
Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

A template framework for environmental timeseries data acquisition
Argyrios Samourkasidisa,∗, Evangelia Papoutsogloub, Ioannis N. Athanasiadisa

a Information Technology Group, Wageningen University, Hollandseweg 1, Wageningen, 6706 KN, the Netherlands
b Plant Breeding Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands

A R T I C L E I N F O

Keywords:
Environmental timeseries
Internet of things
Syntactic interoperability
Data acquisition
Templates
Big data

A B S T R A C T

Environmental timeseries data variety is exploding in the Internet of Things era, making data reuse a very
demanding task. Data acquisition and integration remains a laborious step of the environmental data lifecycle.
Environmental data heterogeneity is a persistent issue, as data are becoming available through different pro-
tocols and stored under diverse, custom formats. In this work, we deal with syntactic heterogeneity in en-
vironmental timeseries data. Our approach is based on describing different dataset syntaxes using abstract re-
presentations, called templates. We designed and implemented EDAM (Environmental Data Acquisition
Module), a template framework that facilitates timeseries data acquisition and integration. EDAM templates are
written using programming language-agnostic semantics, and can be reused both for input and output, thus
enabling data reuse via transformations across different formats. We demonstrate EDAM generality in seven case
studies, which involve scraping online data, extracting observations from a relational database, or aggregating
historical timeseries stored in local files. Case studies span different environmental sciences domains, including
meteorology, agriculture, urban air quality and hydrology. We also demonstrate EDAM for data dissemination,
as instructed by output templates. We identified several syntactic interoperability challenges though the case
studies, that include managing with differences in formatting observables, temporal and spatial references, and
metadata documentation, and addressed them with EDAM. EDAM implementation has been released under an
open-source license.

1. Introduction

Environmental data management, that is, acquisition, processing,
storage, and dissemination (Athanasiadis and Mitkas, 2004; Mason
et al., 2014) is becoming more challenging in the era of Big Data (BD)
and the Internet of Things (IoT). In the contemporary data-rich society,
a great variety of sensors and IoT devices enable the collection of large
observation volumes, which can be further processed for enabling new
knowledge insights. At the same time, this era is characterized as
knowledge-poor, since universal data management and heterogeneous
data integration remain still open challenges (Negru et al., 2016).

Environmental data acquisition seems to be the most laborious step
within the environmental data lifecycle (Terrizzano et al., 2015; Harth
et al., 2013; Horsburgh et al., 2009). This is attributed to the hetero-
geneity pertinent to environmental data sources. Environmental datasets
are collected and stored under different data models in various forms;
mainly in files and relational databases (Horsburgh et al., 2011). Da-
tasets which do not share common data formats and/or communication
protocols are difficult to be re-used without human expert involvement.
Syntactic heterogeneity is a factor which hinders the adoption of a

universal strategy to acquire data originating from disparate informa-
tion sources. It also obstructs the environmental data science core ob-
jective: to narrow the data-to-knowledge latency (Elag et al., 2017) by
supporting environmental data discovery and access; and by enabling
re-usability (Horsburgh et al., 2009; Ames et al., 2012; Athanasiadis,
2015; Holzworth et al., 2015; Granell et al., 2010). FAIR (Findable,
Accessible, Interoperable, Reusable) guiding principles for scientific
data management and stewardship highlight the importance of scien-
tific data reusability and reproducibility (Wilkinson et al., 2016). Long-
term archival and preservation of digital assets also implies the regular
transformation of data between storage formats and media.

There are two approaches to tackle syntactic heterogeneity. The first
is to use/adopt frameworks which were designed to facilitate environ-
mental data discovery and accessibility, such as the OGC Sensor Web
Enablement (SWE) (Botts et al., 2008) and CUAHSI Hydrologic In-
formation System (HIS) (Horsburgh et al., 2009). Such systems hide the
underlying complexity of environmental data sources and expose them
in a standardized manner, through established data models (e.g. O&M
(Cox, 2011), SensorML (Botts and Robin, 2014), WaterML 2.0 (Taylor,
2014) etc.). The various datasets need to be stored in a common schema

https://doi.org/10.1016/j.envsoft.2018.10.009
Received 19 March 2018; Received in revised form 8 September 2018; Accepted 26 October 2018

∗ Corresponding author.
E-mail address: argysamo@gmail.com (A. Samourkasidis).

