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Abstract
The limited reuse of current environmental software can be blamed
in part on the tools used to develop it; the use of generic-purpose
programming languagesmakes it particularly hard. As environmen-
tal scientists strive to prioritize the clear statement and communica-
tion of the semantics of natural systems in favor of understanding
software implementations of their models, Domain-Specific Lan-
guagesmay come to help, offering the option of truly declarative en-
vironment for environmental modeling. This paper discusses some
key requirements and concepts for developing Domain-Specific
Languages that can inform and streamline environmental model-
ing, and previews some use scenarios using examples from a DSL
in development.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Specialized application languages; D.2.12 [Software
Engineering]: Interoperability; D.2.13 [Software Engineering]:
Reusable Software; I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods

Keywords Environmental modeling; domain specific languages;
ecoinformatics; software interoperability; software reuse; semantic
modeling

1. Introduction
Environmental assessment and ecosystem service valuation are
calling for integrated tools that can be relatively easily improved,
and making them more transparent to a wide audience, varying
from decision makers to the general public [40]. In our knowledge-
driven society, science remains hidden in environmental data and
software, while still requires to become openly available. At the
same time environmental decision-making is required to become
more transparent, supported by both evidence (data) and arguments
(models).
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We argue that significant limitations of the current systems and
practices arise from the tools used, and specifically from generic-
purpose programming languages. Environmental scientists have
strived for many decades to express environmental data and theory
with general-purpose tools, and practice has proved that this is not a
straightforward task. Nature’s complexity seems not to be easily ex-
pressed with mainstream programming models that have become
prevalent during past decades. Experience drives us to conclude
that existing languages and tools make statements too complex for
environmental problems, as they introduce pleonasms, redundan-
cies, and boundaries in verbose expressions about Nature, putting
a spoke in science’s wheel. Seems like environmental modeling is
trapped by tools that don’t match the needs, a situation that resem-
bles the golden hammer anti-pattern [11].

To improve this situation, new paradigms and tools are required
for determining how complex problems are perceived, formalized,
and communicated. The compartmental study of Nature may lead
us to biased forecasts and false conclusions, thus sound model
integration is required more than ever to address complex issues
(i.e. how climate change may affect food security).

In this paper, we study the key requirements for developing
Domain-Specific Languages (DSL) for environmental modeling
and discuss pros and cons. A DSL that could directly encode mod-
eling knowledge into software artifacts would have a tremendous
impact on model integration and collaborative science, by enabling
the automation and verification of the compositions, opening new
pathways for the future.

In the following Section 2 we present methods and tools for our
research: We present environmental modeling and software con-
cepts, and current practices researches employ for reusing envi-
ronmental software. Then we present how the environmental do-
main imposes key requirements for software reuse, and what was
achieved with knowledge-driven approaches. We also provide with
a brief overview of DSL practices. Then in Section 3 we present key
requirements for a DSL for environmental modeling and present a
couple of examples in the form of user stories. The paper concludes
with a discussion on expected benefits of our approach.

2. Methods and Tools
2.1 Environmental models and frameworks
Environmental models are scientific abstractions of Nature and its
behavior, and environmental software allows them to be used for
computerized simulation, optimization or decision support. Soft-
ware implementations are the tools of the scientists for answer-
ing such questions through in-silico experiments for ex-ante assess-
ments. Efficient management and reuse of environmental software



is the key to maximize the returns of environmental modeling in-
vestments and ensure that domain complexity is treated effectively.

When an environmental model is encoded in a programming
language, new limitations are introduced compared to the origi-
nal modeling assumptions. Hardly ever these assumptions can be
represented directly in the implementation language of choice; on
the contrary, this knowledge resides with the modelers. Employing
procedural abstraction as binding contract is rarely employed ef-
fectively, and documenting these specifications happens rarely in
practice. To make things worse, during the last decades, a number
of models have been designed and implemented, and it has become
natural to assemble them together in order to address more complex
problems than the original. Environmental modeling and software
are challenged to deal with complexity, uncertainty, scaling and in-
tegration issues, all qualities inherited from the physical world.

