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 A B S T R A C T

Optimizing nitrogen use efficiency (NUE) in crop production is crucial for sustainable agriculture, balancing 
the need to maximize yield while minimizing environmental impacts such as nitrogen loss and soil nutrient 
depletion. Reinforcement learning (RL) emerges as a potent, data-driven approach for achieving optimal farm 
management decisions, particularly in the context of fertilization, thereby facilitating optimal NUE. Previous 
literature of RL in crop management have predominantly focused on optimizing yield, profit, or nitrogen loss 
reduction. However, optimizing NUE has been largely overlooked despite its significance in preventing soil 
nutrient mining. In this study, we develop an RL environment in various aspects to investigate the capability of 
RL to optimize NUE through crop growth model simulations. We develop an RL agent with a novel NUE reward 
function and incorporates action constrains. We compare its performance against baseline methods and other 
RL agents trained with reward functions from previous literature. Additionally, we evaluate the robustness of 
our RL agent across various soil conditions, including different initial nitrogen content and drought-(in)sensitive 
soils. We find that the RL agent trained with our novel reward function is close to the optimal policy, although 
generalization to different soil texture scenarios prove to be challenging to the RL agent. Further, we identify 
several open challenges for future work pertaining to RL in crop management.
1. Introduction and background

Feeding a growing global population under the pressing challenges 
of climate change remains a formidable task. Ensuring sustainable 
agriculture involves not only increasing crop yields but also mitigating 
negative environmental impacts arising from excessive resource use. 
Nitrogen (N) fertilizers, in particular, play a critical role in boosting 
agricultural production; however, excessive application can lead to 
detrimental outcomes such as pollution of water bodies, greenhouse gas 
emissions, and soil degradation (Cui et al., 2010; Tubiello et al., 2015). 
Conversely, insufficient 𝑁 input can compromise crop productivity and 
contribute to soil fertility loss through ‘‘soil mining’’ (Van der Pol, 
1992). Balancing high yields with minimal environmental harm is thus 
an essential goal for sustainable agriculture (Lipper et al., 2014).

Within this balance, nitrogen use efficiency (NUE) stands out as 
a critical agro-environmental indicator, describing the ratio of 𝑁 in 
harvested grain to the total 𝑁 input (Fageria and Baligar, 2005; Norton 
et al., 2015). Improving NUE reduces nitrogen surplus (𝑁𝑠𝑢𝑟𝑝) — the 
difference between applied 𝑁 and 𝑁 in harvested grain — and thus 
mitigates a range of environmental problems (Zhang et al., 2015; Klages 
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et al., 2020). In recognition of these imperatives, the EU Nitrogen 
Expert Panel (EUNEP) has developed practical guidelines aimed at 
assessing and enhancing NUE (EU Nitrogen Expert Panel, 2015). Mean-
while, governmental bodies such as the European Union, the Food and 
Agriculture Organization (FAO), the USDA (U.S. Department of Agri-
culture), and directives such as EU Green Deal, have introduced stricter 
regulations to ensure responsible fertilizer use (European Union, 1991, 
2016; FAO, 2019; Flach and Selten, 2021; Fetting, 2020), emphasizing 
the need for solutions that deliver both high productivity and ecological 
stewardship.

Despite heightened policy interest, current nitrogen management 
strategies are often based on farmers’ generational experience, em-
pirical good practice or reactive assessments of plant health, which 
can fail to capture the complexity of daily field dynamics (Abbas 
et al., 2021; Blackshaw et al., 2004; Altenbach et al., 2003). This 
gap has motivated a shift toward more flexible, data-driven methods 
for decision-making (Fountas et al., 2015). Among such approaches,
Reinforcement Learning (RL) stands out due to its ability to sequentially 
adapt fertilization decisions in response to feedback and contextual 
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cues from in-field conditions (Gautron et al., 2022a). This adaptability 
is especially relevant when optimizing NUE, as the decision to apply 
fertilizer — and how much — can shift considerably across various soil, 
climate, or crop conditions. Hence, the core challenge is the conflict 
between achieving high agricultural productivity and mitigating the 
environmental damage caused by non-optimal nitrogen applications 
under challenging conditions. To overcome this, we develop a system 
where the RL agent is explicitly trained with an NUE reward function, 
and we conduct experiments to assess its ability to balance yield 
improvements with minimal environmental effects.

A growing body of RL literature demonstrated potential for improv-
ing yields and profitability in agricultural decision-making (Goldenits 
et al., 2024). However, most of these approaches do not explicitly target 
NUE or similar agro-environmental objectives, but instead emphasize 
yield maximization or profit (Overweg et al., 2021; Kallenberg et al., 
2023; Gautron et al., 2022b; Wu et al., 2022; Madondo et al., 2023; 
Turchetta et al., 2022). This constitutes a critical gap, given that an 
RL agent’s reward function predominantly dictates the type of policy 
it learns (Eschmann, 2021). Optimizing for yield and profit alone may 
unintentionally overlook the risks of excessive 𝑁 losses and their long-
term effects on soil mining. In contrast, reward functions grounded in 
indicators like NUE and 𝑁𝑠𝑢𝑟𝑝 may be better suited to encourage sus-
tainable intensification. Consequently, in this paper we aim to design an 
RL agent that explicitly incorporates these agro-environmental metrics 
into the reward function in the form of the NUE indicator.

Moving from intended principles to realistic management requires 
accommodating farmers’ practical constraints. For instance, most farm-
ers prefer a limited number of fertilizer applications. Moreover, fertil-
izing after specific phenological stages often yields negligible benefits 
while elevating the risk of 𝑁 runoff (Iizumi and Ramankutty, 2016). 
Hard-coding these agronomic constraints into an RL environment can 
reduce exploration and limit the agent’s ability to learn why certain 
actions are suboptimal (Liu et al., 2021). Instead, incorporating con-
straints in the RL agent’s learning process may lead to agents that better 
recognizes these constraints. In this work we utilize LagrangianPPO
— an extension of Proximal Policy Optimization (PPO) (Schulman 
et al., 2017) — that balances NUE-centered objectives with realistic 
operational limits (Fisher, 1981; Ji et al., 2023). By doing so, we aim 
to yield fertilization policies that not only maximize our NUE-centric 
objective, but also align with agronomic realities and nitrogen policies.

1.1. Research questions

Motivated by the urgent need to reconcile productivity and sus-
tainability, as well as growing policy focus on NUE-based metrics, this 
paper concentrates on the following questions:

1. Environmental performance: How effectively does an RL agent 
trained with a NUE-centric reward optimize important agro-
nomic and environmental metrics relative to state of the art RL 
reward functions and baselines?

2. Policy adaptability: How well does an RL agent trained with 
a NUE-centric reward adapt its fertilization policies to varying 
soil scenarios (e.g., soil type, initial 𝑁 levels), while maintaining 
good metric performance?

2. Materials and methods

2.1. Overview

In this study, we investigated the capability of RL to optimize 
the NUE metric. We conducted a representable in-silico case study 
on rain-fed winter wheat. The case study is situated in the Lelystad 
region of the Netherlands, where we employed the latest version of 
the WOFOST crop growth model to simulate nitrogen (N) dynamics 
and yield formation. Calibrated parameters were derived from field 
2 
experiments reported in Groot and Verberne (1991), ensuring that the 
model closely reflects local soil conditions, cultivar traits, and climate 
characteristics.

To optimize nitrogen fertilization strategies, we formulated an RL 
environment we call CropGym, in which an RL agent interacts with 
the WOFOST model in discrete weekly time steps, as we know a 
priori that a good policy requires sparse interventions. Specifically, 
at each time step, the agent receives state information such as soil 
𝑁 availability, phenological stages, and current weather conditions. 
It then decides how much 𝑁 fertilizer to apply (or whether to skip 
fertilization) as an action. Our approach contrasts with traditional, rule-
based fertilization schedules by enabling adaptive decisions based on 
real-time simulations of crop status and environmental factors.

A key contribution of this work is a novel reward formulation cen-
tered on agro-environmental indicators, namely nitrogen use efficiency 
(NUE) and nitrogen surplus (𝑁𝑠𝑢𝑟𝑝). To handle real-world constraints 
— such as limiting the number of fertilization events and preventing 
fertilization at late crop stages — we employ a variant of Proximal 
Policy Optimization (PPO) with constraints through the Lagrangian 
method (Schulman et al., 2017; Ji et al., 2023). This LagrangianPPO
approach dynamically balances constraint satisfaction with maximizing 
our NUE-𝑁𝑠𝑢𝑟𝑝-oriented reward function.

We trained each RL agent using a single, representative soil profile 
calibrated for the Netherlands. We evaluated several RL agents under 
various soil conditions to test the generality of our method:

1. low and high initial 𝑁 in the soil,
2. fast and slow draining soil profiles.

Each training run comprised multiple simulation episodes (3𝑀 episode 
steps), where an episode spanned a single growing season from sowing 
to harvest. We utilize random simulated weather in the training runs 
and evaluate our results with historical weather from years 1981 to 
2021.

We compared our RL agent trained with the NUE reward function 
against:

1. a baseline rule-based policy reflecting standard farmer practice,
2. a baseline optimal policy based on the reward function,
3. an RL agent trained on relative-yield1 rewards,
4. an RL agent trained on yield-N-loss rewards,
5. an RL agent trained on profit-oriented rewards.

Performance was assessed primarily in terms of yield, NUE, and 𝑁𝑠𝑢𝑟𝑝, 
thereby addressing our two main research questions.

This section proceeds as follows: Section 2.2 outlines the underlying 
problem setup and elaborates the formal mathematical problem formu-
lation, including state/action spaces and the integration of WOFOST 
into the RL loop. Section 2.3 details the RL algorithmic components 
and the Lagrangian constraint method. Section 2.4 then describes our 
simulation environment and reward function, while Section 2.5 covers 
training protocols, baselines, and evaluation metrics. Finally, Sections 3
and 4 present and interpret the results in light of our agronomic and 
environmental objectives.

