts expected the impact of root-zone soil 
moisture (RSM) and climate water balance (CWB) to be similar and 
positive throughout the season (Fig. 6a(i), Fig. 6b(i)). For soft wheat, 
importance scores from deep learning showed different relationships. 
RSM had a small but consistent positive influence throughout the sea
son. Precipitation (PREC) and CWB had a negative effect in early season 
and a positive effect from flowering (p3) onwards (Fig. 6a(ii), Fig. 8b 
(ii)). Despite differences with their prior expectations, experts found 
these relationships interpretable (Fig. 6c(i)). The only disagreement was 
with the lower relative importance of RSM; they expected RSM to be as 
important as CWB later in the season (Fig. 8b). For grain maize, experts 
found the negligible effect of PREC and the negative influence of RSM on 
yield difficult to interpret (Fig. 6c(ii)). The effect of CWB was mostly 
positive, but many of the scores were too close to zero (Fig. 6b(ii), 

Fig. 5. Importance and interpretability of static features. 
In (a) and (b), the scale used for the expert survey was: strong negative influence (-1), mild negative influence (-0.5), no influence (0), mild positive influence (0.5), 
strong positive influence (1). The divisions within each bar represent how different experts voted, e.g. experts assigned − 0.5, 1, 1 and 0.5 for SM_WHC in (b). 
Importance scores from deep learning models show the magnitude and direction (positive or negative) of feature influence on yield. Feature values going low to high 
(blue to red) from left to right represent a positive influence and vice versa. In (c), the axes are direction (positive or negative) of impact on yield (Direction) and 
relative magnitude of feature influence (Magnitude), and the numbers in brackets represent the number of experts. For features with less than four experts, some 
experts did not vote or did not understand the influence. Static features: soil water holding capacity (SM_WHC), average elevation (AVG_ELEV), average slope 
(AVG_SLOPE), average field size (AVG_FIELD_SIZE), total irrigated area (IRRIG_AREA_ALL), cereals irrigated area as proxy for soft wheat (IRRIG_AREA90), and maize 
irrigated area (IRRIG_AREA2). 
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Fig. A.11b(ii)). Hence the experts did not find the relationships under
standable (Fig. 6c(ii)). 

4. Discussion 

Previous studies have found that deep learning models can be used 
for crop yield forecasting (Khaki and Wang, 2019; Nevavuori et al., 
2019; Wolanin et al., 2020; You et al., 2017). Deep learning can 
significantly improve performance when data size is large (at least 
around 10,000). Some studies in the US have used more complex ar
chitectures, combining CNN with LSTMs or 3 dimensional CNNs with 
convolutional LSTMs (Gavahi et al., 2021; Khaki et al., 2020; You et al., 

2017). Their results were better than standard machine learning 
methods, such as Ridge Regression (Hoerl and Kennard, 1970), LASSO 
Regression (Tibshirani, 1996), Decision Trees and Random Forests. In 
our case, data sizes were smaller, ranging from around 300 to 1950 
labeled instances, and hence we chose simpler architectures. Even then, 
the performance of deep learning models was better than GBDT for soft 
wheat (DE), which had the largest data size, and statistically similar to 
GBDT for other case studies. GBDT and deep learning models out
performed the linear trend models for soft wheat but not grain maize. 
Similarly, spatial variability maps for France showed that soft wheat 
forecasts for both deep learning models and GBDT were closer to re
ported statistics than grain maize forecasts. The main takeaway is that 

Fig. 6. Importance and interpretability of seasonal features 60 days before harvest. 
In (a) and (b), the scale used for the expert survey was: strong negative influence (− 1), mild negative influence (− 0.5), no influence (0), mild positive influence (0.5), 
strong positive influence (1). The divisions within each bar represent how different experts voted. Importance scores from deep learning show the magnitude and 
direction (positive or negative) of feature influence on yield. Feature values going low to high (blue to red) from left to right represent a positive relation and vice 
versa. In (c), the axes are direction (positive or negative) of impact on yield (Direction) and relative magnitude of feature influence (Magnitude), and the numbers in 
brackets represent the number of experts. For features with less than four experts, some experts did not vote or did not understand the influence. Biomass features: 
water-limited dry weight biomass (WLIM_YB), water-limited dry weight storage organs (WLIM_YS), water-limited leaf area index (WLAI), Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR). Temperature features: minimum, maximum, average daily air temperature (TMAX, TMIN, TAVG). Moisture features: 
root-zone soil moisture (RSM), sum of daily precipitation (PREC), climate water balance (CWB). 
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deep learning can automatically extract features that perform similarly 
to expert-designed features. In other words, manual feature design does 
not make model performance significantly better. Therefore, deep 
learning provides a solution to the limitations of manual feature design 

