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Abstract

Sustainable agricultural practices have become increasingly important due to growing environmental concerns and
the urgent need to mitigate the climate crisis. Digital agriculture, through advanced data analysis frameworks, holds
promise for promoting these practices. Pesticides are a common tool in agricultural pest control, which are key in
ensuring food security but also significantly contribute to the climate crisis. To combat this, Integrated Pest
Management (IPM) stands as a climate-smart alternative. We propose a causal and explainable framework for
enhancing digital agriculture, using pest management and its sustainable alternative, IPM, as a key example to
highlight the contributions of causality and explainability. Despite its potential, IPM faces low adoption rates due to
farmers’ skepticism about its effectiveness. To address this challenge, we introduce an advanced data analysis
framework tailored to enhance IPM adoption. Our framework provides (i) robust pest population predictions across
diverse environments with invariant and causal learning, (ii) explainable pest presence predictions using transparent
models, (iii) actionable advice through counterfactual explanations for in-season IPM interventions, (iv) field-
specific treatment effect estimations, and (v) assessments of the effectiveness of our advice using causal inference.
By incorporating these features, our study illustrates the potential of causality and explainability concepts to enhance
digital agriculture regarding promoting climate-smart and sustainable agricultural practices, focusing on the specific
case of pest management. In this case, our framework aims to alleviate skepticism and encourage wider adoption of
IPM practices among policymakers, agricultural consultants, and farmers.

Impact Statement

Wepresent a new data analysis framework based on causality and explainability to help farmers adopt sustainable
alternatives to traditional practices for agricultural management. The frameworkmakes agricultural management
more practical and trustworthy by providing clear, reliable predictions, advice tailored to specific fields, and
impact assessment of recommended actions. In our example, this could lead to less reliance on harmful
pesticides, helping to protect the environment and fight climate change. With this tool, farmers can make
better-informed decisions that benefit their crops and the planet, promoting a healthier and more sustainable
future.
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1. Introduction

Digital agriculture integrates agricultural expertise with digital technologies, such as remote sensing, IoT,
and data analytics, to effectively leverage diverse data sources like satellite imagery, weather forecasts,
and soil health metrics. This approach promotes more sustainable, resilient, and profitable farming by
enabling data-driven decisions across the agricultural value chain (Basso andAntle, 2020). This approach
is essential for adapting agriculture to our rapidly changing climate and mitigating its impact on climate
change (Balasundram et al., 2023). Artificial Intelligence (AI) serves digital agriculture as the means to
transform the data into insights, estimations, forecasts, and recommendations that aim to support decision-
making to balance agriculture’s environmental, societal, and economic aspects. However, digital agri-
culture has remained largely confined to using almost solely correlation-based AI, which excels at
predictive tasks but cannot go further. In this context, we propose exploiting two underutilized branches
of AI by digital agriculture—causality and explainability. They can unlock capabilities beyond the
continuous pursuit of prediction accuracy for enhancing digital agriculture, given that it considers
agricultural knowledge and practice and integrates it into the modeling and inference parts
(Sitokonstantinou et al., 2024). Thus, causality and explainability bring in digital agriculture domain-
aware robust models, explainable predictions, counterfactual reasoning, and quantifying effects of advice,
action, and policy.

Pest management is a quintessential example in this context, demonstrating the valuable contributions
that causality and explainability offer. Conventional pest management has been shown to contribute to
climate change. Raising temperatures, intensifying ultraviolet radiation, and reducing relative humidity
are expected to increase pest outbreaks and undermine the efficacy of pest control methods like host-plant
resistance, bio-pesticides, and synthetic pesticides (Sharma and Prabhakar, 2014; Skendžić et al., 2021).
Despite climate experts’ warnings, pesticide use in agriculture adversely affects public health (Boedeker
et al., 2020) and contributes to the climate crisis. This impact includes: (i) greenhouse gas (GHG)
emissions from pesticide production, packaging, and transportation (Audsley et al., 2009),
(ii) compromised soil carbon sequestration (Xu et al., 2020), (iii) elevated GHG emissions from soil
(Spokas andWang, 2003;Marty et al., 2010; Heimpel et al., 2013), and (iv) contamination of adjacent soil
and water ecosystems, resulting in biodiversity loss (Sharma et al., 2019).