2.2. Problem definition

In this section we formalize the problem of sequential decision 
making in crop management as a Markov Decision Process (MDP). An 
MDP can be described with the tuple  = ⟨ ,,  ,,𝛾⟩, where  is the 
state space and  is the action space.   and  are the environment’s 
transition function  (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) and reward function (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1), re-
spectively. 𝛾 is the discount factor, with ranges [0, 1], which determines 

1 Relative compared to a zero-fertilization policy, used by Overweg et al. 
(2021), Kallenberg et al. (2023).
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how much future rewards are valued compared to immediate rewards. 
In crop management problems, as with many real-world environments, 
the agent is not privy of the complete environment state. In addition 
to the standard MDP elements,  is introduced as the space of possible 
observations 𝑜 ∈ , which has an observation function of 𝑂(𝑜𝑡|𝑠𝑡, 𝑎𝑡). 
For constrained optimization problems, the MDP can be described as 
a Constrained MDP (CMDP). CMDP introduces the MDP element , 
formally 𝐶𝑖(𝑠𝑡, 𝑎𝑡), which represents the penalty or ‘‘cost’’ incurred for 
taking a constrained action 𝑎𝑡 in state 𝑠𝑡. 𝑖 represents the constraint 
functions 𝐶1, 𝐶2,… , 𝐶𝑖 implemented in the CMDP.

Overall, the MDP of this problem can be described with the tuple 
 = ⟨ ,,  ,,,,𝛾⟩. The RL agent seeks to find a policy that 
maximize cumulative reward, represented by the objective function 

𝑓 (𝜃) = max
𝜋

E

[ 𝑇
∑

𝑡=0
𝛾 𝑡𝑡(𝑠𝑡, 𝑎𝑡)

]

(1)

where 𝑡(𝑠𝑡, 𝑎𝑡) is the reward function. We set a fixed planting and 
harvesting date, yielding a fixed horizon 𝑇 . Also, we set 𝛾 to 1, so our 
objective function is the undiscounted maximum expected cumulative 
reward in a trajectory.

Further, we constrain the actions of the agent to obtain actionable 
fertilization policies by using constraint functions 𝐶𝑖(𝑠𝑡, 𝑎𝑡). In our 
problem, we define two constraint functions:

1. constraint for the number of fertilization actions an agent can 
perform in one growing season, and

2. constraint for when an agent can perform fertilization actions

which functions we refer to as 𝐶1 and 𝐶2, respectively. The constraint 
for 𝐶1 we define as 
𝐶1 = 𝑚𝑎𝑥(0, fert𝑡 − fertmax), (2)

where fert𝑡 is the cumulative fertilization events at time 𝑡 and fertmax
is the desired maximum cumulative fertilization events in the growing 
season, which we set to n=4, to follow the number of fertilization events 
farmers typically perform in a growing year (Yang et al., 2022). Next, 
we define 𝐶2 as 
𝐶2 = I(𝐷𝑉 𝑆 ≤ 𝐷𝑉 𝑆𝑠𝑡𝑎𝑟𝑡 ∨𝐷𝑉 𝑆 ≥ 𝐷𝑉 𝑆𝑒𝑛𝑑 ), (3)

where I is an indicator function that returns 1 if the condition inside 
is satisfied, 0 otherwise. DVS is the development stage of the crop, 
𝐷𝑉 𝑆𝑠𝑡𝑎𝑟𝑡 and 𝐷𝑉 𝑆𝑒𝑛𝑑 are scalars that describe the window in the 
development stage when the agent is allowed to fertilize, which we set 
to 0.01 and 1, respectively. The two scalars indicate the stage where 
the crop has emerged (𝐷𝑉 𝑆 > 0) and when the crop has reached 
anthesis/flowering (𝐷𝑉 𝑆 = 1).

For RL agents trained with other reward functions, we also imple-
ment constraints for ranges of NUE and 𝑁𝑠𝑢𝑟𝑝, following the advice 
of Turchetta et al. (2022): directly constraining environmental indi-
cators during the training of an agent. The constraints we define as 
follows: 
𝐶3 = I(0.5 ≤ NUE ≤ 0.9), and (4)

𝐶4 = I(0 ≤ N𝑠𝑢𝑟𝑝 ≤ 40). (5)

Overall, the agent’s behavior is constrained by the above set of 
constraints 𝐶𝑖, and we ensure that the expected cumulative costs do 
not exceed a threshold 𝑑𝑖: 

𝑔(𝜃) = E

[ 𝑇
∑

𝑡=0
𝑖(𝑠𝑡, 𝑎𝑡)

]

≤ 𝑑𝑖 ∀𝑖, (6)

where we set 𝑑𝑖 to 0, so none of the constraints are violated by the 
agent.

In the context of our problem, the tuples could be mapped as 
follows:  is the whole range of crop, soil and environmental states 
3 
simulated by our CGM, some which are hidden to the agent. Elements 
in  are a subset of ; crop, soil and environmental states that the 
agent can observe.  represents the levels of fertilization.   is a 
simulation step of the CGM. 𝑇  is the simulation duration.  is the 
penalty awarded to the agent for violating certain constraints. And 
finally  is a compound feedback consisting an evaluation of how 
efficient and how much yield the agent obtained in the growing season. 
We explain  in-depth in Section 2.4.3.

2.3. RL agent

In this section we describe the algorithm and network of the RL 
agent we use in our experimental setting. The concept of LagrangianPPO
was first introduced by Tessler et al. (2018), introducing the concept 
of policy constraints through Lagrangian multipliers. In this paper, 
we adapt the LagrangianPPO implementation of Safety-Gymnasium (Ji 
et al., 2023). Specifically, we adapt functions that update the Lagrange 
multipliers and loss calculations into the framework of Stable Baselines 
3 (Raffin et al., 2019) — modifying the base PPO algorithm using the 
clipped surrogate function.

2.3.1. The Lagrangian method
Lagrangian methods are common for training RL agents with con-

straints (Ji et al., 2023). In general, an adaptive penalty coefficient 𝜆𝑖, 
was implemented to enforce constraints. This 𝜆 is updated with a rule 
as follows: 
𝜆𝑖 ← 𝜆𝑖 + 𝛼𝑙𝑎𝑔(𝑔(𝜃)), (7)

where 𝛼𝑙𝑎𝑔 is the learning rate for 𝜆𝑖 and 𝑔(𝜃) is the cost function from 
Eq. (6).

To ensure the penalties from violating a constraint is learned by our 
PPO agent, the Lagrangian constraint is included in the loss function, 
where it is a term added to the loss we aim to minimize. The Lagrangian 
constraint loss term is defined as follows: 

𝑙𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛(𝜆𝑖) =
𝑛
∑

𝑖=0
𝜆𝑖(𝑔(𝜃)), (8)

where 𝑛 is the total number of constraint functions. Hence, the loss 
function of the PPO agent becomes: 
 = 𝑝𝑜𝑙𝑖𝑐𝑦 + 𝑐𝑣𝑣𝑎𝑙𝑢𝑒 + 𝑐𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑙𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛, (9)

where 𝑝𝑜𝑙𝑖𝑐𝑦 and 𝑣𝑎𝑙𝑢𝑒 are the loss of the surrogate function and value 
loss, respectively. Meanwhile, 𝑐𝑣 and 𝑐𝑒 are weight coefficients for the 
value loss and the entropy loss, and we set as 0.5 and 0.01, respectively. 
These weight coefficients scale the losses to change the influence of 
each loss term. The remaining terms in Eq. (9) are explained in more 
detail in the original PPO paper (Schulman et al., 2017). In Table  B.7, 
we describe the PPO hyperparameters we used in our experiments.

2.3.2. Lagrangian ppo for crop management
In order to incorporate Lagrangian constraints into the PPO algo-

rithm, we adapted its general architecture to allow for a Lagrangian 
constraint calculation. In this section, we describe how we adapt the
LagrangianPPO implementation from Safety-Gymnasium into the Stable 
Baselines 3 framework. PPO is an actor-critic algorithm: The actor 
network is responsible for selecting actions based on its learned policy 
𝜋𝜃(𝑎|𝑠), and the critic network estimates the state-value function 𝑉𝜃(𝑠). 
𝜃 is the parameter of the network. For Lagrangian constraints, the 
architecture was modified by adding an additional critic network: the
constraint critic. The constraint critic estimates the constraint functions 
based on the current state of the environment 𝐶𝜃(𝑠). Similar to the value 
function 𝑉𝜃(𝑠), we also calculate the generalized advantage estimation 
(GAE) for the constraint: 

𝐴𝑡 =
𝑇
∑

𝜆𝐺𝐴𝐸𝛿
𝑐
𝑡 , (10)
𝑡=0
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Table 1
Crop, soil and weather features that the agent receives from WOFOST as its observation space.
 Feature Description Units  
 DVS Development stage of the crop [–]  
 TAGP Above ground dry weight biomass [kg∕ha]  
 LAI Leaf Area Index [–]  
 TRA Transpiration rate from plant canopy [cm∕d]  
 RFTRA Reduction factor for transpiration [–]  
 WSO Dry weight storage organ [kg∕ha]  
 NamountSO N amount in storage organ [kg∕ha]  
 NuptakeTotal Total plant N uptake [kg∕ha]  
 Week Week since planting [week]  
 Naction Number of actions (> 0) taken since planting [–]  
 NO3 Soil nitrate content (array) [kg∕ha]  
 NH4 Soil ammonium content (array) [kg∕ha]  
 WC Water content in different soil (array) [cm]  
 SM Root zone soil moisture (array) [–]  
 NLOSSCUM Cumulative N loss [kg∕ha]  
 RNO3DEPOSTT Total nitrate deposition in soil [kg∕ha]  
 RNH4DEPOSTT Total ammonium deposition in soil [kg∕ha]  
 IRRAD Solar Irradiance [J∕m2∕d] 
 TMIN Minimum Temperature [◦C∕d]  
 RAIN Daily Rainfall [cm∕d]  
where 𝜆𝐺𝐴𝐸 is the GAE hyperparameter that controls the trade-off 
between bias and variance. 𝛿𝑐𝑡  is the temporal difference (TD) residual 
of the constraint at timestep 𝑡, calculated as: 
𝛿𝑐𝑡 = 𝑐𝑡,𝜋 + 𝐶(𝑠𝑡+1) − 𝐶(𝑠𝑡), (11)

where 𝑐𝑡,𝜋 are the constraint violations of the current policy 𝜋 at time 
𝑡, and 𝐶(𝑠𝑡) and 𝐶(𝑠𝑡+1) are the constraint value estimations and con-
straint value estimation of the next step, respectively. To incorporate 
these constraint calculations, we modify the PPO roll out buffer where 
we add additional elements that relate to the timing and frequency of 
fertilization actions.