Environmental Modelling and Software 117 (2019) 237–249

Available online 17 November 2018
1364-8152/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2018.10.009
https://doi.org/10.1016/j.envsoft.2018.10.009
mailto:argysamo@gmail.com
https://doi.org/10.1016/j.envsoft.2018.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2018.10.009&domain=pdf


in order to be exposed through a data sharing framework. This entails
certain modifications, which introduce overhead, and commonly re-
quire a strong computer science background to implement (Andrae
et al., 2009). The second approach is to develop programming language
scripts, each one tailored to the custom data format (Eberle et al., 2013;
Woodard, 2016). These custom-to-data scripts usually transform a da-
taset into a common data schema (Porter et al., 2014), which allows for
further processing, analysis or dissemination tasks (Boote et al., 2015).
These approaches have been used also for exchanging data between
environmental models (i.e (Porter et al., 2014; Horita et al., 2015;
Peckham and Goodall, 2013; Jones et al., 2015)).

Both approaches rely upon computer programming skills that are
not always available. This contradicts the lowering e-science barriers
movement (Swain et al., 2016), that envisions accessing data in an
uncomplicated fashion, so that e-scientists can entirely focus on the
domain of their expertise, and not on side tasks, such as curating da-
tasets. By the term e-science we refer to a “global collaboration in key
areas of science” (Hey and Trefethen, 2003) which “promotes innova-
tion in collaborative, computationally- or data-intensive research across
all disciplines, throughout the research lifecycle” (International Confer,
2018). Based on our experience, transforming environmental datasets
from different sources, in order to fit as input to environmental models
requires manual work which is hardly re-usable. For example, different
programming languages (e.g. Python (Van Rossum and Drake, 2003), R
(Ihaka and Gentleman, 1996), etc.) and data models (e.g. O&M, Wa-
terML 2.0, etc.) are adopted for the scripting and environmental data
management framework approaches, respectively.

In this paper, we outline the design and demonstrate an open source
implementation of the Environmental Data Acquisition Module
(EDAM), that addresses issues of syntactic data heterogeneity using
templates. An EDAM template is an abstract representation of a data
file's contents using programming language-agnostic semantics. EDAM
supports data acquisition, integration and transformation from a variety
of file types and syntaxes through templates. Specifically, EDAM is
applicable for environmental timeseries datasets stored in various data
formats (delimiter-separated files, flat files, etc), at various sources
(files, folders, databases, websites), and implementing different data
models (tables, key-value pairs).

EDAM employs a declarative approach to enable scientists to an-
notate their data by means of templates. It automatically parses the
data, matches them with templates, stores them and optionally exports
them to a format described by an output template. This allows for end-
users to query, retrieve, and transform environmental timeseries data-
sets into their own formats. Also, EDAM supports interoperable data
dissemination through standardized protocols (e.g. OGC SOS (Broering
et al., 2012)). We also demonstrate its front-end graphical user interface
(GUI) for creating maps.

We demonstrate EDAM in seven cases studies from various en-
vironmental domains, including air quality, meteorology, agriculture
and hydrology. To the best of our knowledge, this is the first time that
structural templates are extensively used for environmental data man-
agement tasks (i.e. acquisition, integration and dissemination). We
started exploring this approach in (Papoutsoglou et al., 2015), where
we investigated a case study for collecting data from a smoky Swiss
railway station. Here we extend our work with six more real-world
cases:

• scraping meteorological data from the public webpages of the
Bureau of Meteorology (BoM) in Australia and the UK Met Office,

• parsing hydrological timeseries data from the Hydrological
Observatory of Athens (HOA),

• extracting observations from an air quality archive from BoM, ori-
ginally stored in a relational database,

• aggregating historical timeseries data from all Dutch weather sta-
tions, provided by Koninklijk Nederlands Meteorologisch Instituut
(KNMI),

• transforming weather input data of APSIM crop model (Holzworth
et al., 2014) into the AgMIP format (Porter et al., 2014).

The rest of the paper is structured as follows: In Section 2 we review
contemporary approaches for environmental data acquisition and in-
tegration, and introduce readers to environmental data management
with web template frameworks. Section 3 presents the EDAM archi-
tecture; specifically: key requirements, user types, and use scenarios.
Section 4 demonstrates EDAM, the conducted experiments, the used
datasets and the addressed challenges. Finally, in Section 5 we discuss
our research findings and lessons learned, conclude the research sum-
marizing key findings and future work.

2. Background and related work

In the environmental data literature, different terms are used for
describing the process of obtaining a dataset and transforming it into
another format. Specifically the terms: harmonization (Porter et al.,
2014), mediation and conversion (Horsburgh et al., 2011), management
and publication (Jones et al., 2015), integration (Beran et al., 2009),
acquisition and collation (Mason et al., 2014) and wrangling (Terrizzano
et al., 2015; Kandel et al., 2011) are synonyms for data acquisition and
integration.