Thus, a vicious cycle has been established between pesticides and climate change (Sharma et al.,
2022). In response, the European Commission (EC) has taken action to reduce all chemical and high-
risk pesticides by 50% by 2030. Achieving such reductions requires adopting integrated pest
management (IPM), which promotes sustainable agriculture and agroecology. IPM consists of eight
principles inspired by the Food and Agriculture Organization (FAO) description. The authors in
Barzman et al. (2015) condense these principles into prevention and suppression, monitoring,
decision-making, non-chemical methods, pesticide selection, reduced pesticide use, anti-resistance
strategies, and evaluation.

Data-driven methods have played a crucial role in optimizing pest management decisions. Some
studies employ supervised machine learning techniques, such as Random Forests and Artificial Neural
Networks (ANNs), satellite Earth observations, and in-situ data for pest presence prediction (Aparecido
et al., 2019; Zhang et al., 2019). Others extend their models to include weather data (Skawsang et al.,
2019). Recurrent Neural Networks (RNNs) capture temporal features from weather data, effectively
handling unobservable counterfactual outcomes (Xiao et al., 2019). Iost Filho et al. (2022) highlight the
extraction of fine-scale information for Integrated Pest Management (IPM) using meteorological data,
insect scouting records, machine learning, and remote sensing. Nanushi et al. (2022) propose an
interpretable machine learning solution integrating numerical weather predictions, vegetation indices,
and trap catch data for estimatingHelicoverpa armigera presence in cotton fields. This approach enhances
the decision-making aspect of IPM, shifting away from traditional threshold-based pesticide applications.
The interpretability of these predictions enhances trust and allows for incorporating domain expertise in
pest management decision-making.
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2. Proposal

As Barzman et al. (2015) point out, threshold-based and “spray/don’t spray” advice is not enough. There
is a need for a new class of digital tools that consider the entire set of IPM principles to enhance decision-
making truly. In this direction, we propose a data analysis framework for IPM based on causality and
explainability. It consists of short-term actionable advice for in-season interventions and long-term advice
for supporting strategic farm planning (Figure 1).

This way, we will upgrade the monitoring and decision-making IPM principles leading to actionable
advice for direct pest control interventions and assisting the selection of practices relevant to other IPM
principles, such as the use of non-chemical methods and reduce pesticide dosage. Additionally, the
proposed framework will better inform farmers concerning the potential impact of practices that, in turn,
will enhance the IPM principle of prevention and suppression, for example, crop rotation, day of sowing,
and no-tillage. Furthermore, our framework employs observational causal inference to continuously
assess the recommendations above and satisfy the IPM principle of evaluation.

In this study, we exploit the proposed framework, demonstrating its applicability and efficiency in a
case study for pest management. While the case study is specific it represents the general case of pest
management in several crops and conditions, and the typical availability of data for such case studies.

3. Data

Our approach relies on diverse data sources as a key leverage to capture a comprehensive picture of the
past, present, and future agro-environmental conditions. This will enable us to improve the modeling and
comprehension of pest dynamics.

3.1. Earth observations

We leverage biophysical and biochemical properties such as Leaf Area Index (LAI), Normalized
Difference Vegetation Index (NDVI), chlorophyll content, as well as data on evapotranspiration and soil
moisture. These factors play a crucial role in monitoring pest population dynamics. The data is derived
from the Sentinel-1/2 and Terra/Aqua (MODIS) satellite missions that provide open access to optical
multi-spectral and Synthetic Aperture Radar (SAR) images.

3.2. Terrain & soil characteristics

We incorporate data from open-access digital elevation models and information on topsoil physical
properties and soil organic carbon content (de Brogniez et al., 2015; Ballabio et al., 2016). This allows us
to include fixed or long-term characteristics specific to the area of interest.

