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Abstract  
 
The aim of this study is to compare the performances of different data driven methods for 
their ability in early detection of clinical mastitis. Many scientific papers on data driven 
methods for early mastitis detection have been published in the last decade. The 
performances vary greatly as well as the  data use, time window, and gold standard 
definition. To be able to compare the performances of these data driven methods, this 
study applied various data driven methods including time series filtering and 
classification methods (i.e. Naïve Bayesian networks and Random Forest) under similar 
conditions. Forecast errors and filtered means of the time series models were used to 
distinguish mastitis cases from non-cases. Moreover, we focused solely on electrical 
conductivity (EC) measures of milk to detect clinical mastitis. Data for this study were 
provided by Lely Industries and originate from 57 farms in six different European 
countries with a total of 1,094,780 cow milkings with EC measurements at quarter milk 
level. It is hypothesised that the performances with respect to mastitis detection will differ 
substantially between the different methods, and that the ranking of methods is not 
consistent across different datasets. Despite, our preliminary results suggest that the 
performances of Naïve Bayesian networks and Random Forest do not vary much. The 
various filtering methods also present similar results. Although our naive approach of data 
handling allows us to compare different methods, we expect that each method in itself 
will improve when other variables than EC are included. 
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Introduction 
 
Sensors generate a large amount of data, but as such do not provide any information on 
which decisions can or should be taken. With the development of mastitis sensor systems, 
an increasing number of scientific papers on early mastitis detection are being published 
(Hogeveen et al., 2010), and various data driven methods are applied to translate sensor 
data into useful information for mastitis detection (Dominiak and Kristensen, 2017). Not 
only do these publications report a wide range of applied methods, but they also use a 
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wide variety of gold standards for mastitis, time windows for detection, and the selection 
of sensor data. This makes the studies difficult, if not impossible, to compare.  
 
Timely detection of mastitis is of interest from an animal health and welfare perspective, 
but also plays an important economic role. Milk electrical conductivity (EC) is the most 
commonly used sensor data to detect clinical mastitis (De Mol, and Ouweltjes, 2001; 
Khatun et al., 2017). But also other sensor data like milk colour, somatic cell count, and 
milk yield have been used to classify abnormal milk, often caused by clinical mastitis 
(Ebrahimie et al., 2018). For the early detection of mastitis, alerts need to be generated. 
This is commonly achieved by applying methods that can produce an alert when the 
measured sensor data (that are considered a proxy for cow health status) deviates from 
the expected measurements (being a proxy for a normal, i.e. healthy status).  
 
In the search for a perfect alert (that is, all mastitis cases receive an alert in time with 
100% positive predictive value) a combination of different data driven methods have been 
used. Roughly we can distinguish three method families: filter methods, transformation 
methods, and classification methods. Filtering is a pre-processing method that defines, 
detect and correct errors of raw sensor data to minimize the impact of these errors on the 
succeeding subsequent analyses. Filtering methods are used to, remove noise from time 
series measurements and thus highlight the underlying trends from a signal and estimate 
the true underlying value. Transformation methods are also referred as a pre-processing 
step which makes input data more amendable by changing a range of number from one 
representation to another. Filtering or transformation methods to the data can result in 
more suitable parameters to be used for classification. Classification methods are used to 
convert the sensor data into and alert for mastitis detection.  
 
The accuracy of the classification methods are evaluated by calculating the specificity 
(Sp) and sensitivity (Se), which are statistical measures of a binary classification test. 
Studies report various performance levels, ranging between 69-99% for Sp and 32-100% 
for Se (Hogeveen et al., 2010, Dominiak and Kristensen, 2017). Most of these studies 
used a combination of sensor and non-sensor data. When based solely on sensor data, the 
detection of all clinical mastitis cases, with a manageable number of false positive 
attentions, is challenging.  
 
Improving the performances of classification methods can be achieved by combining 
different data sources and changing the time-window. The objective of this paper is to 
evaluate the performances of several data driven methods for the early detection of 
clinical mastitis under similar conditions (i.e. data input, data selection criteria, time-
window and gold standard). With this paper we want to strengthen the knowledge on the 
performance of different methods in relation to mastitis detection.  
 
Material and methods 
 
Data management 
For this study we used sensor data on EC and somatic cell count (SCC), which had been 
automatically recorded using Lely milking robots, along with information to identify the 
individual cow and the herd it came from. Lely Industries (Maassluis, the Netherlands) 
provided these data.  