Integrated assessments are becoming increasingly common in
environmental management and therefore scientists are faced with
the problem of integrating models across scales and disciplines.
This is not a straightforward process, and integration of environ-
mental software is not the sole necessary condition for a proper as-
semblage of models, and credible science. Today, integrated mod-
eling is mostly focused on the mechanics of the integration, through
computerized e-science tools for managing data and software to as-
sist scientists with the technical linking ofmodels to create scientific
workflows [4, 13, 15, 25, 28].

2.2 Current practices: frameworks for reuse
Environmental modeling frameworks (e.g. CCA [5], TIME [34],
ESMF [12], OpenMI [10], and OMS [3]) written in general-purpose
programming languages, as Fortran, C, MATLAB, Java, or GAMS,
are used by scientists to implement environmental models, and
typically offer an Application Programming Interface (API) that
implements routines tailored to environmental modeling needs.

While they allow the management, reuse and integration of
mathematical models from various disciplines and at different
spatio-temporal scales, these solutions tend to be heavyweight and
maintenance-intensive [26]. Also, the actual reusability of models
is often left to the modeler’s own discipline and responsibility to
structure a complex model with smaller reusable components [38].

On top of this, modeling knowledge is very poorly incorporated
into software implementations. Model interfaces embrace a criti-
cal amount of the modelers knowledge, but their software imple-
mentations are poor reflections of modelers’ perceptions, as they
fail to represent the complexity of model assumptions in software
terms [6]. Many environmental models relate to the structure of the
systems they represent only partially. In fact, very few models can
serve as an explanation of the modeled processes: the understand-
ing of the system is usually implicit and typically resides outside the
model specification and implementation. As a result, the purpose of
models is typically restricted to the specific application they have
been developed for; the potential for reuse, communication and in-
tegration with data and other models is limited [45]. In the environ-
mental modeling community, often it is perceived to be easier to
(re)create a new model than to take an existing one and adapt it to
new needs [20].

An environmental model, as an abstraction aimed to an expres-
sive and parsimonious representation of the complexity of the real
world, approaches its subject from a specific point of view, reflect-
ing simplifying assumptions about the phenomena involved. There-
fore, it simplifies the full extent of causal chains and driving forces
of the phenomena of interest, to the benefit of simplification, fo-
calization and modularization. Environmental software implemen-
tations introduce even more limitations (for instance, data ranges
may be discretized).

Environmental software states the assumptions made for build-
ing it only in an implicit manner, which requires experts to be un-
derstood. For instance, the spatial discretization of a model variable
can only be inferred by a close inspection of the data type used to
implement it [6]. Furthermore, for integrated assessments, existing
environmental software needs to be integrated across scales and dis-
ciplines. For example, the AgMIP initiative aims to integrate agri-
cultural models with climate scenarios.

2.3 Domain introduces requirements for reuse
Sound integration and reuse of existing models and software is a
bottleneck for integrated modeling activities, and key factor of the
overall project success. This resonates with priorities in Software
Engineering, that promotes the concepts of reusing components off-
the-shelf [16], distributed computing [7], agent-based computing
[27], service-oriented architectures andweb services [17] to support
the development of modular applications. The very same concepts
are meant to be used to develop modular and integrated environ-
mental software applications.

However, software integration is not the sole necessary condi-
tion for proper assemblage of environmental models. If a set of
(good) environmental software components is working together,
this is not at all a sign that the compoundmodel will make any sense
from a modeling point of view and generates credible results. Prior
research has targeted quality assurance issues in the integration of
environmental models [21, 36], but focusedmainly on the quality of
the modeling process, not the role of the software. General-purpose
software engineering methods for component integration are not
enough to ensure sound integration for enabling collaborative sci-
ence.

Environmental softwaremay (and should) embody sophisticated
statements of environmental knowledge. Yet, the knowledge it in-
corporates is rarely self-contained enough to be understood and
used –by humans or machines– without the modeler’s mediation
[45]. Inspired by the declarative programming approaches that be-
came popular in the 80’s, declarative modeling has been suggested
as a remedy for the “black box” nature of self-containedmodels [22,
32, 39, 48]. Graphical languages, as Simile [33] and STELLA [37],
support for fairly self-explanatory model statements and greatly
enhanced readability of model components. However, they have
mostly remained focused on syntactic aspects rather than semantics,
thus making them unsuitable for large-scale model reuse. Model in-
tegration in software terms does not guarantee sound integration of
the model logics [6] and declarative modeling is no exception on
this trend [45].