Figure 1. Causal and explainable data analysis framework for enhanced IPM.
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3.3. Numerical weather predictions (NWP) and reanalysis of environmental datasets

Any high spatial resolution weather forecast can be used. We utilize a custom configuration of WRF-
ARW (Skamarock et al., 2019) at a spatial resolution of 2 km. Hourly predictions are made, and for each
trap location (i.e., where we have measurements about pest abundance), we obtain daily values for air
(2m) and soil temperature (0m), relative humidity (RH), accumulated precipitation (AP), dew point (DP),
and wind speed (WS). These parameters have been widely used in related work and are extremely
valuable for learning from past (reanalysis) and future (NWP) pest states.

3.4. In-field measurements

In-field measurements involve ground observations of pest abundance using pheromone traps specifically
designed for monitoring the cotton bollworm, known by the scientific name Helicoverpa armigera
(H. armigera). These traps contain the active ingredients Z-11-hexadecen-1-al and Z-9-hexadecenal. The
traps are used from the beginning of the first generation until the end of the season, with regular replacement
every 4 to 6weeks. The companyCortevaAgriscienceHellas has established a dense (in time and space) trap
network (Figure 2) that covers almost all areas in theGreekmainlandwhere cotton is cultivated. The traps are
strategically positioned at suitable distances from each other to prevent interference and ensure accurate data
collection. An agronomist examines the traps and counts the trapped insects at regular intervals every 3–
5 days. CortevaAgriscienceHellas provides historical data consisting of 398 trap sequences and 8202 unique
data points from 2019 to 2022 (Table 1). They also provide auxiliary data on pesticide application, potential
crop damage from pests, the severity of the damage, trap replacements, and scouter comments.

4. Approach and methods

4.1. Causal graph for representing domain knowledge

We constructed a causal graph (Figure 3) based on domain knowledge and expertise, denoted as G, that
represents the underlying causal relationships within the pest-farm ecosystem for the H. armigera case.

no agroclimatic
data

maritime south
mediterranean
maritime north

Figure 2. Traps distribution in the Greek mainland for 2019–2022. Colors indicate the different
agroclimatic zones in which traps from the dataset belong. These zones have been identified based on the
study conducted by Ceglar et al. (2019).

e23-4 Ilias Tsoumas et al.



The graph G comprises vertices V , which represent the variables in the system, and directed edges E,
which symbolize the cause-and-effect relationships between these variables. Besides helping us articulate
domain knowledge, the causal graph G will benefit the downstream technical analyses in various ways.
For instance, G will be employed for effect identification via graphical tests (Pearl, 2009), where the
structure of G is integral to discerning causal relationships. Conversely, in the case of estimating
conditional average treatment effects within the potential outcomes framework, G will be utilized as a
conceptual guide for considering causal structures during the control phase. In invariant causal prediction,
the graph will facilitate the construction of an accurate list of invariant features using causal parents of the
target outcome. Moreover, the structural knowledge captured in G could benefit invariant learning
methods by guiding the environment E definition. This diverse and tailored incorporation of G is aimed
at optimizing the utilization of domain knowledge by the specifications and objectives of each analytical
technique.

Specifically, in the current case of the pest-farm ecosystem of H. armigera, various biotic and abiotic
factors (Table 2) can influence the population dynamics Y of H. armigera (Sharma et al., 2012).
Temperature T plays a crucial role, affecting the insect’s growth, development, fecundity, and survival
(Howe, 1967). The size SG of the first generation is related to the size of the second generation, and the
Southern Oscillation Index SOI has a significant correlation with the size of the first spring generation
(Maelzer and Zalucki, 1999, 2000). Additionally, the life cycle LC of H. armigera is temperature-
dependent, with completion occurring between 17.5°C and 32.5°C (Mironidis and Savopoulou-Soultani,
2014). The presence of parasitoids and natural enemies in cotton cultivation is crucial to many IPM
programs, including the control of H. armigera (Pereira et al., 2019). Many egg parasitoids of different
families are known for their high parasitism P rates and their effectiveness in reducing the population of
H. armigera (Noor-ul-Ane et al., 2015). Nevertheless, parasitism rates are influenced by temperature and