at large scale. 
Our results indicated that crop yield forecasts from deep learning 

models can be explained using post-hoc feature attribution methods, 
especially when forecasting accuracy is high. Feature attributions were 

Fig. 6. (continued). 

Fig. 7. Importance of biomass features 60 days before harvest. 
The scale used for the expert survey was: strong negative influence (− 1), mild negative influence (− 0.5), no influence (0), mild positive influence (0.5), strong 
positive influence (1). The divisions within each bar represent how different experts voted. Importance scores from deep learning show the magnitude and direction 
(positive or negative) of feature influence on yield. Feature values going low to high (blue to red) from left to right represent a positive relation and vice versa. 
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found to be interpretable for trend features (Fig. A.10), most static 
features (Fig. 5) and biomass features (Fig. 7). Similarly, attributions of 
moisture features correctly captured the relationships in different pe
riods of soft wheat season (Fig. 8b). Exceptions included the effect of 
extreme temperatures on both crops (Fig. 8a, Fig. A.11a) and irrigation 
and moisture on grain maize (Fig. 5b, Fig. A.11b). Our framework and 
models did not account for the relative rarity of extreme temperature 
events. As a result, both low temperatures in early season and high 
temperatures later in the season had positive rather than negative 
importance. The influence of moisture was affected by whether the crop 
was irrigated, and the influence of irrigated areas was sometimes un
clear because the data was static. Despite some limitations, deep 
learning models captured some relationships not expected by experts. 
For example, experts did not consider the effects of high temperatures in 
early season; feature importance from deep learning showed a negative 
effect of high temperatures (Fig. 8a). Similarly, experts expected a 
consistent positive effect of RSM and CWB throughout the season, but 
feature importance from deep learning showed that CWB has a negative 
effect on soft wheat yields in early season and a positive effect from 
flowering (p3) onwards (Fig. 8b). Experts later agreed with these 

relationships. In some cases, experts did not agree with the relationships 
or relative importance. Some of the disagreements stemmed from 
different perspectives on the relationships between features and yield. 
For example, some experts disagreed with the negative relation between 
elevation and soft wheat yields (Fig. 5a), but they interpreted it based on 
interactions with soil water holding capacity. Similarly, some experts 
found small importance values of FAPAR for grain maize hard to un
derstand, while others explained it based on high WLAI (Fig. 6c(ii)). 
Overall, feature influence matched expert knowledge and experience 
more for soft wheat than for grain maize. For grain maize, the linear 
trend model performed as good as GBDT and LSTM models. Therefore, 
comparisons of GBDT and LSTM forecasts with reported yields 
(Figs. A.7, A.8) and low importance scores of seasonal features tell a 
similar story. The interannual variability related to seasonal features 
may be low, hence the relationships between these features and yield 
were less clear. In addition, as noted by one of the experts, modeling 
irrigated and non-irrigated systems together could have been another 
confounding factor. This limitation comes from regional yield statistics, 
which in most countries do not have separate values for irrigated and 
non-irrigated systems. Separate models for the two systems could 

Fig. 8. Importance of temperature and moisture features for soft wheat 60 days before harvest. 
The scale used for the expert survey was: strong negative influence (-1), mild negative influence (-0.5), no influence (0), mild positive influence (0.5), strong positive 
influence (1). The divisions within each bar represent how different experts voted. Importance scores from deep learning show the magnitude and direction (positive 
or negative) of feature influence on yield. Feature values going low to high (blue to red) from left to right represent a positive relation and vice versa. Corresponding 
plots for grain maize can be found in Fig. A.11. 
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produce more interpretable relationships. 
Many factors contribute to model interpretability and agreement or 