2.4. Simulating crop responses

In this section we describe in detail how we simulate crop re-
sponses and the interface we developed for the simulator. World Food 
Studies (WOFOST, Van Diepen et al., 1989; De Wit et al., 2019) is a 
robust crop growth model that has been thoroughly validated (Ceglar 
et al., 2019). It is a key component in the MARS crop yield forecasting 
system2 (Van der Velde and Nisini, 2019) and the Global Yield Gap 
Atlas3 (van Bussel et al., 2015). WOFOST has been recently expanded to 
include a dynamic soil 𝑁 module, called SNOMIN (Soil Nitrogen mod-
ule for Organic and MIneral Nitrogen), which enables more complex 
soil-crop 𝑁 processes (Berghuijs et al., 2024). This expansion allows 
for better exploration of sustainable 𝑁 fertilization polices. WOFOST 
SNOMIN (henceforth will be referred to as ‘‘WOFOST’’ in this paper) 
distinguishes two 𝑁 types, NO−

3 -N (nitrate) and NH+
4 -N (ammonium). 

Also, WOFOST distinguishes different soil layers for 𝑁 and water 
dynamics.

2.4.1. RL environment
We utilize the Python version of WOFOST, implemented in the 

Python Crop Simulation Environment (PCSE, de Wit, 2023), to simulate 
the crop responses for our RL agent. We design an RL interface utilizing 
the Gymnasium API (Towers et al., 2024). Our RL interface, CropGym,4 
directly communicates with WOFOST and includes additional features 
compared to the previous version (Kallenberg et al., 2023).

The RL environment automatically calculates NUE, 𝑁𝑠𝑢𝑟𝑝, and other 
important agro-environmental indicators after each episode, and stores 

2 https://joint-research-centre.ec.europa.eu/monitoring-agricultural-
resources-mars_en

3 https://www.yieldgap.org
4 https://cropgym.ai
4 
the values in the environment’s info variable from Gymnasium’s step()
function. We also provide a pipeline to add random weather, utilizing
LARS-WG8.0 (Semenov et al., 2002), for training an RL agent. The 
preprocessing steps are documented in our code repository. For the task 
of optimizing NUE, the initial amount of 𝑁 in the soil is important, as it 
affects the required fertilization policy for efficient NUE. So, we include 
a method to randomize the initial soil, randomizing around a mean and 
standard deviation that can be specified by the user.

WOFOST has a plethora of crop states that the agent can use. We 
selected a subset of the features, based on consultation with domain 
experts, that the agent can observe to solve our current task. These 
features are shown in Table  1. As WOFOST has multiple soil layers, 
some features are represented as arrays. We process the output of 
WOFOST, so the RL agent receives the sum of the array for each NO3
and NH4, and the mean of the array for each WC and SM.

In WOFOST, a user can define the concentration of 𝑁 in rain water 
(NO3ConcR and NH4ConcR, in 𝑚𝑔𝑁∕𝐿). This relates to the annual 𝑁
deposition (explained further in Section 2.4.2). CropGym automatically 
converts the obtained 𝑁 deposition for a certain year into daily 𝑁
deposition based on the planned simulation days, then subsequently 
updates the parameter file for the following episode. This ensures that 
the variables RNO3DEPOSTT  and RNH4DEPOSTT  outputs the correct 
deposition amounts for a certain simulation year.

The agent’s action space consists of 9 levels of 𝑁 fertilization: 
 = {10𝑛 ∣ 𝑛 = 0, 1,… , 8} kg/ha. This follows a farmer’s common 
fertilization amount, where 80 kg/ha is a typical upper-bound for a 
single fertilization event.

To simplify the flattened vector that the RL agent observes, we 
aggregated the time series data following Kallenberg et al. (2023): the 
sequence of weather with a length of 3 × 7 (i.e., daily rain, temperature 
and solar irradiance) was processed into an average pooling layer, 
resulting in a vector size of 3 × 1. The crop features that had a length 
of 17 × 7 were shrunk to 17 × 1 by taking its last entry.

2.4.2. Agro-environmental indicators
In this section, we elaborate the agro-environmental indicators that 

we use as our RL agent’s reward function. As noted in the previous 
section, and also following Berghuijs et al. (2024), we adopt the NUE 
definition from the EUNEP framework (EU Nitrogen Expert Panel, 
2015). The framework defines NUE as the ratio of 𝑁 in the crop grains 
to the effective amount of 𝑁 applied as fertilizer: 
𝑁𝑈𝐸 = 𝑁𝑜𝑢𝑡∕𝑁𝑖𝑛, (12)

where they define range of optimal 𝑁 use to be between 0.5 𝑘𝑔𝑁∕𝑘𝑔𝑁
and 0.9 𝑘𝑔𝑁∕𝑘𝑔𝑁 . A value lower than 0.5 𝑘𝑔𝑁∕𝑘𝑔𝑁 is defined as 

https://joint-research-centre.ec.europa.eu/monitoring-agricultural-resources-mars_en
https://joint-research-centre.ec.europa.eu/monitoring-agricultural-resources-mars_en
https://www.yieldgap.org
https://cropgym.ai
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Fig. 1. The Nitrogen Use Efficiency framework plot used in this study.
inefficient 𝑁 use, and a value higher than 0.9 𝑘𝑔𝑁∕𝑘𝑔𝑁 indicates a risk 
of soil mining. We calculate 𝑁𝑜𝑢𝑡 in WOFOST as the simulated amount 
of 𝑁 in the grains at harvest. In the remainder of the paper, we will 
show NUE as unitless for simplicity. 𝑁𝑖𝑛 is calculated as follows: 

𝑁𝑖𝑛 = 𝑁𝑠𝑒𝑒𝑑 +𝑁𝑑𝑒𝑝𝑜 +𝑁𝑎𝑝𝑝𝑙𝑖𝑒𝑑 , (13)

where 𝑁𝑠𝑒𝑒𝑑 is the assumed amount of 𝑁 in the sown seed of winter 
wheat Silva et al. (3.5 𝑘𝑔𝑁∕ℎ𝑎, 2021). 𝑁𝑑𝑒𝑝𝑜 is the annual daily 
atmospheric 𝑁 deposition rate (in 𝑘𝑔𝑁∕ℎ𝑎) calculated from the Dutch 
national deposition statistics (CLO, 2022) and daily precipitation rates 
of different years. For this paper, we calculate yearly 𝑁 deposition from 
the trend as shown in Fig.  C.6. 𝑁𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the total amount of 𝑁 fertilizer 
applied in the growing season in 𝑘𝑔𝑁∕ℎ𝑎. In this study, we only utilize 
synthetic fertilizers that does not include organic matter.

Further, we calculate 𝑁𝑠𝑢𝑟𝑝 as follows: 

𝑁𝑠𝑢𝑟𝑝 = 𝑁𝑖𝑛 −𝑁𝑜𝑢𝑡, (14)

The EUNEP framework defines a maximum amount of 𝑁𝑠𝑢𝑟𝑝 to have 
low environmental effect is below 80 kg/ha, but not below 0, as this 
implies 𝑁 deficits that can deplete soil 𝑁 reserves overtime, leading 
to reduced soil health and fertility (Giller, 2001). Additionally, a large 
𝑁𝑠𝑢𝑟𝑝 was identified as the main reason for N leaching and 𝑁 pollution 
across various locations (Klages et al., 2020; Chen et al., 2014; Zhou 
et al., 2016). We impose a maximum 𝑁𝑠𝑢𝑟𝑝 of 40 kg/ha, which we set 
in our defined reward function. This change is reflected in the NUE 
framework plot in Fig.  1. It plots 𝑁𝑖𝑛 (𝑥 axis) against 𝑁𝑜𝑢𝑡 (𝑦 axis). The 
white space in the figure is the target 𝑁 efficiency, which emphasizes 
how difficult the task at hand is for the RL agent. We set this tighter 
constraint to discover RL policies that further reduce 𝑁𝑠𝑢𝑟𝑝.

2.4.3. Reward function
In this section we define our reward functions and elaborate on 

our choices. From the perspective of crop management, the turnover 
of any management action is naturally delayed and sparse, i.e., an 
action’s effect on the environment or yield can only be seen after 
the growing season. NUE and 𝑁  can only be calculated at the 
𝑠𝑢𝑟𝑝

5 
end of a growing season, inevitably running into the problem of very 
sparse signals. Reward function design requires many careful consid-
erations: objective alignment, sparsity, simplicity, and shaping, among 
others (Sutton and Barto, 2018). It is an often underestimated aspect in 
many RL-application papers with specially designed reward functions. 
Moreover, Booth et al. (2023) found that many misdesigns in the 
reward function stems from mismatch perspectives of what the reward 
function communicates.