 
We included a total of 296,501 records from 344 individual cows, encompassing 57 farms 
in four different European countries. Each individual cow was only represented with a 
single lactation. The included records were all made on days in milk (DIM) between 4 
and 305. Only cows where SCC had been recorded at least once per week during this 
period were included in this study.  
A SCC above 150,000 cells/mL was considered elevated for primiparous cows, and 
250,000 cells/mL was considered elevated for multiparous cows, in accordance with 
Dutch standard practice based on the paper by Schepers et al. (1997). A cow was defined 
as having a mastitis event (ME) based on Kamphuis et al. (2016): at a given observation 
time if at least two of the three most recent milkings showed elevated SCC. A single 
mastitis event was not limited to three consecutive milkings, but could continue as long 
SCC is elevated. The ME start at the milking where  SCC is elevated for the first time, 
and ends at the last observation of elevated SCC, followed by four observation without 
SCC elevation.  
 
From the 344 cows, 19 cows did not experience any ME. The cows, which did experience 
mastitis at least once (N = 325), were divided into a training set for training different 
classification methods, and a test set for testing the models. This division was based on 
farm, where 2/3 of the farms were randomly selected to be used in the training set, and 
the remaining 1/3 were used as the test set. This division by farm was done to ensure 
independence between training and test data.  
 
Time series filtering 
For this study, we implemented a total of four different time series filtering methods, 
which are commonly used in the scientific literature relating to precision livestock 
farming. These filtering methods were optimized on the 19 cows without any ME in their 
lactation. The filtering methods were, in order of increasing complexity: 1) a moving 
average (MA), 2) an exponentially weighted moving average (EWMA), 3) a univariate 
dynamic linear model (DLM), and 4) a multivariate DLM. These were all implemented 
in R (R Core Team, 2017). Each of the filtering methods was optimized by finding the 
value of the relevant variables (see below), which minimized the root of the mean squared 
errors (RMSE) when applied to the filtering optimization data.  
 
Moving Average (MA) 
At each time step, the filtered value, 𝑧𝑡, is defined as the simple mean of the n most 
recently observed values, with n being a predefined integer value called the "window 
length". The forecast for the observation at a given time t is given as the filtered value, 
𝑧𝑡−1, at time t-1. The forecast variance is estimated as  
 

𝜎𝑧𝑡
2 ≈

𝜎2

𝑛  (1) 

 
, where 𝜎2 is the variance of the observed values and 𝑛 is the window length. The MA 
was optimized for this study by trying values of n between 1 and 10 by steps of 1.  
 
Exponentially weighted moving average (EWMA) 
At each time step, the filtered value is defined according to the following equation: 



𝑧𝑡 = 𝜆 ∙ 𝑘𝑡 + (1 − 𝜆) ∙ 𝑧𝑡−1 (2) 
, where λ is a scale factor which can take values between 0 and 1, and 𝑘𝑡 is the observed 
value at time t. The forecast for the observation at a given time t is given as the filtered 
value, 𝑧𝑡−1, at time t-1. The forecast variance is estimated as 

𝜎𝑧𝑡
2 ≈ 𝜎2 ∙ (

𝜆
2 − 𝜆

) 
(3) 

, where 𝜎2 is the variance of the observed values. The EWMA was optimized by trying 
values of λ between 0 and 1 by steps of 0.01. 
 
The univariate and multivariate dynamic linear model (DLM) 
For this study, we implemented first-order univariate and multivariate DLMs without 
systematic growth components. At each time step, the EC values are filtered using the 
Kalman filter, as described in detail by West & Harrison (1997). The filtered values of 
one (univariate) or four (multivariate) EC values at time step 𝑡 are defined by the system 
equation: 

𝜽𝑡 = 𝜽𝑡−𝟏 + 𝑤𝑡 (4) 
, where 𝜽𝑡 is the parameter vector, and the error term is defined as 𝑤𝑡 ≈ 𝑁( 0 , 𝑾) with 
𝑾 being the systematic co-variance matrix. In our implementation, 𝑾 was estimated 
continuously during the Kalman filtering by means of a discount factor, 𝛿, which can take 
values between 0 and 1 (West & Harrison, 1997). The discount factor was optimized 
separately for the univariate and multivariate DLM by trying values of 𝛿 between 0 and 
1 by steps of 0.01.  
 