disagreement with experts. First, experts expected certain relationships 
based on prior knowledge and experience. The deep learning framework 
for regional crop yield forecasting was different from the setups they 
have previously used. Similarly, relationships actually present in data 
can be complex and difficult to verify. Second, the choice of neural 
network architectures and models was by no means the best. Neural 
networks have a large number of parameters and need large amounts of 
training data to generalize well (Molnar, 2022). We selected simpler 
architectures to balance model capacity and complexity. Third, feature 
attribution methods used also have their limitations. The additive ex
planations produced by GradientShap were easy to understand, but they 
only approximated model behavior. Interpretable neural networks are 
not yet common. Finally, presentation of feature importance or expla
nations to experts is a social process (Miller, 2019) and affects how they 
understand model behavior. We presented positive or negative contri
butions of individual features to yield forecasts. This approach ignores 
interactions among features although certain combined interactions 
were considered in the interactive session with experts. 

Analyzing interpretability is difficult and hence we relied on a 
qualitative analysis of interpretability by experts. Robust hypothesis 
testing would be required to establish whether explanations of deep 
learning models match existing knowledge or provide new insights 
(McGovern et al., 2019). Tests could ask human subjects to select feature 
attributions or explanations that correspond to given input and output, 
or suggest an output given inputs and feature attributions (Doshi-Velez 
and Kim, 2017). Such tests require many participants and significant 
time commitment from the experts (Narayanan et al., 2018). Therefore, 
we chose a simpler approach of expert surveys followed by an interac
tive evaluation. Interpretability scores showed that experts did not al
ways agree when selecting important predictors (Figs. 5–8 and A.11) or 
scoring interpretability of feature importance (Figs. 5, 6). Despite such 
differences, it is important to engage humans in assessment of inter
pretability. Models can be interpretable in many ways and experts may 
view the same explanations differently. The fact that deep learning 
models did not find certain features important does not mean they are 
physically unimportant (McGovern et al., 2019). Overall, we developed 
and tested a method to assess model interpretability with feedback from 
human experts that went beyond feature importance plots, which are 
often not interpretable on their own. 

Deep learning methods are nowadays common in agricultural ap
plications including crop yield forecasting (Kamilaris and Prenafeta- 
Boldú, 2018; van Klompenburg et al., 2020). The need for model 
interpretability will continue to grow with the widespread use of deep 
learning. In this paper, we selected human experts familiar with the 
input data and the agronomic principles driving crop growth and 
development to evaluate interpretability. This familiarity allowed us to 
simplify the process of explaining feature attributions to them. Experts 
were able to understand feature importance plots and provide judg
ments about their interpretability. Hence we were able to focus more on 
understanding how well deep learning captures expected agronomic 
relationships, and less on social and cognitive factors affecting inter
pretability (Narayanan et al., 2018). Nevertheless, social and cognitive 
factors are important and interpretability analysis should not be limited 
to visual feature importance plots. Other stakeholders that use crop yield 
forecasts for decision making may need a different method for 
explaining yield forecasting models to them. More accurate assessment 
of interpretability is possible with iterative improvement of the evalu
ation process. Deep learning models may produce accurate crop yield 
forecasts, but they are useful only when they can be trusted and used in 
real-world applications. Interpretability will play an important role in 
bridging the gap between model building and decision making. 

5. Conclusions 

We evaluated the performance and interpretability of deep learning 
models for soft wheat and grain maize at regional level in Europe. 
Performance was found to be statistically similar to or better (in one 
case) than a standard machine learning algorithm that relies on expert- 
designed features. Therefore, deep learning provides benefits of auto
matic feature learning that can address limitations of manual feature 
design at large scale. Similarly, feature attribution methods provide 
post-hoc explanations for model predictions that are generally inter
pretable, especially when forecasting accuracy is high. Such explana
tions indicate how each feature contributes to the yield prediction, but 
not their interacting effects. Feature importance scores from deep 
learning models correctly captured the influence of most static features, 
yield trend and biomass features on crop yield. In some cases, they also 
identified relationships not expected by experts (e.g. the negative effect 
of climate water balance on soft wheat in early season). On the other 
hand, deep learning models struggled to capture the impact of extreme 
temperatures on both crops and the effect of irrigation and moisture on 
grain maize. We found that human assessment of interpretability is 
challenging, but nonetheless important. Limitations exist in data, model 
building, extraction of feature attributions and presentation of expla
nations to human stakeholders. Some of these limitations can be 
addressed by continued engagement of human stakeholders and itera
tive improvement of the evaluation process. Interpretability of models is 
crucial for building trust in them and using them to guide decision 
making. 
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Sciences Agronomiques de l’Etat, Gembloux, Belgium. 

De Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., 
Supit, I., van der Wijngaart, R., van Diepen, K., 2019. 25 years of the WOFOST 
cropping systems model. Agr. Syst. 168, 154–167. https://doi.org/10.1016/j. 
agsy.2018.06.018. 

DE-RegionalStatistiks, 2020. Regionaldatenbank deutschland. https://www.regionalstat 
istik.de/genesis/online/data, Last accessed: May 11, 2020. 

Doshi-Velez, F., Kim, B., 2017. Towards A Rigorous Science of Interpretable Machine 
Learning. URL: https://arxiv.org/abs/1702.08608, doi: 10.48550/ 
ARXIV.1702.08608. 

Eurostat, 2016. Nomenclature of territorial units for statistics. https://ec.europa.eu/eu 
rostat/web/nuts/background, Last accessed: May 11, 2020. 

EC-JRC, 2022. JRC Agri4Cast Data Portal. https://agri4cast.jrc.ec.europa.eu/DataPorta 
l/Index.aspx, Last accessed: Feb 11, 2022. 

Eurostat, 2021. Eurostat - Agricultural Production - crops. https://ec.europa.eu/eurostat 
/statistics-explained/index.php/Agricultural_production_-_crops, Last accessed: May 
11, 2021. 

FR-Agreste, 2020. Agreste Web Data Portal. https://agreste.agriculture.gouv.fr/agr 
este-web/, Last accessed: May 11, 2020. 

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. 
Annals of Statistics, 1189–1232. https://www.jstor.org/stable/2699986, Last 
accessed: May 11, 2020. 

Gavahi, K., Abbaszadeh, P., Moradkhani, H., 2021. DeepYield: A combined convolutional 
neural network with long short-term memory for crop yield forecasting. Expert Syst. 
Appl. 184, 115511 https://doi.org/10.1016/j.eswa.2021.115511. 

Gitelson, A.A., Peng, Y., Huemmrich, K.F., 2014. Relationship between fraction of 
radiation absorbed by photosynthesizing maize and soybean canopies and ndvi from 

remotely sensed data taken at close range and from modis 250 m resolution data. 
Remote Sens. Environ. 147, 108–120. doi: 10.1016/j.rse.2014.02.014. 

Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: Biased estimation for nonorthogonal 
problems. Technometrics 12, 55–67. https://doi.org/10.1080/00401706. 
1970.10488634. 

Kamilaris, A., Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: a survey. 
Comput. Electron. Agric. 147, 70–90. https://doi.org/10.1016/j. 
compag.2018.02.016. 

Khaki, S., Wang, L., 2019. Crop yield prediction using deep neural networks. Front. Plant 
Sci. 10, 621. https://doi.org/10.3389/fpls.2019.00621. 

Khaki, S., Wang, L., Archontoulis, S.V., 2020. A CNN-RNN framework for crop yield 
prediction. Front. Plant Sci. 10, 1750. https://doi.org/10.3389/fpls.2019.01750. 

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980. 

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov, 
A., Kliushkina, N., Araya, C., Yan, S., Reblitz-Richardson, O., 2020. Captum: A 
unified and generic model interpretability library for pytorch. 10.48550/ 
ARXIV.2009.07896, arXiv:2009.07896. 

Lecerf, R., Ceglar, A., L ́opez-Lozano, R., Van Der Velde, M., Baruth, B., 2019. Assessing 
the information in crop model and meteorological indicators to forecast crop yield 
over Europe. Agric. Syst. 168, 191–202. doi: 10.1016/j.agsy.2018.03.002. 

Lesiv, M., Laso Bayas, J.C., See, L., Duerauer, M., Dahlia, D., Durando, N., Hazarika, R., 
Kumar Sahariah, P., Vakolyuk, M., Blyshchyk, V., et al., 2019. Estimating the global 
distribution of field size using crowdsourcing. Glob. Chang. Biol. 25, 174–186. 
https://doi.org/10.1111/gcb.14492. 

