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Abstract

Knowledge-based software engineering enables a pro-

grammer to integrate rich semantics in the software de-

velopment process. In this work, we show how an

OWL/RDF knowledge base can be integrated with conven-

tional domain-centric data models (Enterprise Java Beans)

and object-relational mapping toolkits (Hibernate). We

present a pathway for the software developer to generate

enterprise Java beans source code and hibernate object-

relational mappings starting from a domain ontology. This

way, a semantic-rich enterprise development environment is

specified that combines the benefits of using ontologies with

software development standards.

1 Introduction

Building semantic-rich applications requires the synthe-

sis of traditional AI concepts with every-day software en-

gineering practice. Domain-specific conceptualizations are

increasingly specified as formal ontologies, as part of ongo-

ing efforts for enabling the semantic web. However, experi-

ence has shown that semantic models and their incarnations

into OWL structures, though powerful for expressing com-

plex abstractions, remain difficult to utilize in conventional

software projects. One of the major issues raised is that us-

ing a semantic model to its full extent results in complex

software interfaces, with several degrees of freedom. For

example, existing programming toolkits handle OWL indi-

viduals in a triple-store approach. Though powerful, such a

practice is very unfamiliar to the conventional programmer,

who feels comfortable with standard domain models for

building domain applications. Similarly, common strategies

to archive individuals in RDF triple-stores or in uniform

“subject-predicate-object” relational database tables hardly

fit the notion of normalized relational databases.

In this paper we present how OWL semantic models can

be used to specify and build client-server enterprise appli-

cations. We present a three-layer framework that trans-

lates ontology constructs into Enterprise Java Beans, en-

abling easy software coding, and connects them to rela-

tional database persistence storage through the generation

of Hibernate object-relational mappings. In the context of

knowledge-based software engineering, the framework pre-

sented in this paper demonstrates how semantic models can

be coupled with standard programming practices for build-

ing semantic-rich applications.

The rest of the paper is structured as follows; Section 2

summarizes related work on both linking ontologies and

databases, and generating programmatic interfaces from on-

tologies. Based on these findings, we present in section 3 an

abstract architecture for semantic programming that com-

bines both generated programmatic interfaces with rela-

tional back-end storage of individuals. Section 4 shows how

a domain model specified using an ontology can be trans-

lated to both enterprise Java Beans and relational storage.

The main findings of this paper are summarized in section 5.

2 Related work

Ontologies and database cross-disciplinary efforts have

so far focused in two directions: 1) persistent storage of

newly created knowledge bases, and 2) populating ontolo-

gies with instances initially stored in relational databases.

Various software tools and libraries exist to enable (1), e.g.

Jena [13], Protégé [8] and KAON [11]. All of these allow

storing OWL/RDF content in databases, making no differ-

ence between storage of OWL/RDF Classes and Individ-

uals. Both the conceptual specification (i.e. classes) and

the actual content (i.e. instances) of a semantic model are

made persistent following a native ‘triple-store’ approach

(i.e. in the form of subject-predicate-object tables). This

design choice is suitable for accessing and storing ontology-

specified content and is optimal for reasoning on the knowl-

edge base [20]. Yet, it is quite inefficient for accessing and
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querying individuals following traditional database tech-

niques and very cumbersome to build enterprise software

applications upon. However in the Semantic Web era, not

only reasoning on concepts will be necessary, but also rea-

soning at the instance level and efficient instance retrieval

[15]. Therefore, alternative kinds of OWL instances storage

that are optimized for indexing and retrieval are required.

Roldan Garcia and Aldana-Montes [15] propose alterna-

tive storage models based on generated relational database

schemata.

Tools are also available to populate ontologies with con-

tent from existing databases. E.g, the D2R translator and

server [3, 4] enables mapping an existing database schema

to RDF structures, which can be made available through

a web server, and also supports querying. The Protégé

DBOM plugin [6, 17] can be used for the same purpose.

The Dartgrid toolkit, which won the Best Paper Award at

the ”Semantic Web in Use” track at the 2006 International

Semantic Web Conference, is also worth mentioning. Dart-

grid is an application development framework including a

set of semantic tools that facilitate the integration of het-

erogenous relational databases using semantic web tech-

nologies [5]. Finally, Musa-K is another ontology-mediated

database querying platform [14] that employs advanced se-

mantics for integrating sparse data sources.