Forecasts of the expected EC values at time step t are made according to the observation 
equation: 

𝒀𝑡 = 𝜽𝑡 + 𝑣𝑡 (5) 
, where 𝒀𝑡 is the observation vector with a length of 1 for univariate model and 4 for the 
multivariate model. The error term is defined as 𝑣𝑡 ≈ 𝑁( 0 , 𝑽) with 𝑽 being the 
observational co-variance matrix, with the dimensions 1x1 for the univariate model and 
4x4 for the multivariate model. The values of 𝑽 were found using the expectation 
maximization algorithm, as described in detail by West & Harrison (1997). 
At each observation time, the forecast errors were calculated according to eq. 6.  

𝒆𝑡 = 𝒀𝑡 − 𝜽𝑡 (6) 
Given the forecast errors for each observation time, the parameter vector values are 
updated using the Kalman filter (West and Harrison, 1997). The forecast variance-
covariance matrix is estimated as part of the Kalman filtering (West and Harrison, 1997). 
The dimensions of this matrix is 1x1 for the univariate DLM and 4x4 for the multivariate 
DLM.  
 
Standardization 
For the MA, EWMA, and the univariate DLM, the forecast errors were standardized using 
the forecast variance, according to eq. 7.  

𝑢𝑡 =
𝑒𝑡

√𝜎𝑧𝑡
2

 
(7) 

For the multivariate DLM, the forecast errors were standardized in the same way, except 
using only the diagonal values of the forecast variance-covariance matrix. 



Observation classification 
The four optimized time series filtering models were applied to the of EC observations in 
the original training set, resulting in four different new training sets. These new training 
sets contained 12 predictor variables per observation, namely the unfiltered EC values, 
the filtered EC values, and the standardized forecast errors for each of the four quarters. 
Based on these predictor variables, different machine learning methods were trained to 
classify the individual milkings as being from a mastitis positive or negative milking, as 
described below.  
 
Random Forest and Bayesian Network 
We set-up an experiment in the machine learning and data mining tool WEKA (Witten 
and Frank, 2005) to be used for each of the four training datasets. In the experiment, two 
main algorithms were selected, namely Random Forest (RF) and Bayesian network (BN). 
Each of these two algorithms were set up with different combinations of parameter 
settings resulting in a total of 31 different model configurations to be evaluated (for 
details, see Tables 1 and 2). Each of these model configuration was evaluated with 5-fold 
cross validation on each of the training datasets. Mastitis (yes/no) was used as the 
categorical output variable. No further pre-processing was performed. 
 
Table 1: Overview of the parameter settings used with the random forest method 

Main algorithm Parameter settings Abbreviation No. of trees Seed 

Random Forest 
3 1 - 5 RF031 - RF035 
10 1 - 5 RF101 - RF105 
25 1 - 5 RF251 - RF255 

 
 
Table 2: Table 3: Overview of the parameter settings used with the Bayesian network 
method 

Main algorithm 
Parameter settings 

Abbreviation Search Algorithm Max no.  
of  parents 

Bayesian Network 

Local 1 - 5 BNL1 - BNL5 
TAN N/A BNTan 
Tabu 1 - 5 BNT1 - BNT5 

Hill Climber 1 - 5 BNH1 - BNH5 
 
Each of the 31 model configurations produced a probability of having mastitis for each 
record in each of the four training sets. If this probability was > 0.5, the final output was 
categorized as 1 (mastitis predicted), and else the final output was categorized as 0 (no 
mastitis predicted). These predictions were compared with the true status of each record 
to assess true positive (TP), false negative (FN), true negative (TN), and false positive 
(FP) predictions per records. Per model, threshold settings were changed such that Se of 
finding ME was ~60% at milking level. At that level, FAR1000 was reported. This 
process was repeated for each of the four training sets using Weka experimenter. Based 
on these performance parameters, one model configuration for each of the two main 
algorithms was selected for further analyses.  



Model testing 
 
The selected configurations of the three classification models (RF, BN, and Sewhart 
control chart) were applied to each the four related test dataset, probabilities were 
produced for each records, and these probability were transformed into a 0/1 output, 
depending on the threshold. We then applied the time-window proposed by Kamphuis et 
al. (2016) to compute TP and FN alerts for each ME. This time-window assumes that an 
alert from any mastitis detection model can be expected from up to two milkings prior to 
the first milking of a ME, and then for the entire duration of a ME. Alerts earlier than the 
two milkings prior to the start of an ME, or after the last milking of an ME are thus 
considered as a FP alert. Subsequently, each ME is counted as either being missed (one 
FN alert) or as one correctly identified ME (one TP alert), although more than one milking 
within a ME could have received a TP alert. For milkings not belonging to a ME, which 
thus had a true no-mastitis status, no time-window was used. This means that each no-
mastitis milking receiving an alert by the model were counted as FP, and each no-mastitis 
milking not receiving an alert were counted as TN. The TP and FN were used to compute 
Se, while the TN and FP alerts were used to compute the number of alerts per 1,000 
milkings (FAR1000). Per model, threshold settings were adjusted such that Se of finding 
ME was ~60 %. At that level, FAR1000 was reported.  Furthermore, the specificities and 
error rates were calculated as secondary measures of performance for the different 
classification methods. 
 