In essence, we take the advice of Sutton and Barto (2018), stating 
that ‘‘The reward signal is your way of communicating to the agent 
what you want achieved, not how you want it achieved". To that 
end, we design a reward function incorporating the EUNEP framework, 
specifically including NUE, 𝑁𝑠𝑢𝑟𝑝 and end-season yield in our objective. 
This reward signal is very sparse, so we scalarize this multi-variable 
reward function by designing a novel utility function (Rosenthal, 1985). 
The reward function we define as follows: 
𝑅 = 𝜙𝑁𝑈𝐸 ⋅ 𝜙𝑁𝑠𝑢𝑟𝑝 + 𝑌cond, (15)

where 𝑅 is given at harvest (i.e., when an episode terminates). The 
terms 𝜙𝑁𝑈𝐸 and 𝜙𝑁𝑠𝑢𝑟𝑝 each return bounded signals with a range [0, 1], 
depending on the values of NUE and 𝑁𝑠𝑢𝑟𝑝 of the episode. 𝑌cond is a 
term describing a conditional normalized yield with a range of [0, 1]. No 
penalty/punishment terms in the reward function were implemented. 
The reward function terms are described below: 

𝜙𝑁UE = clip
(

1 −
|NUE − 0.7| − 0.2

𝜔NUE
, 0, 1

)

, (16)

𝜙𝑁UE is a clipped linear function. If NUE is in the range of [0.5, 0.9], 
the function returns 1. Here 𝜔NUE = 1, which determines the width of 
the constraint. This wider range is a form of reward shaping to better 
guide the agent towards the desired NUE. 

𝜙𝑁𝑠𝑢𝑟𝑝 = clip
(

1 −
|𝑁surp − 20| − 20

𝜔N𝑠𝑢𝑟𝑝
, 0, 1

)

, (17)

Similar to Eq.  (16), 𝜙𝑁𝑠𝑢𝑟𝑝 is a clipped linear function that returns 
1 if 𝑁𝑠𝑢𝑟𝑝 is within a certain range. As explained beforehand, to give an 
agent a bigger incentive to reduce surplus we define the allowed range 
of 𝑁  to be [0, 40]. We set 𝜔  to be 100. Fig.  2 shows the shape 
𝑠𝑢𝑟𝑝 N𝑠𝑢𝑟𝑝
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Fig. 2. A 3D plot that partially describes the reward function. 𝑥 and 𝑦 shows a range 
of 𝑁𝑠𝑢𝑟𝑝 and NUE, respectively, and 𝑧 shows the output of the combinations.

of our designed reward function. In the yellow region (i.e., 𝑧 = 1), the 
𝑌cond term activates, providing additional reward (≥ 1) for higher yield. 
Further, 𝑌cond is defined as follows: 

𝑌cond =

{

WSOnorm if 𝜙𝑁UE ⋅ 𝜙𝑁𝑠𝑢𝑟𝑝 = 1,
0 otherwise, and

(18)

WSOnorm =
WSO −WSOmin

WSOmax −WSOmin
, (19)

We define 𝑌cond as a conditional normalized yield reward term. As 
shown in (18), this term added to the reward signal only if NUE and 
𝑁𝑠𝑢𝑟𝑝 are within the desired ranges, otherwise this term does not affect 
the reward signal. The yield (WSO, Total Weight Storage Organ) is the 
simulated grain in WOFOST. The yield WSOnorm is normalized with 
min–max, where parameters for WSOmin we obtain from a low initial 
𝑁 setting with no fertilization events and WSOmax we obtain from the 
crop’s average potential production throughout several years. Hence, it 
is possible to get a reward higher than 2; though the typical range of 
scalar reward that the agent can obtain is [0, 2] with 𝑅 > 1 indicating 
that the agent achieved the required NUE and 𝑁𝑠𝑢𝑟𝑝.

Altogether, this reward signal was designed to encourage the agent 
to maximize yield only when it is within the environmental norms of 
the EUNEP framework. It is inevitable that NUE and 𝑁𝑠𝑢𝑟𝑝 produces 
a very sparse reward signal in our case. Thus, to guide the training 
process we implement an intrinsic reward signal (Pathak et al., 2017) 
to encourage exploration and introduce intermediate rewards for our 
agent. More details we elaborate on Section 2.5.3.

2.5. Experiments

We conduct experiments to answer our posed research questions. 
We evaluate how well our NUE agent performs against baselines, other 
agents trained with previously defined reward functions from literature 
to maximize yield within efficient NUE and 𝑁𝑠𝑢𝑟𝑝 ranges. Further, we 
evaluate our agent in several soil scenarios.

To answer RQ 1, we train the agents with WOFOST that was 
calibrated for the conditions in Lelystad, the Netherlands, and use 
winter wheat as the crop. We train our proposed model with the NUE 
reward function. This model we refer to as ‘‘NUE agent ’’. We compare 
the performance of several constrained RL agents, trained with different 
objective/reward functions. These reward functions include relative-
yield, yield-N-loss, and financial. Further, we evaluate the performance 
of NUE agent on our defined baselines. We describe our training setup 
further in Section 2.5.2.

To answer RQ 2, we evaluate NUE agent with several scenar-
ios to test its adaptability to different soil conditions, comparing its 
performance against baselines. We compared two different scenarios:
6 
1. different initial 𝑁 content, and
2. different drought-sensitive soils.

A different initial 𝑁 content at sowing date highly affects the out-
come of NUE, as there needs to be adjustments regarding the amount 
of 𝑁 fertilization to achieve a good balance of N. These initial nitrogen 
content reflect a range of pre-sowing conditions associated with differ-
ent agricultural practices. For instance, low initial nitrogen levels may 
result from the harvest of crops with high nitrogen uptake (Tan et al., 
2005), whereas high initial nitrogen levels could arise from enhanced 
mineralization following manure fertilization (Bouldin et al., 1984). 
These scenarios have been documented in previous studies (Huang 
et al., 2007).

The different soil profiles affect the 𝑁 dynamics of the whole sys-
tem, where we would like to compare performance with fast-draining 
soil and slow-draining soil. The fine and coarse soil texture scenarios 
selected in this study represents practical cases encountered in the 
Netherlands (Silva et al., 2021; Faber et al., 2021), making them well-
suited for evaluating the potential of reinforcement learning in realistic 
agricultural management. We evaluated how well NUE agent adapts its 
fertilization policy against the changes in the soil dynamics to achieve 
good NUE.

In the following subsections, we describe in detail the testing con-
ditions, training conditions, the baselines, intrinsic rewards, and the 
evaluations for reporting our results.

2.5.1. Testing conditions
In this section we describe the environmental conditions of where 

our agents and baselines are evaluated. Our testing location (i.e., soil 
and weather condition) is calibrated to Lelystad, the Netherlands. We 
use daily historical weather of years 1983 to 2021 (𝑛 = 39) while 
adhering to the 𝑁 deposition amounts of the specific year (see Fig.  C.6). 
This location has 7 soil layers, and the amount of initial nitrate (𝑁𝑂3−
𝑁) and ammonium (𝑁𝐻+

4 −𝑁) in the soil are 70 kg/ha and 0 kg/ha, 
respectively, indicating that all the ammonium has been converted to 
nitrate through nitrification prior to sowing. The soil texture is silty 
loam; medium coarseness. The parameters for the soil we show in 
Appendix  A. We adopted the soil and site parameters from Berghuijs 
et al. (2024). In our experiments, we keep the CO2 concentrations for 
every year fixed. We further discuss this choice in Section 4.

For the following experiments, we evaluate our agents in four 
different conditions. The high initial 𝑁 scenario will have the same soil 
profile as the Lelystad conditions, but starts with 100 kg/ha of inorganic 
𝑁 content. The division of 𝑁 for each soil layer was done as follows: 
70% of the total inorganic 𝑁 is deposited in the upper 30% of the soil 
and vice versa, consisting of 85% nitrate and 15% ammonium in total. 
The low initial 𝑁 scenario starts with 5 kg/ha initial 𝑁 content with a 
similar division of 𝑁 as the high 𝑁 scenario.

Next, the drought-sensitive soil (fast draining soil) has a sandy pro-
file; a very coarse texture. On the other hand, the drought-insensitive 
soil (slow draining soil) has a clay profile; very fine texture. For the 
soil texture scenarios, we converted sample soil files from the original
fortran WOFOST.5 We defined certain parameters then convert it into 
a file readable by WOFOST. Appendix  A further details this conversion 
process. The site parameters we kept the same as the first experiment.

2.5.2. Training conditions
We utilize randomization of certain aspects in the training pipeline 

to improve generalization of the RL agent (Tobin et al., 2017). We use 
random weather parameterized from climate variables obtained from 
the Lelystad weather station, hence we ensure the distribution of the 
generated weather closely matches the data. The soil profile follows 
the ‘‘PAGV’’ location defined in Groot and Verberne (1991). We also 

5 https://github.com/ajwdewit/WOFOST

https://github.com/ajwdewit/WOFOST
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employ randomization of initial 𝑁 conditions, where we set a mean 
and standard deviation of 35 kg/ha and 15 kg/ha N, respectively. 
These values mirror the general variability of initial 𝑁 conditions in 
the Netherlands. We also randomize the 𝑁 deposition statistics for the 
calculation of NUE.

We train the NUE agent with 10 random seeds, for 3 million steps. 
The hyperparameters we use for training are listed in Table  B.7. Fur-
ther, we train several agents with different reward functions to see how 
well the obtained policies adhere to the NUE framework indicators. The 
agents have similar training conditions compared to NUE agent where 
only two things differ:

1. the reward function of each RL agent, and
2. which constraint functions are used in training.

We train NUE agent with our proposed NUE reward function, and 
constrain it with 𝐶1 and 𝐶2 (Eq. (2) and (3)). For the agents trained with 
the other reward functions, we directly constrain it with environmental 
indicators following Turchetta et al. (2022), constraining them with 
𝐶1−4 (Eq. (2), (3), (4), (5)). In this case, 𝐶3 and 𝐶4 are functions that 
constrain NUE and 𝑁𝑠𝑢𝑟𝑝 within our defined efficient ranges.