Several toolkits are available for translating OWL struc-

tures into Java classes for supporting coding of semantic

applications, apart the ontology development toolkits men-

tioned above. One of the first translators was the Protégé

Bean Generator [18], which transforms conventional frame-

based Protégé ontologies into Java source code for develop-

ing JADE agents [2]. Also, Protégé-OWL incorporates code

generation plugins that export Java source code follow-

ing the Eclipse Modelling Framework (EMF), the Kazuki

or the Java Beans conventions; cf. [16]. The RDFReac-

tor approach [19] is a toolkit for dynamically accessing an

RDF model through domain-centric methods (getters and

setters). A more sophisticated approach was presented by

Kalyanpur et.al. [10], that deals with issues as multiple in-

heritance. However, both of them still store the generated

instances as triple-stores.

3 A semantic programming architecture

Building upon these contributions, we propose a

semantic-rich development architecture that combines con-

ventional enterprise development software practices as En-

terprise Java Beans [7] and Hibernate object-relational map-

ping [9] for persisting the content of the generated java

classes.

To speed up end-user application coding in the con-

text of knowledge-based software engineering, semantic

modelling practices must interface with software devel-

Persistency Layer 

DB Storage

EJB Business Layer
End User Applications

(Server-Client Apps)

Knowledge Base Layer 

(OWL-enabled)
Reasoner

Hibernate

Java reflection

Figure 1. The semantic-rich programming

platform architecture

oper needs. In his vision of ontology-driven software de-

velopment, Knublauch [12] recommends that runtime ac-

cess to ontologies has advantages (related to the execu-

tion of reasoners), however it should be combined with

object-oriented source code generated from OWL, so that

ontology-defined structures can be smoothly integrated with

object-oriented code. Going a step further, Knublauch en-

visions a programming practice that instead of relying on

UML defines the domain model in OWL.

A semantic-rich programming platform needs to syn-

thesize the appropriate tools for each task: OWL models

for expressing rich semantics and connecting to an exter-

nal reasoner for logical operations, Enterprise Java Beans

for end-user application development, and normalized rela-

tional databases for content persistence. These three layers

can be combined all together in a semantic-rich develop-

ment architecture presented in Fig. 1.There are two modes

of operation in such an environment, explained below.

On one hand, starting from the higher level of semantic

modeling, we can generate code automatically, using con-

ventions presented in the following section. Assume that an

ontology is given, that specifies the conceptualization of a

domain. Part of this semantic model specifies the concepts

involved, and can be translated into data structures and en-

tities specifications, while a second part defines the logics

that pertains to these concepts. Based on the data struc-

ture specifications of the domain ontology we can generate

both the programming interface and a normalized persis-

tence storage in a database. This part is detailed in sec-

tion 4. Having generated both the programming interface

and the relational schema, the platform enables a semantic-

rich framework for software development.

On the other hand, by keeping track of the original OWL-



Classes used for the generated programming interface (e.g.

through Java reflection), we can connect the generated java

objects back to the semantic layer (i.e. in the knowledge

base) and apply a reasoner on them. So for example, we

can classify an object of a generated Java class according

to ontology-defined classifications that were not present in

the knowledge base when source code was generated. In

this way, we consider the formal specifications of domain

knowledge expressed in a semantic model using description

logics, as an upper layer for storing part of the business in-

telligence that can be updated at runtime, without affecting

the conventional APIs for coding and application develop-

ment.

4 From OWL models to coding interfaces

and relational database schemes

Though it is known that the notion of an individual in

an ontology is semantically different from the definition of

a class instance in object-oriented programming [10], we

have pointed out the added value of using standard APIs

for end-user application development. Here we show how

from an OWL ontology we may generate a programming in-

terface using Enterprise Java Beans with Hibernate object-

relational mappings for database persistence.

4.1 From OWL Classes to Java Classes
and Entities

In a relational representation of an ontology, each OWL

Class typically represents one entity. However, an OWL

Class pertains to both the data structure and the Descrip-

tion Logics of entities. It is quite common to have OWL

classes that do not assign additional data properties to their

father class, but only specify restrictions. These classes are

mainly intended for defining classifications for categorizing

the instances of the father class. Similarly, we may have a

class that inherits more than two classes, i.e. simply defin-

ing a union of several ancestors. Such union classes in-

clude the anonymous classes used to define owl:Property

domains and ranges. Both these ontology patterns are con-

sider part of the “business” logic of the ontology, and do not

contribute axioms of relevance to the relational model, that

aims to persist the ontology-defined data structures.

We consider eligible for persistent storage only those

non-anonymous OWL classes that contribute with addi-

tional attribute specifications in the class inheritance. Each

of those classes is considered to represent an entity and

is assigned to a database table. To give an example, for

an OWL Class cs:Person defined as <owl:Class

id="cs:Person"> a unique relation is defined for per-

sisting its instances: csPerson=(id), where id is the

unique identifier of each stored instance, therefore a pri-

mary key of table csPerson. The table csPerson will

be extended with attributes and relations that derive from

the OWL Properties of Class cs:Person.