Table 1. Summary of trap data

Year Traps Measurements Mean std Sprays Sprayed fields %

2022 126 2507 19.73 4.22 30 18.25
2021 109 2245 20.30 1.79 17 11.01
2020 81 1693 20.54 4.77 12 8.64
2019 82 1757 21.29 6.43 21 21.95

T

SW

W

V

Y

ACSP
CS

Ws

SG
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SOI
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Pr

LC

Figure 3. Causal graph of a pest-farm ecosystem for Helicoverpa armigera case.
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relative humidity (Kalyebi et al., 2005; Noor-ul-Ane et al., 2015). Moreover, the efficacy of spray
application Sp also impacts population dynamics (Wardhaugh et al., 1980). The efficacy of Sp is
significantly influenced by the plant growth stage PGS. During the seedling stage, limited leaf surface
area reduces spray coverage, while the vegetative stage offers more extensive leaf area, enhancing spray
interception. However, dense canopies at later stages may impede spray penetration. Plant physiology
also varies, affecting the absorption and translocation of sprayed substances (Fishel and Ferrell, 2010).

Other environmental factors come into play as well. Precipitation Pr affects the population size, with
heavy precipitation leading to a decrease in the population (Ge et al., 2003). It also increases soil water
content SW which affects the emergence rate of H. armigera similar to air relative humidity RHa (Fajun
et al., 2003). The presence of fruiting organs during the plant growth stage PGS is important for
population dynamics, as it serves as the oviposition site for females (Fitt, 1989). Crop variety V, such
as transgenic Bt cotton, can suppress the second generation ofH. armigera, while both different cropping
systems CS and adjacent crops AC can influence the population structure (Wardhaugh et al., 1980; Gao
et al., 2010; Lu et al., 2013). Finally, windW andwind direction play a significant role in the emergence of
H. armigera, influencing the distance covered during migration from nearby locations. Additionally,
wind conditions at the time of spraying Ws can also impact the effectiveness of the intervention. These
various factors collectively shape the population dynamics of H. armigera in a complex and intercon-
nected manner as defined through domain knowledge and depicted in the causal graph (Figure 3).

4.2. Invariant & causal learning for robust pest prediction

Our goal is to predict near-future pest populations (Ytþ1) using Earth observation (EO) and environmental
data (Xt) alongwithweather forecasts (Wtþ1) by learning the function ytþ1 = f xt,wtþ1ð Þ. Pest management
recommendations heavily depend on these predictions. Conventional machine learning methods
(Aparecido et al., 2019; Skawsang et al., 2019; Xiao et al., 2019; Zhang et al., 2019), which often assume
that data points are independent and identically distributed (i.i.d.), struggle to generalize to unseen
environments, capture spatiotemporal variability, and adapt to climate change. These methods are prone
to learning spurious correlations, limiting their effectiveness in dynamic and non-i.i.d. scenarios.

To address these challenges, we turn to causal learning (Schölkopf and von Kügelgen, 2022), which
leverages domain knowledge and is grounded in the principle of independent causal mechanisms. This

Table 2. Pest-farm ecosystem variables

Id Variable description

T Temperature
SW Soil water
RHa Air relative humidity
SG Size of generation
Pr Precipitation
LC Life cycle
P Parasitism
V Variety
Sp Spraying
CS Cropping system
AC Adjacent crops
W Wind
Ws Spraying wind
SOI South oscillation index
PGS Plant growth stage
Y Outcome (H. armigera population)
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principle suggests that joint probabilities can be decomposed into separatemechanisms, each reflecting an
underlying causal relationship that remains stable despite environmental changes. By incorporating this
principle, our models can improve generalization and robustness across varying conditions.