The three agents we will compare NUE agent with are trained with 
the following reward functions:

1. relative-yield reward function, based on Overweg et al. (2021), 
Kallenberg et al. (2023);

2. yield-N-loss reward function, based on Wu et al. (2022), Tao et al. 
(2022); and

3. financial reward function, based on Turchetta et al. (2022).

relative-yield was trained with a reward function for optimizing 
yield by rewarding the agent based on the additional yield compared 
to a zero fertilization policy: 

𝑅𝑡 = (𝑊𝑆𝑂𝜋
𝑡 −𝑊𝑆𝑂𝜋

𝑡−1) − (𝑊𝑆𝑂0
𝑡 −𝑊𝑆𝑂0

𝑡−1) − 𝛽𝑁𝑡, (20)

where 𝑁𝑡 is the total amount of fertilizer applied, 𝑊𝑆𝑂𝜋 is the grain 
growth with the agent’s policy and 𝑊𝑆𝑂0 is the growth in the zero 
fertilization policy. 𝛽 is a multiplier for fertilization actions which we 
set to 10, following Kallenberg et al. (2023).

yield-N-loss was trained with a reward function that maximizes 
yield minimizing total 𝑁 leaching: 

𝑅𝑡 =

{

𝜔1𝑌 − 𝜔2𝑁𝑡 − 𝜔3𝑁𝑙,𝑡 if episode terminate at 𝑡,
−𝜔2𝑁𝑡 − 𝜔3𝑁𝑙,𝑡 otherwise,

(21)

where 𝜔1−3 are term weight modifiers that we set to 0.2, 1, and 5, 
respectively, following (Tao et al., 2022). 𝑁𝑙,𝑡 is the amount of 𝑁
leaching at time 𝑡. This reward function has a delayed positive reward, 
however the penalties are quite dense.

financial was trained with a reward function focusing on profitabil-
ity for the farmer based on static prices of grain and 𝑁 fertilizer: 

𝑅𝑡 = e𝑌𝑡 − e𝑁𝑡, (22)

where e𝑌𝑡 is a term that describes the price of winter wheat grain in 
e∕ℎ𝑎 per time step, and e𝑁𝑡 is the price of 𝑁 fertilizer also in e∕ℎ𝑎. 
The prices are based on the prices of winter wheat grain and 𝑁 fertilizer 
in the Netherlands for the year 2020 (Wageningen Economic Research, 
2023b,a): e181.67∕1000 kg grain and e20.49∕100 kg 𝑁 fertilizer. It is 
possible to vary the prices for each year based on historical prices; 
however, this introduces unnecessary dependencies for the learning 
agent, as the learning agent does not know which year it is on. Hence, 
we keep the prices fixed.
7 
2.5.3. Intrinsic rewards
In the case of inevitable sparse reward signals, a common method 

for improving the agent’s learning process are intrinsic rewards, such as 
the Intrinsic Curiosity Module (Pathak et al., 2017). Intrinsic rewards 
are reward signals that are generated within the agent itself, rather than 
from the RL environment. It is a self-supervised method to encourage 
the agent to explore unfamiliar states, which helps the agent avoid 
converging to suboptimal behaviors.

The training conditions we employ for the agent can be categorized 
as non-singleton environments, i.e., environments where the training 
and testing conditions are different. In these type of settings, there is 
a risk for an agent to overfit on the training conditions (Zhang et al., 
2018; Song et al., 2019). This hurdle is compounded with the addition 
of random initial 𝑁 conditions, which potentially shifts the agent’s tar-
get. To tackle that, we implement the Exploration via Elliptical Episodic 
Bonuses (E3B, Henaff et al., 2023), which is an intrinsic reward method 
that was developed to solve non-singleton RL environments that have 
randomized initial conditions/positions. Similar to the work of Pathak 
et al. (2017), it uses an inverse prediction model to predict whether 
a change in the environment was caused by the agent’s action or not. 
On top of that, it introduces a count-method that gives scalar episodic 
bonuses to the agent when it sees a different initial condition. As it fits 
our problem setup, we implement E3B for the training of our RL agent 
to help it converge faster during training.

2.5.4. Baselines
To compare the performance of the RL agent, we implement two 

baseline agents:

1. the Standard practice agent (N2), and
2. the Demeter agent.

In this paper, the experimental conditions are calibrated following 
the conditions in the field experiments of Groot and Verberne (1991). 
Hence, this baseline represents the standard practice of farmers and 
a direct comparison to the results of previous literature. We define 
the standard practice agent following their ‘‘N2’’ fertilization regime 
in ‘‘PAGV’’, where they apply 3 different amounts each year in fixed 
dates. N2 is a challenging-to-outperform baseline, as it is an optimal 
fixed amount of fertilization for the specific 𝑁 initial condition in our 
test location and winter wheat variety.

Named after the Greek goddess of agriculture, the Demeter agent 
is an oracle/episode-optimized agent, where timing and amounts of 
fertilization are optimized for the year it is evaluated on. Different 
from the Ceres agent from Kallenberg et al. (2023), it divides its 
application of 𝑁 to different times in the growing season, ensuring 
time-wise optimality for fertilization actions. Unlike an RL agent, the 
Demeter agent can observe future weather and hence serves as an 
upper-bound for fertilization actions. Similar to the RL agent, we con-
strain its cumulative fertilization actions to 3 for each season to keep 
a fair comparison. We use a function optimizer: Generalized Simulated 
Annealing (Bohachevsky et al., 1986), to determine the correct amount 
of fertilizer needed for each week.

2.5.5. Evaluation
We mainly evaluate our RL agents with yield, NUE, 𝑁𝑠𝑢𝑟𝑝 and 

cumulative reward indicators. Also we show cumulative fertilization 
amounts, 𝑁 loss and profit. By showing profit obtained, we can see 
whether optimizing NUE affects profit. The profit reports are based 
on prices from 2020. N loss reported is a combination of 𝑁 leaching 
and denitrification loss. We evaluate through reporting the obtained 
medians and 95% confidence interval throughout all test years and 
random seeds, without explicitly handling any outliers to ensure good 
representation of results. Further, the one-sided p-values are aligned 
appropriately to the direction of each metric. Next, we plot the best 
model and baselines on the NUE framework graph. Additionally, we 
evaluate how many years the agents did well in reaching the target 
NUE and 𝑁 .
𝑠𝑢𝑟𝑝
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Table 2
Results for target indicators. We report the medians (and 95% bootstrapped confidence intervals). Some icons describe the target values of the 
indicators: ↑ indicates higher is better, ↓ indicates lower is better and ↔ indicates a target between two values.
 Agent Yield [tons/ha] (↑) 𝑁𝑠𝑢𝑟𝑝 [kg/ha] (0↔40) NUE [–] (0.5↔0.9) Reward [–] (↑)
 NUE Agent 9.43 (8.97, 9.65) 27.2  (21.0, 34.0) 0.87 (0.84, 0.90) 0.99 (0.96, 1.93)
 relative-yield 9.61  (9.26, 9.81) 50.2 (41.0, 54.0) 0.79 (0.77, 0.81) 0.85 (0.81, 0.93)
 yield-N-loss 9.05 (8.53, 9.34) −11.1  (−27.3, 11.9) 1.07 (0.93, 1.16) 0.56 (0.35, 0.71)
 financial 9.93 (9.54, 10.08) 120.4 (88.2, 181.2) 0.61 (0.53, 0.67) 0.19  (0.0, 0.51)
 Demeter 9.73  (9.49, 9.89) 39.9  (39.9, 39.9) 0.83 (0.82, 0.83) 2.05 (1.99, 2.09)
 N2 9.61  (9.54, 9.88) 52.6  (49.9, 59.4) 0.78 (0.76, 0.80) 0.86 (0.80, 0.90)
 𝛥NUEAgent,N2 −0.15 (−0.20, −0.09) −27.4 (−28.9, −25.7) +0.09 (0.08, 0.10) +0.39 (0.08, 1.09)
 𝑝 = 0.0001 𝑝 = 1e − 6 𝑝 = 0.0 𝑝 = 0.0011
Table 3
Results for additional indicators.
 Agent Fertilization [kg/ha] (↓) N Loss [kg/ha] (↓) Profit [ke/ha] (↑)  
 NUE Agent 190.0 (180.0, 190.0) 42.6 (38.2, 49.2) 1.44 (1.37, 1.48)  
 relative-yield 210.0 (210.0, 220.0) 47.9 (41.0, 47.9) 1.46 (1.42, 1.50)  
 yield-N-loss 140.0 (130.0, 160.0) 34.8 (30.7, 42.6) 1.39 (1.31, 1.44)  
 financial 290.0 (240.0, 350.0) 46.3 (39.6, 55.8) 1.49 (1.42, 1.52)  
 Demeter 202.3 (193.0, 210.6) 37.6 (35.1, 43.5) 1.49 (1.45, 1.51)  
 N2 220.0 (220.0, 220.0) 45.0 (40.5, 50.2) 1.49 (1.46, 1.49)  
 𝛥NUEAgent,N2 −30.0 (−30.0, −30.0) −3.9 (−3.2, 5.4) −0.01 (−0.06, 0.03) 
 𝑝 = 1e−5 𝑝 = 0.3028 𝑝 = 0.9871  
3. Results and analysis

In this section we report quantitative results of our experiments, 
mainly answering the imposed research questions (Sections 3.1 and
3.2). Further, we qualitatively compare the results to empirical findings 
of previous work related to NUE (Section 3.3).

3.1. Performance of agents

In this section, we compare our NUE agent with baseline methods 
and other RL agents (trained with LagPPO) in the Lelystad case study 
to address research question 1. Results are summarized in two tables: 
Table  2 reports the median yield, 𝑁𝑠𝑢𝑟𝑝, NUE, and reward for each 
agent, and Table  3 reports the cumulative fertilization, 𝑁 loss, and 
profit. Additionally, we report the RL training curves in Fig.  C.9 in the 
appendix.

Higher 𝑁𝑠𝑢𝑟𝑝 is needed to maximize yield, as shown by Demeter , 
which keeps 𝑁𝑠𝑢𝑟𝑝 near 40 kg/ha. Among the agents and N2, NUE 
agent achieved the highest median reward, and the relative-yield agent 
performed similarly. These results indicate that a reward based on 
additional yield relative to a zero-N treatment can improve NUE and 
𝑁𝑠𝑢𝑟𝑝.