2.4 Incorporating domain knowledge
A possible remedy to the problem appears to be knowledge-based
computing, which requires a paradigm shift in the way environmen-
tal scientists think about modeling.

Semantic modeling in environmental sciences demonstrated its
potential with the mediation approach, where formal knowledge is
the key to automatic integration of datasets, models and analytical
pipelines. The next step, applied on experimentally at this stage, is
the knowledge-driven approach, where the knowledge is the key
not only to integration, but also for overcoming scale and paradigm
differences, and automated knowledge discovery. For an in depth
discussion refer to [46].

Despite the clear potential offered by semantic modeling for
environmental sciences, only limited case studies are available,
i.e IMA [43], ESD [44], SEEK [28, 29], and ARIES [46]. The
feasibility of wide adoption of the approach remains to be seen in
the coming years. However, without suitable tools and languages,
the paradigm shift required would carry a cost too significant for
widespread adoption.



Domain-specific programming languages (DSLs) may become
important in achieving these goals. The success of a DSL for envi-
ronmental modeling depends on its capacity to formalize and incor-
porate the semantics of natural systems, to unify representations of
data and metadata, improve their usability in scientific workflows,
and ease the definition and composition of dynamic models.

2.5 Domain-specific languages: concepts and tools
Domain-specific languages are programming languages tailored to
a specific application domain. ‘They offer substantial gains in ex-
pressiveness and ease of use compared with general-purpose pro-
gramming languages in their domain of application, with corre-
sponding gains in productivity and reduced maintenance costs’
[30]. DSLs are considered ‘enablers of reuse’, as they offer several
benefits over APIs, including appropriate domain-specific syntax
and notation, constructs and abstractions, and built-in functionality
for analysis, verification, optimization, parallelization, and trans-
formation (AVOPT).

DSLs do not just hide complex designs of general-purpose pro-
gramming languages, and impose good coding practice to their
adopters, but implement structures and offer features that are not
straightforward to implement with general-purpose programming
languages. DSLs overcome the shortcomings of API libraries, such
as limited domain-specific notations and the inability of domain-
specific analysis, verification, optimization and transformation that
restricts their usefulness [24].

Ideally, a DSL follows the domain abstractions and semantics as
closely as possible, letting developers perceive themselves as work-
ing directly with domain concepts [41]. The past few years, DSLs
have become a popular trend in software engineering, also thanks
to new methodologies and tools that allow developing them with
ease [41]. For example, Xtext [9] covers all aspects of a complete
language infrastructure, from parser through linker, compiler or in-
terpreter, to fully functional integrated development environments.

3. DSL for environmental software
3.1 Key requirements
A Domain-Specific Language for environmental modeling repre-
sent a step ahead of the state-of-the-art in environmental software.
By incorporating domain knowledge into programming constructs,
it may offer a programming environment which will essentially turn
environmental modeling into a scientific activity ‘as it once was’.
Environmental scientists equipped with a DSL are enabled to con-
centrate on their domain-specific modeling problems, letting im-
plementation issues to be taken care of the programming language
environment.

Several Domain-Specific Language for environmental model-
ing are already (or soon will be) developed. Some may focus on
certain disciplines, others may target specific modeling paradigms
or frameworks. As there is an underling layer of common needs pre-
sented above in Section 2, these languages may incorporate some
of following features:

1. Domain-specific data structures that describe units and quanti-
ties, accuracy, spatial and temporal scales and extents, quality
and provenance information of data sources and results. Sepa-
rate logical models of observable entities and their observations
can be used to enable a novel, sophisticated approach to seman-
tic representation of environmental data sets.
These developments may be founded on previous work for
defining semantics of environmental terminology as SWEET
[35, 42] and ARIES [46], and adopt Dublic Core standards [1]
for Open Archives principles [2] for metadata sharing.