Properties in OWL can be (a) Literal properties and

(b) Object properties. Literal properties (defined through

owl:DatatypeProperty) define data attributes of an

entity, while object properties (owl:ObjectProperty)

assign relations among tables. In the following we present

how OWL properties can be mapped to table attributes and

relations.

4.2 Literal properties

Literal properties simply specify data type attributes of

an entity. We identify two cases, depending on the cardinal-

ity constraint of the property. Note that there in OWL there

are two ways of specifying the cardinality constraint.

I-a: Functional or single-cardinality literal property
A literal property with a maximum cardinality restriction
equal to one defines a unary attribute within the relation of
the entity (i.e. the table of the OWL Class). Following the
above example of class cs:Person, the functional prop-
erty called cs:name:

<owl:DatatypeProperty rdf:ID="name">

<rdf:type

rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

is assigned as an attribute to the Person relation:

csPerson=(id,name).

The specified JavaBean would look as the following one:

getID()
setID(Long id)
getName()
setName(String name)

Long id
String name

Person

I-b: Multiple cardinality literal property A literal prop-
erty of multiple cardinality identifies a multi-valued at-
tribute of an entity, dependent only upon the primary key.
Multi-valued attributes in normalized database systems are
implemented as associate entities, through an one-to-many
relationship. In the cs:Person example, lets include a
literal property cs:phone as:

<owl:DatatypeProperty rdf:ID="phone">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

without any additional cardinality constraints. In this case,
an associated table is needed for storing the list of phones
of each person through an one-to-many relationship.



csPerson=(id,name)

csPerson phone=(id,phone)

fkey: id=csPerson.id

At the programming level the phones of a person will be

accessed as in the the following JavaBean:
Person

getID()
setID(Long id)
getPhone()
setPhone(Set<Integer> name)

Long id
Set<Integer> phone

4.3 Object properties

OWL object properties specify relationships among

OWL classes, which can be translated into relationships be-

tween entities in the relational schema. We identify two

kinds for object properties in OWL, based on whether there

is an inverse property defined or not. Note that there is a

semantic difference in the definition of a functional prop-

erty in OWL and in relational databases: in OWL, a func-

tional property implies a universal (cross-concept) cardinal-

ity constraint equal to one. In a relational database, a func-

tional field implies that a value is required for each tuple

(i.e should not be null). In the following, we consider func-

tional OWL properties as properties with a singular cardi-

nality constraint.

4.3.1 Non-inverse properties

II-a Non-inverse functional (singular cardinality) object
property An non-inverse functional of singular cardinal-
ity object property can be translated as one-to-one unidi-
rectional relationship, which is added as an attribute in
the owning entity. For example, let cs:Person have
a functional property birthplace with range of type
cs:Location, as shown below:

<owl:ObjectProperty rdf:ID="birthplace">

<rdf:type

rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Location"/>

</owl:ObjectProperty>

This property can be stored in a relational schema as:

csPerson=(id,birthplace)

fkey: birthplace=csLocation.id

csLocation=(id,...)

Using the Person JavaBean shown below, the birthplace

property can be accessed as:

getI
setI
getBirthplace()
setBirthpalce(Location birthplace)

Long id
Location birthplace

Person

getID()
setID(Long id)

Long id
Location

II-b Non-inverse object property In the general case,
an non-inverse multi-cardinality object property defines a
many-to-many unidirectional relationship between two en-
tities. For example, an object property hasAddress may
associate each cs:Person class to several cs:Address
classes (we assume here that the cs:Address is not aware
of its inhabitants).

<owl:ObjectProperty rdf:ID="hasAddress">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Address"/>

</owl:ObjectProperty>

In a normalized database, this relation can be implemented
using an intermediate relationship table, as:

csPerson =(id,...)

csAddress=(id,...)

csPerson hasAddresses=(person,address)

fkey: person=csPerson.id,

address=csAddress.id.

These tables are accessible through Hibernate using the

Person and Location JavaBeans:

getI
setI
getAddresses()
setAddresses(Set<Address> addresses)

Long id
Set<Address> addresses

Person

getID()
setID(Long id)

Long id
Address

4.3.2 Inverse object properties

Using the owl:inverse-of declaration we can specify

relationships among OWL classes, that are bi-directional,

i.e. can be accessed by both entities involved. This does

have an impact on the schema of the database, has impli-

cation on the cascading of commands, as delete, insert and

so on, and for the programming interface. Here we identify

three kinds of relationships:

II-c Functional (singular cardinality) property inverse
of a functional (singular cardinality) property specifies
an one-to-one bidirectional association. This can be imple-
mented similarly with one-to-one unidirectional association
in the DB level. However now it specifies one property in
each Java class, i.e. there are two entry-points to this piece
of information. To give an example, let’s imagine that each
cs:Person is able to own up to one Cat. We specify two
properties cs:owns and cs:hasOwner, as:

<owl:ObjectProperty rdf:ID="owns">

<rdf:type

rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Cat"/>

<owl:inverseOf rdf:resource="#hasOwner"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOwner">



<rdf:type rdf:resource=

"&owl;InverseFunctionalProperty"/>

<rdfs:domain rdf:resource="#Cat"/>

<rdfs:range rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#owns"/>

</owl:ObjectProperty>

In this example,the owl:FunctionalProperty con-
struct is used for OWL code simplicity, instead of a car-
dinality constraint. The content of both cs:owns and
cs:hasOwner properties can be stored simply as an extra
attribute of any of the two entities, as:

csPerson =(id,...)

csCat=(id,person,...)

fkey: person=csPerson.id

Or alternatively can be realized as an intermediate table
which has as a primary key a unique combination of per-
son and cat ids.

csPerson =(id,...)

csCat=(id,...)

csPerson owns=(person,cat)

fkey: person=csPerson.id

cat=csCat.id

Either of the two is the DB schema, the Person JavaBean

will have an attribute called owns that will refer to a Cat

object and the vice versa, as:

getI
setI
getOwns()
setOwns(Cat cat)

Long id
Cat owns

Person

getID()
setID(Long id)
getOwner()
setOwner(Person person)

Long id
Person owner

Cat

II-d Functional (singular cardinality) property inverse

of a non-functional property In this way we specify a

bi-directional one-to-many relationship, that can be imple-

mented with an intermediate table, which has a primary key

only the id of the entity at the singular side of the relation-

ship.
In the same example as in the previous case, let’s allow

each cs:Person to own several cats, while each cs:Cat
has only one owner. In OWL this relationship is expressed
as:

<owl:ObjectProperty rdf:ID="owns">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Cat"/>

<owl:inverseOf rdf:resource="#hasOwner"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOwner">

<rdf:type

rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Cat"/>

<rdfs:range rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#owns"/>

</owl:ObjectProperty>

In a relational schema we need have an associate ta-
ble to store this relation that has as primary key only
person=csPerson.id, for expressing an one-to-many
relationship as:

csPerson =(id,...)

csCat=(id,...)

csPerson owns=(person,cat)

fkey: person=csPerson.id

cat=csCat.id

In the JavaBean level, the Person class has an attribute

owns that refers to a set of Cat objects.

getI
setI
getOwns()
setOwns(Set<Cat> cat)

Long id
Set<Cat> owns

Person

getID()
setID(Long id)
getOwner()
setOwner(Person person)

Long id
Person owner

Cat

II-e Object property inverse of a object property In the

generic case that there are not any cardinality restrictions,

two inverse object properties define a many-to-many bidi-

rectional relationship. Following the previous example of

Person and Cats, lets assume that a Person may own many

Cats and a Cat could have several owners. This is expressed

in OWL as:

<owl:ObjectProperty rdf:ID="owns">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Cat"/>

<owl:inverseOf rdf:resource="#hasOwner"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOwner">

<rdfs:domain rdf:resource="#Cat"/>

<rdfs:range rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#owns"/>

</owl:ObjectProperty>

The many-to-many relationship is stored in a normal-

ized database through an associate entity that has for-

eign key references to both person=csPerson.id and

cat=csCat.id, as:

csPerson =(id,...)

csCat=(id,...)

csPerson owns=(id,person,cat)

fkey: person=csPerson.id

cat=csCat.id

Finally, through object-relational mapping these tables

can be accessed by Person and Cat JavaBeans that

expose the attributes Set<Cat> and Set<Cat> respec-

tively.

getI
setI
getOwns()
setOwns(Set<Cat> cat)

Long id
Set<Cat> owns

Person

getID()
setID(Long id)
getOwner()
setOwner(Set<Person> person)

Long id
Set<Person> owner

Cat



5 Discussion

We have implemented a translator that generates pro-

gramming interfaces as Enterprise Java Beans and Hiber-

nate object-relational mappings from OWL ontologies. The

translator is a plugin for the integrated knowledge manage-

ment toolkit ThinkLab1 and is available online2. The pre-

sented semantic-rich programming framework is currently

used in the Seamless-IP project for linking agronomic mod-

els and environmental data across scales and disciplines,

using ontologies. In the current implementation multiple

inheritance in OWL is implemented using interface imple-

mentations in object-oriented modelling, while properties

inheritance is not supported. A demonstration applied in

modelling farming systems and management alternatives of

a farm household is presented in [1].

Future efforts will concentrate on issues related to clas-

sifications, inheritance and polymorphism, while a persis-

tence plugin for Protégé-OWL may be developed.
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