We achieve this by integrating invariant learning with causality and categorizing dataset units into
environments E as different agroclimatic zones or host crops (Figure 4). While E influences feature
xt,wtþ1, it does not directly affect the target Yt. Utilizing Invariant Causal Prediction (ICP) (Heinze-Deml
et al., 2018), Directed Acyclic Graphs (DAGs), and Invariant Risk Minimization (IRM) (Arjovsky et al.,
2019), we can select causal features, identify potential causal relationships, and capture latent causal
structures. These tools allow us to build models that are effective in current conditions and adaptable to
future environmental changes.

4.3. Explainability & counterfactual reasoning for short-term advice

We define the problem as a binary classification of pest presence or absence at the next time step, using
Earth observation (EO) data (Xt) and weather forecasts (Wtþ1). The goal is to predict the pest population
value at the next time step, Ytþ1, by learning the function ytþ1 = f xt,wtþ1ð Þ. To enhance the trustworthiness
of our predictions, we employ Explainable Boosting Machines (EBM) (Nori et al., 2019). This glass-box
model achieves high performance while providing inherent explanations at both global and local levels.
EBM’s additive nature allows for the sorting and visualization of feature contributions on a local scale for
each one of predictions and a global level to summarize the general behavior of the model depending on
features (Figure 5), which facilitates a better understanding of the primary drivers of the model and
enhances trust in its outputs.

We propose generating counterfactual examples as recommended interventions to bolster trust further
and provide actionable insights. Following the setup of (Mothilal et al., 2020), we search for minimal
perturbations to the feature values xt,wtþ1ð Þ that would alter the prediction to the desired class using the

Figure 4. Invariant learning for robust predictions. Stable and accurate predictions in diverse
environments, such as when H. armigera feeds on different crops exhibiting variations in phenotype,
agricultural management practices, and spatial distribution. Traditional ML methods risk capturing
spurious correlations, such as associating pest abundance with a specific crop (e.g., cotton) due to its
higher frequency in the dataset, leading to biased predictions based on the underlying crop rather than
true pest presence.
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same model f . These counterfactual examples represent proposed actions that could be implemented in
natural farm systems, ensuring practicality and feasibility (Wachter et al., 2017;Mothilal et al., 2020). The
approach ensures that the generated counterfactuals are close to the original input but predicted in the
desired class, providing feasible and actionable recommendations for IPM (Figure 5).

4.4. Heterogeneous treatment effects for long-term advice

We provide long-term pest prevention and suppression advice by assessing how agricultural practices
(e.g., crop rotation, balanced fertilization, sowing dates) impact pest harmfulness and yield indices. Since
different agro-environments may respond variably to the same practice, it is crucial to account for this
heterogeneity. We estimate the conditional average treatment effect (CATE) following the potential
outcomes framework (Rubin, 2005).

The CATE quantifies the difference in potential outcomes, represented as E Y T = 1ð Þ�Y T = 0ð ÞjX½ �,
where Y Tð Þ denotes the value of a random variable Y (e.g., pest harmfulness and yield) if a unit is treated
with treatment T ∈ 0,1f g. By controlling for field characteristics X—which capture the heterogeneity
across different agro-environmental conditions—we can better understand how specific practices affect
outcomes in various contexts (Figure 6). This approach allows us to provide tailored and effective long-
term IPM advice sensitive to each field’s unique conditions (Giannarakis et al., 2022).

4.5. Causal inference for evaluating advice effectiveness

We employ causal inference techniques to assess the effectiveness of our pest control recommendations,
adapting approaches recently introduced in agricultural contexts (Tsoumas et al., 2023). Specifically, in
the case of pest management and with available panel data (Table 1), we utilize causal models such as
difference-in-differences (DiDs) (Abadie, 2005), synthetic control (Arkhangelsky et al., 2021) and
synthetic DiDs (Abadie, 2021) to quantify the treatment effect of adhering to our framework’s recom-
mendations (treated units) compared to those who did not (control units). Historical intervention data
retrospectively annotated based on whether our framework recommended action, will serve as the basis
for advice evaluation. Causal inference will be performed per-environment to ensure comparability
between treatment and control groups, adhering to the parallel trends assumption (Lechner et al., 2011).