2. Semantic annotation of interfaces decorated with rich metadata,
that incorporate model assumptions, pre- and post- conditions,

and prerequisites for reuse, in machine-readable formats, with
the goal to support model chaining in scientific workflows.
This may take advantage of previous work on decorating model
interfaces, either as components or services, as discussed in
[14, 19, 20, 23].

3. Typical operations, such as scaling, averaging, interpolation or
unit conversions, should be intrinsic features of the language,
not requiring user attention through method calls.
For example, the language may be able to intelligently aggre-
gate quantities across differently scaled observations, properly
distinguishing between intensive and extensive quantities.

4. Support for different modeling paradigms, able to be cross-
compiled for different environmental modeling frameworks, en-
suring backwards compatibility. Common modeling paradigms
as system dynamics, probabilistic modeling, agent-based mod-
eling, and black-box modeling (as bayesian, or neural net-
works), need to be considered.

5. Account for modeling uncertainty and quality information,
through build-in computations with confidence intervals (or
distributions) in order to incorporate different sources of uncer-
tainty (i.e. random sampling error and biases, noisy or missing
data, approximation techniques for equation integration, projec-
tions of alternative futures, etc).
For example, standard error propagation may be built in the lan-
guage: given two variables x and y, represented as mean/vari-
ance pairs (µx, σ

2
x)and (µy, σ

2
y) respectively, their difference

x− y should be calculated (µx − µy, σ
2
x + σ2

y)
6. Model transparency and defensibility of results support with vi-

sualization to justify model results. Results may be associated
with a history of operations on original sources, that documents
its provenance, and document property rights, or quality assur-
ance. This may build upon previous work on provenancemodels
for e-science using Semantic Web tools [49] or the Open Prove-
nance Model [31].

Last but not least, an appropriate Integrated Development Envi-
ronment (IDE) needs to support the use of the language, comprised
from a coding and a graphical environment. Also, a very important
component of success for the success of such an endeavor is the
development of training material and documentation, that need to
account from simple to complex models and for diverse categories
of end-users ranging from scientists with no-programming experi-
ence to experienced environmental modelers.

3.2 Use scenarios
In the past three years we have developed a DSL primarily targeting
ecosystem service valuation [47], as the enabling infrastructure for
the ARIES framework [46]. The language, still in development,
exhibits many of the characteristics we discussed in the previous
section, and we use it below for exemplifying some scenarios of
use, in the form of user stories.
Story 1: Semantics for data annotation: Consider an environmen-
tal scientist that has put together a dataset on buffalo population.
Assume that data has been stored in some format; it may be a web-
site, a database, FTP or some other service. Its annotation with rich
semantics may look like the following example:

model wcs(service = "http://eco.logismi.co/wcs",
id = "BF")

named buffalo
as count livestock:Buffalo per kmˆ2
with metadata {
dc:description "FAO Gridded Livestock Dataset"
dc:rights "cc-attr-nomod"
dc:source "http://www.fao.org/..."
im:distribution "public" };



While the statement above resembles the annotation of a web ser-
vice, it is far more expressive, as it contains three major parts: a) the
query part that specifies how to technically retrieve the data from
a WCS server, b) the observation semantics part which links these
data to a concept of a livestock ontology and declares units, and
spatial and temporal reference, c) the metadata part that contains
information on resource provenance, licensing and reuse.

The language framework is equipped with domain-specific data
structures, that enable the application of typical operations as unit
conversion, scaling, interpolation, etc, and the semantic media-
tion among different schemata. Common operations as retrieving
a WCS layer from a map server is abstracted and connection im-
plementation is left to the language. At the same time, it accounts
for quality information and provenance metadata, while it has clear
contracts for reusing this dataset.
Story 2: Simple modeling activities: Simple environmental mod-
els are often defined via simple methods as:
a) rule modification from an existing model, which can essentially
be considered an argument passing or a filter operation,
b) specification from a generic model, which resembles subclasses
with the factory pattern.

Consider that the flood risk in some study was defined by a
simple rule, as:
model SimpleFloodRiskModel
as classification risk:FloodRisk
observing (geo:Elevation in m) named elevation
on definition

set to 'low' if [elevation > 100]
'med' if [elevation <= 100

and elevation > 20]
'high' if [elevation<=20]

In the examples above, model inputs and outputs are associated
with concepts in an ontology (respectively FloodRisk and Ele-
vation), which enables the language system to subsequently com-
pose and reuse the model with automated type checking, validate
model chains and composition. This may be enabled by reasoning
on the model semantics using Description Logics [8].