Agent yield-N-loss obtained policies that reduced 𝑁 Loss by applying 
considerably less fertilizer. However, this is at the cost of negative 
𝑁𝑠𝑢𝑟𝑝, and high NUE, indicating 𝑁 imbalances and soil 𝑁 removal/min-
ing.

Agent financial increases profit at the expense of 𝑁𝑠𝑢𝑟𝑝 and higher 𝑁
loss, leading to the lowest reward. Although we applied a Lagrangian 
constraint for NUE and 𝑁𝑠𝑢𝑟𝑝, the constraint critic did not predict these 
well (see Fig.  C.7). This signifies the difficulty of directly constraining 
NUE and 𝑁𝑠𝑢𝑟𝑝.

Demeter shows that good profit is possible with good NUE. The
financial agent shows a large gap in 𝑁𝑠𝑢𝑟𝑝, as reflected in its fertilization, 
but the difference in 𝑁 loss is small. This is because 𝑁𝑠𝑢𝑟𝑝 is defined 
as 𝑁 input minus 𝑁 in the grains, while the crop allocates some of 
this 𝑁 to vegetative organs. This exhibits that NUE agent can discover 
the optimal amount of fertilization that improves NUE. The subsequent 
scenario experiments (Section 3.2) further reveal the significant impact 
of different soil profiles on 𝑁 loss.

The differences between NUE agent and N2 are detailed in Tables 
2 and 3. NUE agent achieves similar yield with lower 𝑁𝑠𝑢𝑟𝑝, 𝑁 loss, 
and fertilizer use, which leads to lower profit than N2. Only NUE agent
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meets the 𝑁𝑠𝑢𝑟𝑝 target, which lowers environmental risk and preserves 
𝑁 balance (Klages et al., 2020). This shows that NUE agent can discover 
policies that ensure efficient NUE with low 𝑁𝑠𝑢𝑟𝑝.

Fig.  3 shows the NUE framework for each agent. Demeter meets 
the target by staying near the 𝑁𝑠𝑢𝑟𝑝 or NUE boundary. NUE agent , N2, 
and relative-yield perform similarly, though NUE agent and relative-yield
have more years within the efficient range. In contrast, yield-N-loss and
financial agents have a wider spread. as confirmed by the kernel density 
estimate. For instance, the financial agent has only 19 years with 𝑁
inputs below 300 kgN/ha/y, while the yield-N-loss agent sometimes 
enters the soil mining region.

Fig.  4 presents the fertilization actions of NUE agent , the relative-
yield agent, N2, and Demeter in relation to precipitation during 2020.

A limitation of the RL approach is that NUE agent , N2, and relative-
yield show similar scatter patterns with small shifts along the 𝑁 input 
axis. Notably, NUE agent applies less fertilizer than N2 and relative-yield
(Table  3). Each NUE plot in Fig.  3 contains a single outlier year — 
with an 𝑁 output of approximately 140 kg/ha — corresponding to the 
year 2020. An extreme precipitation event occurred on the flowering 
date (Fig.  4), which inhibited 𝑁 uptake (Kowalenko and Bittman, 
2000). Because the RL agent makes decisions based solely on immediate 
observations, it cumulatively applied 190 kg/ha in preceding timesteps, 
failing to anticipate the disturbance. Moreover, Fig.  4 illustrates that 
the LagrangianPPO algorithm satisfied constraints 𝐶1 and 𝐶2 (Eqs.  (2) 
and (3)) for both the NUE agent and the relative-yield agent.

Fig.  5 presents box plots that more intuitively display the spread of 
NUE and 𝑁𝑠𝑢𝑟𝑝 for each agent; the legend indicates the number of test 
years meeting the target requirements. For NUE, N2 and relative-yield
meet the target in all test years, while NUE agent has 10 years in the 
soil mining region. In terms of 𝑁𝑠𝑢𝑟𝑝, NUE agent performs best. The
relative-yield agent has a median 𝑁𝑠𝑢𝑟𝑝 of 50 kgN/ha, and the others do 
not consistently meet the target. Fig.  C.8 shows individual years for 
each agent.

3.2. Performance in different soil scenarios

In this section, we present the results of the soil scenario experi-
ments detailed in Tables  4 and 5. We report each agent’s performance 
under different scenarios, including NUE agent and the baselines, and 
we also evaluate the relative-yield agent given its competitive per-
formance in the previous experiment. Demeter provides the optimal 
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Fig. 3. NUE graphs for each agent. Each dot represents a single test year (𝑛 = 39). A kernel density estimate (KDE) was applied around plotted to show the spread of performance.
Fig. 4. A plot showing fertilization actions of NUE agent , relative-yield agent, N2 and Demeter . The dotted line shows the flowering date.
metrics for each scenario. Our primary aim here is to address research 
question 2.

For low and high initial 𝑁 scenarios, NUE agent maintains perfor-
mance similar to normal conditions with similar median rewards. N2
also performs consistently despite the change in initial soil N. Demeter
applied more fertilization in the high-N scenario than in the low-N 
scenario, likely because lower initial 𝑁 limits early growth and reduces 
subsequent 𝑁 demand. This observation further suggests that the initial 
𝑁 content does not alter the target 𝑁 scenario, as higher initial 𝑁 is 
largely lost through leaching early in the growing season. NUE agent
reliably applies the target cumulative N, and the relative-yield agent 
performs similarly.
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In soil type scenarios, NUE agent generally meets the target NUE 
and 𝑁𝑠𝑢𝑟𝑝 in fine soil, though with some variability. Nevertheless, NUE 
agent delivered higher yield than the relative-yield agent while using 
less fertilizer. All agents show low 𝑁 loss in fine soils due to reduced 
leaching.

In the coarse soil scenario, prone to drought and leaching, NUE agent
outperforms N2 by achieving lower 𝑁 loss (95.7 kg/ha vs. 101.3 kg/ha) 
and better 𝑁𝑠𝑢𝑟𝑝 (54.9 kg/ha vs. 78.3 kg/ha), although 𝑁𝑠𝑢𝑟𝑝 remains 
above target. Both NUE agent and relative-yield suffer yield reductions 
(7.73 and 7.91 tons/ha, respectively), highlighting the challenge of 
maintaining productivity in such soils.
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Fig. 5. Figure showing box plots of years within efficient N. The legend details how many years out of the total test years that are within the NUE (top) and 𝑁𝑠𝑢𝑟𝑝 (bottom) 
requirements.
Table 4
Results showing target indicators for each scenario.
 Agent Scenario Yield [tons/ha] (↑) 𝑁𝑠𝑢𝑟𝑝 [kg/ha] (0↔40) NUE [–] (0.5↔0.9) Reward [–] (↑)  
 NUE Agent Low N 9.19  (8.78, 9.41) 32.0  (25.2, 39.7) 0.85 (0.81, 0.88) 0.98 (0.93, 1.69) 
 High N 9.40  (9.29, 9.46) 28.9  (21.2, 37.1) 0.87 (0.83, 0.90) 0.97 (0.92, 1.68) 
 Fine Soil 9.88 (9.38, 10.03) 24.7  (12.4, 67.0) 0.88 (0.74, 0.93) 0.88 (0.28, 0.90) 
 Coarse Soil 7.73  (7.04, 8.63) 54.9  (35.3, 76.0) 0.74 (0.67, 0.81) 0.76 (0.50, 0.82) 
 relative-yield Low N 9.55  (9.21, 9.73) 64.9  (57.4, 73.1) 0.74 (0.72, 0.77) 0.75 (0.66, 0.82) 
 High N 9.54  (9.01, 9.74) 43.8  (37.5, 52.8) 0.81 (0.79, 0.84) 0.89 (0.83, 0.96) 
 Fine Soil 9.44 (8.53, 10.02) 36.7 (20.3, 49.6) 0.85 (0.80, 0.91) 0.76 (0.56, 0.89) 
 Coarse Soil 7.91  (7.31, 8.57) 70.0  (54.5, 83.5) 0.69 (0.64, 0.76) 0.67 (0.50, 0.83) 
 Demeter Low N 9.47  (9.29, 9.67) 39.9  (39.9, 39.9) 0.83 (0.82, 0.83) 1.99 (1.94, 2.04) 
 High N 9.76 (9.52, 9.88) 39.9  (39.9, 39.9) 0.83 (0.82, 0.83) 2.05 (2.00, 2.09) 
 Fine Soil 10.01 (9.97, 10.06) 39.9  (39.9, 39.9) 0.84 (0.83, 0.84) 2.12 (2.06, 2.13) 
 Coarse Soil 8.57 (7.55, 9.19) 39.9  (39.9, 39.9) 0.81 (0.80, 0.82) 1.73 (1.92, 1.51) 
 N2 Low N 9.59  (9.40, 9.72) 57.4  (52.6, 61.8) 0.77 (0.75, 0.79) 0.82 (0.78, 0.87) 
 High N 9.72 (9.06, 9.87) 54.7  (49.4, 60.2) 0.78 (0.75, 0.80) 0.85 (0.79, 0.90) 
 Fine Soil 10.04 (9.80, 10.07) 46.3  (42.5, 51.5) 0.81 (0.79, 0.82) 0.93 (0.88, 0.97) 
 Coarse Soil 8.54 (7.63, 8.93) 78.3  (68.7, 91.3) 0.69 (0.63, 0.72) 0.62 (0.48, 0.71) 
3.3. Results compared to previous literature

None of the previous works in RL for crop management evaluated 
the NUE performance of their experiments, prohibiting direct compar-
isons. In this section, we investigate non-RL literature that describes 
results relevant to this work and quantitatively analyze their findings 
to enhance the context of our findings.