In this work, we focus on acquisition and integration of environ-
mental timeseries data. In general, the acquisition process works as
follows: A station, stationary or not, houses one or more sensors. A sensor
measures one or more observable(s) producing observations. An ob-
servation has a value expressed in some units, and refers to a certain
timestamp, and possibly a location. In this context, environmental ob-
servations without a temporal dimension (e.g. soil data) are not con-
sidered timeseries and thus can not be processed by EDAM. Also note
that EDAM can process location data when they are associated with a
timeseries (i.e. observations of latitude, longitude, angle, etc, at a cer-
tain timestamp). Location data are stored as regular timeseries and can
be combined with other observations. This is elaborated further in
subsection 4.1).

In the rest of this section we review approaches that cope with
syntactic heterogeneity. First, we present environmental data man-
agement frameworks which by design account for syntactic interoper-
ability. Environmental data management frameworks are typically used
for preparing inputs required for executing scientific workflows, deci-
sion support tools or environmental models. However, not all en-
vironmental datasets are offered through such frameworks. Second, in
Subsection 2.2 we present the scripting approach which facilitates en-
vironmental data transformation to fit into a consistent data format.
Last, Subsection 2.3 introduces web template frameworks and presents
our previous experiences with them.

2.1. Environmental data management frameworks

Providing standardised discovery and access services for environ-
mental data is a key requirement for an environmental data manage-
ment framework (Horsburgh et al., 2011). Examples of such frame-
works are the OGC Sensor Web Enablement (SWE), which supports
timeseries dissemination through the Sensor Observation Service (SOS)
(Broering et al., 2012), and the CUAHSI Hydrologic Information System
(HIS) (Horsburgh et al., 2009). Both, provide interoperable data access
on two layers: a) communication, b) data representation. Communica-
tion is achieved by defining standardized ways to request environ-
mental data (e.g. GetValues for CUAHSI-HIS (Ames et al., 2012),
GetObservation for OGC SOS (Broering et al., 2012)). Data re-
presentation deals with data dissemination through standardized in-
formation models, which hide the underlying data complexity. For
example WaterML 2.0 (Taylor, 2014) is promoted by both frameworks
in order to represent hydrological timeseries data.

Environmental data management frameworks can provide

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

238



interoperable access to raw data by transforming them to a common
data model. This common data model can be part of the framework, or
its implementation. In the case of OGC SOS there are different software
implementations which use different data models (McFerren et al.,
2009). On the other hand, CUAHSI-HIS is founded around the Ob-
servations Data Model (Horsburgh et al., 2008). Software tools were
implemented to import data into an ODM database. Horsburgh and
Tarboton (2007) document a data loader component which imports
tabular timeseries into an ODM instance. Mason et al. (2014) present an
environmental management framework which utilizes reusable data
parsing templates to annotate tabular timeseries and import them into
an ODM instance.

2.2. Data integration through scripting

Several efforts are reported in the literature where scripts have been
used for environmental timeseries acquisition and integration. By the
term script, we refer to a small computer program which is intended to
automate a task, regardless of whether the programming language in
which it was developed is considered a scripting language (e.g. Python)
or not (e.g. Java). For example, the Ag-Analytics platform (Woodard,
2016) demonstrates a data warehouse to retrieve data from hetero-
geneous data sources. It extracts data through custom scripts written in
Python, one for every data source. In another example, Harth et al.
(2013) employ a Linked Data scripting language, called Data-fu
(Stadtmüller et al., 2013), to integrate diverse data sources. Each Data-
fu program comes with data source specific rules and queries. In a third
line of work, Porter et al. in (Porter et al., 2014) present a data har-
monization workflow to promote model inter-comparison and ensemble
modelling. Data source specific translators were developed and used to
integrate heterogeneous datasets into the AgMIP common data schema,
in order to facilitate data exchange between crop models.

2.3. Environmental data management with web template systems

Web template systems are designed to create dynamic content and
are extensively used in web applications. They are used for auto-
matically generating custom content, such as customer invoices, search
results, data reports, etc. Web template systems (e.g. Jinja2 (Ronacher,
2008), Mako (Bayer), Cheetah3 (Broytman and Croy, 2001)) are in-
tuitive to use, and do not require advanced programming skills. Each
one comes with a template language, which is used to markup tem-
plates. A template is a document which represents a data structure
using variables (Geebelen et al., 2008). Dynamic views are rendered by
feeding a template with data, and template variables are substituted
with values.