Figure 5. Explainability for trustworthiness enhancement, on the right, with local and global
explanations of each prediction and general model behavior, respectively, &Counterfactual explanations
as agricultural actionable recommendations on the left.
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However, digital agriculture requires a two-level evaluation of interventions to disentangle the
effectiveness resulting from the accuracy of the recommendation (for intervention) in terms of space–
time from the inherent efficacy of the intervention. It is crucial to determine what effect, if any, is
attributable to the space and time of application and what is due to the pesticide itself.

In this context, we conducted an initial analysis using the aforementioned panel data to quantify the
impact of pesticide application on pest abundance in a real-world setting without expert system guidance,
employing staggered DiDs with fixed effects (Eq. 4.1).

The staggered approach accounts for units receiving treatment at different periods. We include unit-
fixed effects to control for each unit’s time-invariant characteristics and time-fixed effects to capture
overall time trends that affect all units in each period. The unit of analysis is the plot where the pest trap is
located, with periods modeled at the weekly level. Here, Y it represents the outcome variable, accumulated
pest abundance, for each unit i at the time t, and treated_timeit is an indicator of whether the unit i receives
treatment (pesticide application) in a period t (in a staggered manner across units). Specifically, β0 is the
intercept, β1 is the treatment effect coefficient, αi represents unit fixed effects, γt captures time fixed
effects, and εit is the error term. Thus, β1 provides the average causal effect of the treatment (pesticide
application) on the outcome (accumulated pest abundance) for treated units (ATT), as presented in Table 3
for each cultivation period from 2019 to 2022.

Y it = β0þβ1 � treated_timeitþαiþ γtþ ϵit (4.1)

For the years 2021 and 2022, we observe a statistically significant reduction in pest abundance, while
for 2019 and 2020, we find the opposite effect. At first glance, this contradiction may seem unusual, but
several reasonable explanations could account for it. Since the data come from real-world agricultural
practice, it likely encapsulates some of the following issues: (i) Some interventionsmay have been applied
incorrectly regarding timing and method, reducing or eliminating their efficacy in the pest-infested plots.
This could lead to a biased estimate that the pest population increased after pesticide application
(Figure 7). This occurs because the counterfactual is constructed by taking the growth trend from a plot
without intervention, which might not experience the same infestation or pest pressure level. So, a
mistreated plot that probably follows a steeper population increase, simply due to its higher infestation
levels, can lead to this fallacy that pesticide application increases pest population. (ii) After discussions
with the data provider (Corteva Agriscience Hellas), noise within the control group labels may be

Figure 6. Conditional Average Treatment Effect (CATE) is seen as long-term personalized guidance. By
accounting for each land unit’s unique characteristics, we can estimate a distinct treatment effect for each
land unit. For example, how differences in land’s characteristics can change the impact of fertilizer
application on increasing the risk of pest emergence in the future.
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possible. The company is confident in the labels for treated plots, as they receive this information directly
from farmers. However, they cannot be as certain about the control group. Some farmersmay have applied
pest control practices in their plots but chose not to report them for various reasons, such as using less
expensive pesticides from competitor companies or participating in eco-schemes prohibiting pesticide
use. Consequently, we face a scenario of positively labeled and unlabeled data, a common issue in
machine learning. (iii) The assumption of parallel trends may not hold universally, or unobserved
confounders may vary over time and between units.