In preliminary work, Silva et al. (2018) analyzed the NUE perfor-
mance of farms in the Netherlands for winter wheat. They found more 
than half of the fields had 𝑁𝑠𝑢𝑟𝑝 of more than 80 kg/ha and 40% were 
outside the desirable range of NUE. In follow-up work, Silva et al. 
(2021) assessed NUE performance for a large database of farmers in 
the Netherlands with the EUNEP framework. They found that the NUE 
for winter wheat was roughly 0.8 and 𝑁𝑠𝑢𝑟𝑝 was roughly 78 kg∕ℎ𝑎, 
which matches the results of N2 in our experiments. Moreover, when 
comparing between coarse and fine soils for winter wheat, they found 
that coarse soils increase 𝑁𝑠𝑢𝑟𝑝 compared to fine soils, while the oppo-
site is true for NUE. These results corroborate our findings in the soil 
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scenario experiments (shown in Table  4 for the N2 agent) and further 
adds evidence that RL is capable of improving these metrics through 
better fertilization policies.

Next, Faber et al. (2021) investigated 𝑁 fertilization regimes to 
reduce N losses in light/coarse soils for 2300 farms cultivating winter 
wheat in Poland. They found that the coarse soils generally reduced 
NUE and made it difficult to achieve profit. Interestingly, they indicate 
that a strategy that keeps the farms profitable generally require farms 
to soil mine. In our experiments, the coarse soils indeed reduced profit 
due to inefficient 𝑁 uptake, which still has potential to be optimized 
as shown by the Demeter agent (Table  5).

A research conducted by Ravensbergen et al. (2024) on NUE per-
formance of ware potato under coarse and fine soils in the Netherlands 
reveal high 𝑁𝑠𝑢𝑟𝑝 variability without high variability on yield. They 
further found that some cases with higher yields had relatively low 
𝑁𝑠𝑢𝑟𝑝. This study concludes that it is possible to reduce 𝑁 inputs 
while still maintaining higher yields through optimized timing and 



H. Baja et al. Computers and Electronics in Agriculture 237 (2025) 110554 
Table 5
Results showing additional indicators for each scenario.
 Agent Scenario Fertilization [kg/ha] (↓) N Loss [kg/ha] (↓) Profit [ke/ha] (↑) 
 NUE Agent Low N 190.0  (190.0, 210.0) 11.7 (7.5, 11.7) 1.41 (1.34, 1.44) 
 High N 190.0  (180.0, 190.0) 72.8 (63.8, 81.3) 1.44 (1.37, 1.48) 
 Fine Soil 190.0  (190.0, 240.0) 0.4  (0.2, 3.4) 1.49 (1.41, 1.53) 
 Coarse Soil 190.0  (160.0, 200.0) 95.7 (80.5, 95.7) 1.19 (1.07, 1.27) 
 relative-yield Low N 230.0  (220.0, 240.0) 12.3 (9.5, 16.3) 1.45 (1.42, 1.47) 
 High N 210.0  (200.0, 210.0) 81.4  (73.9, 88.4) 1.46 (1.38, 1.49) 
 Fine Soil 210.0  (210.0, 210.0) 0.3 (0.3, 1.8) 1.47 (1.31, 1.53) 
 Coarse Soil 210.0  (210.0, 210.0) 109.8 (91.8, 123.1) 1.21 (1.19, 1.30) 
 Demeter Low N 199.6  (190.0, 204.8) 5.6  (4.6, 6.1) 1.45 (1.42, 1.48) 
 High N 205.2  (199.9, 210.9) 70.0  (67.0, 77.6) 1.49 (1.46, 1.52) 
 Fine Soil 212.4  (208.0, 217.0) 0.4  (0.3, 1.9) 1.53 (1.49, 1.54) 
 Coarse Soil 180.9  (166.5, 187.3) 59.3  (55.9, 63.1) 1.31 (1.15, 1.41) 
 N2 Low N 220.0  (220.0, 220.0) 12.6 (10.8, 15.1) 1.47 (1.43, 1.48) 
 High N 220.0  (220.0, 220.0) 79.2 (72.6, 90.2) 1.49 (1.37, 1.51) 
 Fine Soil 220.0  (220.0, 220.0) 0.8  (0.2, 1.7) 1.53 (1.49, 1.54) 
 Coarse Soil 220.0  (220.0, 220.0) 101.3 (93.5, 110.8) 1.30 (1.15, 1.36) 
amount of 𝑁 inputs, which is a task that we seek to solve through 
recommendations of RL.

4. Discussion, limitations and future work

In this section, we delve deeper into the design choices, assump-
tions, and experimental findings that shaped our approach. We then 
discuss the limitations of our work and propose directions for future 
research.

4.1. Main discussions

Reward function. We formulated a novel NUE reward function be-
cause we aimed to optimize three indicators simultaneously (yield, NUE 
and 𝑁𝑠𝑢𝑟𝑝). This formulation may benefit the use of the multi-objective 
RL framework (Hayes et al., 2022). However, we do not use this frame-
work and instead scalarize the multiple objectives through our designed 
reward function, using a utility function approach (Wierzbicki, 1980). 
While our results show that this works well in guiding the RL agent 
to our multi-objective target, it is possible that a better objective or 
reward function formulation exists.
Observation space. In this work, we have an observation space that is 
fairly complete, including some hard-to-measure features such as soil 
and deposition observations for NO3 and NH4, total 𝑁 grain content, 
crop transpiration rate, 𝑁 loss and crop 𝑁 uptake. In reality, these 
crop features are difficult to measure and will incur costs and labor to 
measure. Hence, it is infeasible for an RL agent to observe all of these 
features in every timestep.
Constraints. We impose constraints on fertilization frequency and 
crop development stage to ensure that RL recommendations are ac-
tionable and to prevent the agent from ‘‘reward hacking’’ the NUE 
target. Early experiments revealed that agents would wait until the 
end of the season to reduce 𝑁 input (increasing NUE) and then 
fertilize before harvest—a practice that is unrealistic and potentially 
harmful. While our constraints addresses this issue and follows safety 
learning protocols (Ji et al., 2023), it introduces a Pareto trade-off 
in the achievable rewards (Censor, 1977). Although daily small-dose 
fertilization would optimize N uptake (Guertal, 2009), it is impractical 
due to fixed costs such as labor and machinery. Consequently, in this 
study, we do not use the standard PPO, since we require all our crop 
management decisions to be constrained to be actionable for practical 
use cases. In Fig.  4, we show that the actions of the RL agents are 
constrained and actionable, i.e., not frequent and spaced out throughout 
the growing season. The work Turchetta et al. (2022), Kallenberg et al. 
(2023) used standard PPO, which entails frequent fertilization actions 
that are not feasible for a farmer.
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Next, Turchetta et al. (2022) suggest directly constraining environ-
mental effects such as 𝑁 leaching or emissions for RL agents. We agree 
that this is essential. In our work, we constrain NUE and 𝑁𝑠𝑢𝑟𝑝 via 
Eqs.  (4) and (5) rather than directly constraining 𝑁 loss. However, our 
experiments reveal that the constraint critic fails to accurately predict 
NUE and 𝑁𝑠𝑢𝑟𝑝, even with full access to 𝑁 input and output data. 
This indicates that constraining these composite metrics is challenging. 
Therefore, incorporating NUE and 𝑁𝑠𝑢𝑟𝑝 directly into the reward func-
tion (as with NUE agent) provides a stronger learning signal for the 
agent.

Future improvements may involve alternative function approxima-
tors, pre-training the networks, or adopting hard-constraint algorithms 
such as Constrained Policy Optimization (CPO, Achiam et al., 2017). 
Further, to consider a holistic and unified approach, future work will 
include the exploration of different RL methods (e.g., value-function 
methods, model-based methods, different architectures such as RNNs or 
Transformers) to address various shortcomings of our current approach 
(for instance imitation learning, or offline learning). Consequently, 
including constraints in these RL methods are not trivial, and requires 
in-depth research in the domain of safe-learning (Ji et al., 2023).

Broader study case. NUE and 𝑁𝑠𝑢𝑟𝑝 is a common problem in the 
Netherlands. Hence, our experiments were done with a representative 
Dutch case study. Extending this problem to other cases requires a 
simple retraining of the RL agent with a WOFOST calibrated to a 
different location. Moreover, Kallenberg et al. (2023) has explored this 
idea and shown that the RL agent is robust when deployed in a location 
with a different climate. Notwithstanding, differing soil profiles remain 
a challenge.

Relevant literature in RL for crop management . In this section we 
discuss additional studies in reinforcement learning for crop man-
agement that were not previously mentioned. The work of Maillard 
et al. (2023) introduces Farm-gym, a customizable RL environment 
for crop management that models farms management as a dynamic 
system with multiple interacting elements. This environment supports 
tasks such as fertilization, irrigation, and pesticide application, and 
incorporates different soil scenarios (clay and sandy soils), which is 
directly relevant for enhancing NUE and 𝑁𝑠𝑢𝑟𝑝. Next, Chen et al. (2023) 
investigated the use of RL in cotton irrigation. In their experiments, 
they incorporated soil characteristics in the DSSAT model, and then 
compared the performance of the RL agent to real world trials, which 
resulted in a more accurate simulation. The RL agent performed better 
in discovering optimal irrigation policies. The authors achieve similar 
results in a follow up work (Chen et al., 2025).
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Soil profiles. Our experiments suggest that the RL agents found it 
difficult to generalize well to these different soil profiles. These soil 
profiles influence the changes in water and N, which exhibit strong 
temporal dynamics throughout the growing season and are unique to 
each soil profile. The influence of soil types in crop management is well 
supported by the literature (Silva et al., 2021; Faber et al., 2021; Wang 
et al., 2020; Raza and Farmaha, 2022; Ye et al., 2024), which further 
highlights the importance of considering soil dynamics in research 
pertaining to data-driven crop management recommendations.
Simulation-to-reality gap. The experiments conducted in this paper 
were done in-silico with a calibrated crop model. Although this simu-
lated environment allows for rigorous testing, a significant simulation-
to-reality gap remains. It is still an open question how well the RL agent 
would fare in the real-world, since there is a simulation gap between 
WOFOST and the actual farm. We argue that we should develop the RL 
approach in-silico before bringing it to the real-world, for the ability 
to rigorously test different methods. Moreover, RL methods that are 
mature and robust will consequently lower the barrier for technolog-
ical adoption for the field practitioners. Nonetheless, moving towards 
bringing an RL-based recommendation tool to field trials should be a 
priority and the ultimate step to bring this research to maturation.