Results and Discussion 
 
The aim of this study was to compare the performances of different combinations of 
filtering and classification methods under standardized conditions. The ability of human 
milkers to detect clinical mastitis has been reported with an average sensitivity of 80 %, 
although this number in practice depends on the skill of the milker and the severity of 
the mastitis case (Hillerton and Kliem, 2002). For comparison, the scientific literature 
reports an average sensitivity of 60 % when using automated detection systems in the 
field (Hogeveen et al., 2010). For this reason the sensitivity in this study was fixed at 
60%, and thus the threshold for which outputs would count as alarms was optimised for 
each classification methods. Table 3 summarizes the performances achieved with the 
various method combinations.   



Table 3: Preliminary results of the data driven methods  
Classification 
method 

Filtering 
method1 

Sensitivity 
(%) 

Specificity 
(%) 

FAR10002 Error rate 
(%) 

Random 
Forest 

MA 59.9 74.8 217.7 95.6 
EWMA 60.8 73.7 227.6 95.8 
DLM uni 60.2 75.2 214.2 95.6 
DLM 
multi 60.7 74.1 224.2 95.7 

Bayesian 
Network 

MA 60.5 73.0 233.3 96.0 
EWMA 60.3 73.8 226.5 95.9 
DLM uni 59.4 71.8 234.7 96.1 
DLM 
multi 59.9 74.1 224.5 95.8 

1 Filtering methods: moving average (MA), exponentially weighted moving average (EWMA), 
univariate dynamic linear model (DLM uni), and multivariate DLM (DLM multi).  
2 Number of alerts per 1,000 milkings 
 
The results obtained for the test data were comparable to the results for the training data, 
which argues for the validity of the model and suggests that the model does not over-fit 
to the data. This may indicate that the model is generally applicable. Table 3 shows the 
detection performance of the classification methods using different filtered datasets. The 
Sp is ranging between 71% and 75%, with a Se of 60%. The performances of the models 
in this study are lower compared to findings form the literature. This, however, was 
expected since we do not search for the best possible model, but rather seek to compare 
different filtering and classification methods more objectively. The specificity rate 
obtained with the classification seem rather similar. The error rates were high, ranging 
between 95% and 96%. Since there are many more days with a healthy stage than days 
of mastitis, it causes a greater likelihood for FP to arise, which has an impact on the error 
rate. The results of the filtering methods showed similar results.  
 
The different filtering methods do not vary a lot in Sp, FAR1000 and error rate. The 
number of CM episodes indicated with Random Forest suggest to be higher than for the 
Bayesian Network. The FAR1000, however, indicates that more alert are generated with 
Bayesian Network than for the Random Forest. Despite some differences the results 
suggest that the performances of these two classification methods do not vary a lot. In the 
next step of this study we will look also at the relative more straightforward methods like 
a Shewart Control chart. We hypothesis that the performances of such methods are less 
compared to the more advanced classification methods. Beside, we know that the Shewart 
Control works fine with continuous variables like EC, but utilizing the categorical 
variables (e.g. parity), this simple method will quickly become much more complicated 
to implement.   
 
The results of this study should be interpreted as a relative comparison. According to 
Hamann and Zecconi (1998) using EC in milk as a mastitis is a good indicator. However, 
the performances of the classification methods are expected to be improved when 
including other variables, like milk yield and SCC. Additionally, including historic data 
(from e.g., previous milkings) are also expected to improve the detection performances. 



The naïve approach we used in this study was necessary to enable a fair comparison 
between the performances of classification and filtering methods.  
 
Conclusions 
 
This study aimed at evaluating performances of several data driven methods for the early 
detection of mastitis, using similar conditions (i.e. data input, data selection criteria, time-
window and gold standard). So far, there is an indication that our naive approach of data 
handling results in no clear distinction in performance between the different methods.  
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