Web template systems can support data output by design, but not
data input directly. For example in (Samourkasidis and Athanasiadis,
2017), we employed Jinja2 to create on-the-fly dynamic views for en-
vironmental data dissemination. In a previous work (Papoutsoglou
et al., 2015), we also started experimenting with using template files as
a markup for data input, where we presented a platform which used
templates to read from local files in a variety of formats.

2.4. Summary

Acquiring and integrating environmental timeseries in a consistent
data format is a manual process which requires significant efforts. This
is because the vast majority of environmental datasets available in the
Environmental Internet of Things (EIoT) are heterogeneous by nature
(Hart and Martinez, 2015). Universal data acquisition and integration
can be achieved through the scripting approach. Nevertheless, there is a
trade-off between generality and complexity. This approach opposes
the lowering e-science barriers, since it presumes a computer science
background (Swain et al., 2016). A web template framework language
is much more simple compared to a traditional programming language.

In this work, we investigate the use of templates in order to acquire and
integrate environmental timeseries datasets, and seek for a compromise
in the trade-off between complexity and generality.

3. The EDAM framework

3.1. Objectives

There were three objectives in designing and developing EDAM. The
first was to lower e-science barriers by embracing a programming lan-
guage-agnostic solution. Obtaining timeseries data by writing small
computer programs (scripts) has already been investigated (see
Subsection 2.2). Thus, we focused on solutions that involve as little as
possible programming skills for its end-users, and examine the use of
templates written with a simple, programming language-agnostic
markup.

The second objective was to apply EDAM to a wide variety of case
studies, in order to tackle the intrinsic heterogeneity of environmental
data sources. This heterogeneity is related to a) data source type (which
could be text files, webpages, databases, web services), b) data formats
(i.e. comma-separated values (CSV), tab-separated values (TSV), etc.),
and c) data models after which available environmental data are
structured.

The third objective was to create custom views of timeseries data
and disseminate them through standard interoperable protocols, as
OGC SWE standards. This enables users to transform data from one
format to another, promoting interoperability for environmental mod-
elling and overcoming problems related to the diversity of data models.
It also copes with syntactic interoperability by exposing EDAM-pro-
cessed datasets via established information models such as O&M and
SensorML.

3.2. Abstract architectural design

There are three key-components involved in EDAM: a) input files, b)
template files, and c) template engine. Fig. 1 depicts the interaction
between EDAM components for data input and output. In all cases, the
data are extracted from their original source and stored in the EDAM
database in a unified data model. Then, they can be fetched and pre-
sented in a user-defined way using a range of custom templates.

Any kind of text-based source can serve as an input. Inputs are
stored in one or more files, locally or remotely. They may be stored in a
local nested folder structure, on a website or relational databases from
which data could be extracted with SQL queries.

An EDAM template is an abstract representation of data file con-
tents. Each template file is bound to a specific data syntax, which is
comprised of:

a) a timestamp, which may come in different formats (as we discuss
below),

b) a set of observables in a given order, along with optional metadata
annotating their semantics. Omitting observables, changing their
order of appearance and/or changing timestamp representation re-
sults in a different data syntax, i.e. requires a different template. We
envision that one template will be needed per sensor vendor, or
legacy data formats used for input/output by environmental models.
Templates can be used for specifying both input or output data file
structures, and are written using the EDAM template language.

The EDAM template engine and language are the core of the fra-
mework, offering various processing capabilities. The template lan-
guage itself is founded on programming language-agnostic semantics.
Besides simple data parsing, the EDAM template engine supports
mathematical and statistical operations. Both the template engine and
language are implemented after Jinja2 (Ronacher, 2008). This enables
us to use the Jinja2 mature framework for data dissemination purposes.

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

239



Regarding data dissemination EDAM may offer acquired data as
services on the web. Currently, EDAM supports data dissemination
through OGC Sensor Observation Service, and its own EDAM API. The
EDAM API enables the creation of custom data views, since EDAM
templates can be called dynamically.

EDAM template language artefacts (keywords or user-defined vari-
ables) are located inside placeholders ({{}}). The EDAM template lan-
guage has four restricted keywords: station, observable,
sensor, timestamp, which result from the EDAM underlying data
model. Fig. 2 depicts the EDAM unified data model along with the
template language restricted keywords. The data model was designed
after our assumption of an environmental data source, and it is tailored
to the needs of the template language. This is also the reason why we
did not reuse any third-party data model. A third-party data model
involves a number of external dependencies via foreign keys that would

affect the template language syntax, rendering it complex and difficult
to use.