4.2. Limitations and future work

Our study has several limitations which are implicitly discussed in 
the previous section. In this section, we explicitly detail each of these 
limitations and suggest follow up work to potentially address these 
shortcomings.

1. NUE Reward Function: A limitation to our reward approach is 
the scalarized reward function, which may not fully capture the 
complex trade-offs between yield, NUE, and 𝑁𝑠𝑢𝑟𝑝. Alternative 
multi-objective formulations might lead to the discovery of more 
balanced policies. Future work could explore the use of the 
Multi-Objective RL (MORL, Roijers et al., 2013) and, conse-
quently, algorithms that excel in optimizing MORL problems. 
Another opportunity for a better reward function formulation is 
by using inverse RL (IRL, Arora and Doshi, 2021) to discover the 
objective of an optimal agent, which could be an expert farmer 
or the Demeter agent.

2. Observation Space: The extensive observation space, while ben-
eficial in simulation, includes features that are impractical to 
measure in the field, potentially limiting real-world deployment. 
We suggest future work to employ imitation learning (Tao et al., 
2022) or include measuring as part of the decisions (Baja et al., 
2025), in the context of optimizing NUE.

3. Generalization to Diverse Soils: A limitation of our RL approach 
is that training on a single representative soil profile led to 
poor performance on different soil textures. This highlights the 
challenge and effect of soil profiles on effective fertilization 
policies. From an RL perspective, training with a wide range 
of soil profiles or training with perturbations/noise in the soil 
parameters could ensure a good exposition to a wide range of 
soil dynamic responses, and facilitate learning to generalize in 
diverse soil conditions (Tobin et al., 2017). Nonetheless, per-
turbations in soil parameters could also mitigate the RL bias 
towards the simulator when deploying in the real-world. We 
propose future work to focus on mitigating this issue through the 
use of RNNs (e.g., LSTMs or GRUs) or appending observations 
from preceding timesteps to capture the temporal dynamics of 
each soil type.

4. Handling Extreme Events: Our approach failed in extreme wea-
ther events, as detailed in Section 3.1. To address this, we 
propose a few approaches for future work:
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(a) employing RNNs to capture temporal dynamics of the soil, 
which might implicitly capture a change in the weather 
dynamics;

(b) adopting a model-based RL approach to forecast future 
conditions;

(c) integrating weather forecasts into the observation space.

Nonetheless, predicting extreme events remain a formidable 
challenge (Camps-Valls et al., 2025), and requires specialized 
algorithms to predict.

5. Simulation-to-Reality Gap: Arguably, this point is the biggest 
limitation in our experiments. Our approach has been evalu-
ated in-silico using WOFOST. However, since we use simulated 
data for the experiments, the performance of the RL agents in 
real-world conditions remains uncertain. Future research should 
focus on bringing the recommendations of the RL agent to in-
field experiments. There are several established methods to deal 
with transferring RL simulations to reality:

(a) deploy the simulator (WOFOST) and a trained RL agent 
in the real-world through a digital twin (Pylianidis et al., 
2021) and data assimilation (Gaso et al., 2023).

(b) train the RL agent with offline data from a real farm (Zhou 
et al., 2023), which reflects the true dynamics of the 
farm, ensuring accurate policy learning with virtually no 
simulation-to-reality gap;

(c) employ RL agents that are robust towards distribution 
shifts (Luo et al., 2024), which ensures the agent is not 
biased towards the simulator’s dynamics when employed 
in the real-world;

(d) transfer learning and fine-tuning to a real-farm data (Tay-
lor and Stone, 2009), which entails pre-training an agent 
in a simulator (e.g., WOFOST), and then fine-tuning with 
offline data from the farm.

In the future, we will work on the digital twin approach.

5. Conclusion

In this work, we explored the potential of RL to optimize NUE 
in simulated crop management by introducing a novel reward func-
tion that balances yield, 𝑁𝑠𝑢𝑟𝑝, and NUE with practical action con-
straints. We conducted two experiments: one comparing an RL agent 
trained with a NUE-oriented reward to baseline practices and alter-
native agents, and another assessing its robustness across varying soil 
conditions. Our results show that the NUE RL agent achieves optimal 
NUE and 𝑁𝑠𝑢𝑟𝑝 levels — reducing nitrogen surplus compared to stan-
dard practices — while remaining robust to shifts in initial soil N, 
though it faces challenges with extreme soil textures. These findings 
underscore the importance of considering both environmental and 
practical constraints when translating RL-based fertilization policies to 
real fields.

RL offers a compelling framework for developing adaptive fertiliza-
tion policies that respect both agronomic and environmental objectives. 
By incorporating realistic agronomic constraints (e.g., limited fertiliza-
tion events), the learned policies become more actionable and more 
likely to be adopted by farmers. Nonetheless, simulated data limits 
real-world applicability. Based on our findings, realizing a deployable 
RL-based fertilizer recommendation system to the real-world requires a 
holistic approach, incorporating different aspects of RL. In this paper, 
we discussed — from a unified RL and crop management perspective 
— the challenges faced, limitations of the paper and suggested follow-
up work to pursue. We argue, before bringing these experiments to 
the real-world, the RL methods must comply with the expectation of 
the field practitioners in order to minimize the gap for technological 
adoption.
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Fig. C.6. Trends of annual depositions of NH+
4 -N and NO𝑥-N in the Netherlands, taken from Berghuijs et al. (2024).
Table A.6
Soil parameters used for the experiments. We define soil that has 7 layers.
 Parameter Value  
 PFFieldCapacity 2.0  
 PFWiltingPoint 4.2  
 SurfaceConductivity 75.0  
 Thickness [20.0, 10.0, 10.0, 20.0, 20.0, 20.0, 25.0]  
 CNRatioSOMI [9.0, 11.0, 12.6, 14.31, 16.42, 18.0, 18.0]  
 FSOMI [0.02, 0.015, 0.011, 0.0076, 0.0038, 0.001, 0.001] 
 RHOD [1.406, 1.420, 1.432, 1.45, 1.505, 1.537, 1.537]  
 Soil_pH [7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4]  

Table B.7
LagrangianPPO hyperparameters. 
 Hyperparameter Values 
 Learning Rate 1e−3  
 Batch Size 276  
 Gamma (𝛾) 1  
 Clip Range 0.2  
 GAE Lambda (𝜆) 0.95  
 Epochs 10  
 Value Function Coefficient (𝑐𝑣) 0.5  
 Entropy Coefficient (𝑐𝑒) 0.01  
 Max Gradient Norm 0.5  
 Timesteps per Update 2208  
 Policy Architecture MLP  
 Activation Function Tanh  

A core motivation for this work is to bridge the existing gap between 
two communities: ML or RL researchers tend to focus on algorith-
mic innovation without sufficient agronomic input, while agronomists 
may find purely ML- or RL-driven papers too theoretical or detached 
from on-farm realities. By aligning performance metrics with agro-
environmental indicators (NUE, 𝑁𝑠𝑢𝑟𝑝) and structuring constraints aro-
und realistic field practices, our study bridges the gap for more effective 
collaboration between both communities. To open further development 
and collaboration, we provide documentation and code6 of CropGym. 
By jointly engaging with agronomy experts, policymakers, and farmers, 
RL has the potential to evolve from an intriguing computational tool 
into a practical engine for global food security and environmental 
stewardship.

6 https://github.com/WUR-AI/NUE_PCSE-Gym
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Appendix A. Conversion of soil parameters for soil texture exper-
iments

We converted original CABO sample soil files of fortran WOFOST 
to a .yaml format that is readable by WOFOST SNOMIN. We chose 
specifically the files ec1.CABO and ec6.CABO that are soil files that 
contain parameters for coarse and fine soil types, respectively. We 
first define a specific set of parameters required by WOFOST SNOMIN, 
such as surface conductivity and thickness of each soil layer, which 
we show in Table  A.6. Next, for each soil layer, we plug-in parame-
ters from the .CABO files, namely: CRAIRC, SMTAB, CONTAB, which 
are the critical soil content for aeration, soil moisture content table, 
and 10-log hydraulic conductivity table, respectively. In general, only 
three parameters we change with respect to the soil file in the first 
experiment.

Appendix B. LagrangianPPO

All the RL agents trained in this study uses the LagrangianPPO 
algorithm, and we report the hyperparameters used during training in 
Table  B.7.

https://github.com/WUR-AI/NUE_PCSE-Gym
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Fig. C.7. Prediction of the constraint network for the financial agent for several seeds. Here, the explained variance of the constraint predictions are shown. It is calculated as 
𝑣𝑎𝑟(𝑦 − 𝑦𝑝𝑟𝑒𝑑 )∕𝑣𝑎𝑟(𝑦), where the variance is 𝑣𝑎𝑟 = (𝛴𝑖|𝑎𝑖 − 𝑎̄|2)∕𝑁 , where 𝑎 is the array of constraint values and 𝑁 is the length of the array. Here, we show that the constraint 
networks struggle to predict the constraint functions of 𝐶3 and 𝐶4, highlighting the difficulty of directly constraining NUE and 𝑁𝑠𝑢𝑟𝑝.
Fig. C.8. Scatter plot similar to Fig.  5, individual years for all the agents. The lines between years do not depict any trend and are only there for visual support.
Appendix C. Figures and tables

In this section we show several figures that are referenced in the 
main text. Specifically, we include (i) 𝑁 deposition trend in Fig.  C.6, 
(ii) constraint network predictions of RL agents in Fig.  C.7, (iii) the NUE 
and 𝑁𝑠𝑢𝑟𝑝 performance of each agent in each year in Fig.  C.8, and (iv) 
the training curves of the RL agents in Fig.  C.9.
14 
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Fig. C.9. Training curves of all RL agents. The curves include all testing years and seeds. Each agent is plotted separately due to the different reward functions.
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