In a more robust causal analysis, we can technically or conceptually address these issues. Technically,
we could retrospectively employ a recommendation system or consult experts, as aforementioned, to
annotate each time–space slot as favorable or unfavorable for intervention. On the other hand, we can
conceptually accept reality and precisely define what causal effect we retrieve. In this case, the ATT in a

Table 3. Results of staggered DiDs with controls for unobserved heterogeneity at the unit and time
levels by including fixed effects

Staggered DiDs estimates with fixed effects

Year ATT CI p-value

2019 35.6065 (30.569, 40.644) 0.000
2020 36.9961 (29.826, 44.166) 0.000
2021 �13.8687 (�20.803, �6.934) 0.000
2022 �8.5789 (�13.549, �3.609) 0.001

Note: It includes point estimates, 95% confidence intervals, and p-value. Numbers represent the increase/decrease of accumulated pest catchments at
the trap level after the intervention.

Figure 7. A visual example of DiDS for assessing the real-world impact of pesticide application. It
demonstrates how, even when the parallel trends assumption holds in both conditions, applying an
intervention (i.e., spray) at a non-recommended time can lead to unexpected effects compared to applying
the intervention at the recommended time.
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real-world setting includes different application accuracy levels, farmer’s skills, expert guidance, and
proper timing. To address the second issue, we plan to use Positive-Unlabeled (PU) learning methods
(Bekker and Davis, 2020) to train a classifier on covariates, as they are outlined in Section 3. Using the
positively labeled (treated) units only as ground truth and PU learning for training, this classifier will help
establish a control group consisting only of unlabeled units that are classified there with high confidence.
Lastly, a formal investigation with statistical tests is required to retain only cases where the parallel trends
assumption holds. Clear assumptions statements should also be made regarding the potential of unob-
served confounders that may vary by time and unit. By leveraging these techniques, we aim to rigorously
evaluate the impact of our recommendations on pest control outcomes and attribute the effects to the right
factors, providing robust evidence for the effectiveness of our framework in diverse agricultural
environments.

5. Conclusions

In conclusion, this article presents a new framework integrating causality and explainability into digital
agriculture, with a focus on enhancing pest management practices. By leveraging advanced data analysis
techniques, such as causal inference and invariant learning, our approach addresses the limitations of
conventional correlation-based models, providing more robust and transparent decision-making tools.
This framework not only supports real-time pest control interventions but also facilitates strategic long-
term planning by offering insights into the heterogeneous effects of various agricultural practices.

Our study illustrates how incorporating explainability can bolster farmers’ trust and adoption of
sustainable practices like IPM. The framework’s use of counterfactual reasoning and explainable
predictions ensures that farmers receive actionable, field-specific recommendations that can adapt to
different environmental conditions. Additionally, the causal analysis embedded within our methodology
allows for ongoing evaluation of the framework’s effectiveness, ensuring the recommendations are
impactful and contribute positively to agricultural sustainability.

We consider that a successful application to pest management will highlight, in a tangible way, the
broader potential of this framework to enhance digital agriculture to drive sustainable, evidence-based
practices across agriculture. Therefore, we plan to implement the proposed ideas outlined in Section 4
using the data described in Section 3. In parallel, we are gathering additional in-situ data in collaboration
with Corteva Agriscience Hellas to enrich our dataset for the same pest and crop, as well as independently
for other crops and pests. Finally, we explore how this approach could be adapted to related areas.

Future research will aim to expand this framework beyond pest management, exploring its potential
applications in other areas of digital agriculture, such as crop disease management and nutrient opti-
mization. Additionally, integrating advanced machine learning models to account for real-time weather
data and unforeseen environmental factors will further refine prediction accuracy. Developing user-
friendly tools and interfaces that facilitate farmer interactionwith these data-driven insights will be critical
to fostering widespread adoption.

The growing demand for sustainable agriculture underlines the importance of integrating advanced
data analysis frameworks like ours. By systematically quantifying and explaining agricultural interven-
tions, this framework offers a promising pathway for enhancing the adoption of digital agriculture in
alignment with global sustainability goals. This comprehensive, data-driven approach promises to make
sustainable agricultural practices more practical, facilitating a transition to a resilient and environmentally
conscious food system.
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