In a second example, consider a case where models may be
applied dynamically, at runtime, based on a rule that refers to data
values, or spatiotemporal context as for example in:
define SOUTHERN_ROCKIES
as space(shape = "EPSG:4326

POLYGON((-109.25 41.25, ...");

model soil:SurfaceErosion
observing (Slope as measure geo:Slope in °)

named slope
as

models.soil-loss-equation-model
if slope < 9.17,

models.bayesian.soil-erosion-steep-usa
if in SOUTHERN_ROCKIES,

models.bayesian.soil-erosion-steep-global
otherwise;

The model rule is declared as a case statement that incorporates se-
mantically rich ‘variables’ that refer to concepts in an ontology and
have units, or to regions defined as polygons, thus allowing the lan-
guage system to apply the model on any dataset that provides with
the same concept, and mediate with typical operations as scaling
or unit conversion. At the same time, the model is prescribed in a
declarative fashion, that allows the language system to reform it into
a query, and search for data that satisfy the model requirements.

While the language being developed is far more expressive in
its full capacity, extending to the handling of multiple scales of

space/time in an agent-based paradigms, it is beyond the scope
of this paper to provide with more details at this stage. Readers
shouldn’t hesitate to contact the authors for further details.

4. Expected benefits and discussion
The case studies discussed exemplify the interdisciplinary and mul-
tidisciplinary character that may determine the success of environ-
mental DSLs. Joining perspectives in software engineering and en-
vironmental modeling in a language, and harnessing the combined
powers of knowledge representation, artificial intelligence and on-
tologies, such efforts may help open new perspectives and inte-
gration opportunities in environmental sciences and ecology. Be-
sides the benefit of introducing a new integrative paradigm for envi-
ronmental modeling to the environmental sciences, agriculture and
ecology, it is also aimed to:

i) benefit the software engineering community by evaluating ex-
isting methodologies and test patterns for DSL development;

ii) provide a performant, yet realistic testbed for DSL engineer-
ing bringing forth issues of performance, parallelization and dis-
tributed computing;

iii) advance the notion of semantic modeling as a new paradigm
for environmental modeling where all concepts used to model
natural systems are explicitly defined by ontologies.

Even if DSL development is considered a hard undertaking, re-
quiring both domain and language development expertise, the state
of the art in DSL development methodologies is been advanced
enough to support domain specific design [18]. From our experi-
ence so far, we realized that DSL development is not a simple se-
quential process: ‘preliminary analysis may have to supply answers
to unforeseen questions arising during design, and design is often
influenced by implementation considerations’ [30]. However, these
problems is well attained by the software engineering researchers
and several patterns to address them have been identified, that cover
the whole process from domain analysis, to DSL design, implemen-
tation and deployment, as the methodology of Mernik et al (2005)
[30], and open source tools for DSL development as [9] can be
proved useful.

We acknowledge that it is extremely important to engage early
domain scientists in the language development, and we have done
so by organizing an annual Spring University on Ecosystem Service
modeling in Bilbao1, during which we introduced the language, had
training sessions and got feedback on its development from our
students, who used it formodeling their course projects. This proved
to be an excellent testbed both for the design and the implementation
of our DSL.

The time has come for environmental scientists to need to invest
less in understanding software implementations of their mod-
els, and focus more in the semantics of natural systems in order
to produce useful models. During the past 40 years, environmental
modeling efforts, using general-purpose languages led to a babel of
software components that are used only by their owners and have
no capacity for reuse. Knowledge resides with the modelers, and
software is useless without the heavy intervention of experts, that
interpret it. A DSLmay offer the first truly declarative environment
for environmental modeling, that will go beyond the model syntac-
tics and account for semantics.

1 For more on the International Spring University on Ecosystem Ser-
vice modeling see the school website: http://www.bc3research.org/
springuniversity/

http://www.bc3research.org/springuniversity/
http://www.bc3research.org/springuniversity/
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