Lipovetsky, S., Conklin, M., 2001. Analysis of regression in game theory approach. Appl. 
Stoch. Model. Bus. Ind. 17, 319–330. https://doi.org/10.1002/asmb.446. 

Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predictions, In: 
Advances in Neural Information Processing Systems 30. Curran Associates, Inc., pp. 
4765–4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreti 
ng-model-predictions.pdf, Last accessed: June 29, 2022. 

Lobell, D.B., Thau, D., Seifert, C., Engle, E., Little, B., 2015. A scalable satellite-based 
crop yield mapper. Remote Sensing of Environment 164, 324–333. https://doi.org/ 
10.1016/j.rse.2015.04.021. 

Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is 
stochastically larger than the other. Ann. Math. Stat. 50–60. https://doi.org/ 
10.1214/aoms/1177730491. 

MARSWiki, 2021. MARS Crop Yield Forecasting System. https://marswiki.jrc.ec.europa. 
eu/agri4castwiki/index.php/Welcome_to_WikiMCYFS, Last accessed: May 11, 2021. 

McGovern, A., Lagerquist, R., Gagne, D.J., Jergensen, G.E., Elmore, K.L., Homeyer, C.R., 
Smith, T., 2019. Making the black box more transparent: understanding the physical 
implications of machine learning. Bull. Am. Meteorol. Soc. 100, 2175–2199. https:// 
doi.org/10.1175/BAMS-D-18-0195.1. 

Miller, T., 2019. Explanation in artificial intelligence: Insights from the social sciences. 
Artif. Intell. 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007. 

Molnar, C., 2022. Interpretable Machine Learning, second edition. URL: https://chri 
stophm.github.io/interpretable-ml-book. 
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Duveiller, G., Liangzhi, Y., Guanter, L., 2020. Estimating and understanding crop 
yields with explainable deep learning in the Indian Wheat Belt. Environmental 
research letters 15 (2), 024019. https://doi.org/10.1088/1748-9326/ab68ac. 

Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J., 2019. Explainable AI: A brief 
survey on history, research areas, approaches and challenges. In: CCF international 
conference on natural language processing and Chinese computing, Springer. pp. 
563–574. doi: 10.1007/978-3-030-32236-6_51. 

You, J., Li, X., Low, M., Lobell, D., Ermon, S., 2017. Deep Gaussian process for crop yield 
prediction based on remote sensing data. In: Thirty-First AAAI Conference on 
Artificial Intelligence. https://www-cs.stanford.edu/~ermon/papers/crop 
yield_AAAI17.pdf, Last accessed: July 25, 2022. 

Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: 
European conference on computer vision, Springer. pp. 818–833. doi: 10.1007/978- 
3-319-10590-1_53. 

D. Paudel et al.                                                                                                                                                                                                                                  

https://www.statcan.gc.ca/eng/statistical-programs/document/3401_D2_V1
https://www.statcan.gc.ca/eng/statistical-programs/document/3401_D2_V1
https://proceedings.mlr.press/v70/sundararajan17a.html
https://www.usgs.gov/centers/eros/data
https://doi.org/10.1038/s41598-018-35351-1
https://doi.org/10.1371/journal.pone.0252402
https://doi.org/10.1016/j.agsy.2018.06.009
https://doi.org/10.1016/j.agsy.2018.06.009
https://doi.org/10.1111/j.1475-2743.1989.tb00755.x
https://doi.org/10.1111/j.1475-2743.1989.tb00755.x
https://doi.org/10.1016/j.compag.2020.105709
https://www.aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16668/0
https://www.aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16668/0
https://doi.org/10.1088/1748-9326/ab68ac
https://www-cs.stanford.edu/%7eermon/papers/cropyield_AAAI17.pdf
https://www-cs.stanford.edu/%7eermon/papers/cropyield_AAAI17.pdf

	Interpretability of deep learning models for crop yield forecasting
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Trend and GBDT models
	2.3 Deep learning models
	2.4 Feature attribution methods
	2.5 Evaluation
	2.5.1 Evaluation of yield forecasts
	2.5.2 Evaluation of feature importance and interpretability


	3 Results
	3.1 Performance comparison
	3.2 Interpretability of feature importance
	3.2.1 Static features
	3.2.2 Seasonal features


	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data and software availability
	Acknowledgements
	Appendix A Supplementary material
	References