User-defined variables are used to annotate the observables found in
a dataset. Their semantics are further specified in a metadata file. A
template may contain control statements (e.g. if-then-else, for-loops) to
provide formatting and control functionality, and set the logic which
will be used for data retrieval.

Next to the template file, there is the metadata file. It is drafted by
users in order to further annotate data parsed from input files. Metadata
include information commonly not stored directly in the original input
files, as for example units of measurement for observables, or station
locations. Such additional metadata, which may include terms from
ontologies, are necessary for enriching the semantics of the original
data. How this works is further detailed in the following section.

Fig. 1. EDAM abstract architectural design. Black and blue arrows depict output and input workflows, respectively. EDAM supports data transformation through its
API, and standardized data dissemination through OGC SOS. For the depicted example, input and output files are identical, since the same template file was used for
the respective processes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

240



3.3. Workflow

The EDAM workflow operates in two phases: data input and data
output. Data input concerns data acquisition, preprocessing, and storage
processes. Data output involves the discovery, transformation and dis-
semination of information. Fig. 3 depicts the workflow for data input
and output, accordingly. We identify two user roles in the EDAM
system:

Data curators are interested in sharing data with EDAM added-
value services, and import datasets into the system. They draft input
templates making new data sources available.

Data consumers are e-scientists (i.e. modellers, researchers, deci-
sion makers) who are interested in third party data stored in EDAM.
They use EDAM to a) view available datasets, b) render graphs, c) apply
filters on data and d) download them in various formats (i.e. csv, txt,
etc.). They may create custom data views by editing template files (e.g.
change the order of columns, omit columns, etc.). Software agents can
also be considered as data consumers. They interact with the system
using OGC SOS, or the EDAM API.

A workflow to input data into EDAM is as follows: A data curator
drafts the input template, documents all relevant metadata in a metadata
file, and finally provides a data source. An input template has the original
data source structure. Data curators may provide EDAM with metadata
using the metadata files, to augment the original information with ad-
ditional details about the station, the involved observables, and their
corresponding sensors and units of measurement. While this step is op-
tional, it is critical towards data reusability and interoperability.

Fig. 4 shows a sample input file from the UK Met Office (Fig. 4a),
and the corresponding template file (Fig. 4b). EDAM keyword
{{station}} has been used for annotating all data relevant to the
station name and location. The keyword {{timestamp}} is used to
parse the component of the date to which the observations correspond
to. In this case, we used {{timestamp.year}} and {{time-
stamp.month}} to parse the year and the month respectively. Generic
Jinja2 keywords, such as {%for %} are used to parse all data reported

in the file. User-defined keywords are used as variable names to an-
notate observable values, as {{tmax.value}}, {{tmin.value}},
{{af.value}}, {{rain.value}}, and {{sun.value}}. Fig. 5
depicts the corresponding metadata file, which defines additional sta-
tion and observable metadata. Data curators can specify the timezone
(station attribute), which will be used to complement all the station
related timestamps. The value of the timezone attribute can be either
the format as code keyword, or a timezone from the tz database
(Wikipedia contributors and L, 2018). In case the format as code key-
word is used, EDAM automatically identifies the corresponding time-
zone from the station's location and assigns it to the related timeseries.
Greenwich Mean Time (GMT) is the default timezone, which is used
when no location is provided, or the timezone attribute in the metadata
file is omitted. Data curators also use the metadata file to relate a user-
defined keyword (e.g. tmax) with a) its corresponding observable name
(e.g. Temperature Maximum) and b) the unit it was reported (e.g. Cel-
sius). There is also a section to store metadata about the utilized sensors,
which in this example are unknown.

3.4. Implementation and modes of operation

In Table 1 we depict EDAM implemented functions organized by
when they are utilized. Input functions are applied by EDAM during the
process of data input. Processing functions concern statistical and con-
ditional filters which are written in output templates and are applied
during data output. Last but not least, dissemination functions are added-
value services offered for EDAM-imported datasets.

EDAM software has been developed in Python, and is available as
open-source software on GitHub (Samourkasids et al., 2018) under the
GNU Affero General Public License Version 3. It is also distributed as an
autonomous Python package through the Python Package Index (pip)
(Python Software Foundation, 2018), and can be installed on a com-
puter with Python installed by typing pip install edam. The pandas
Python library (McKinney, 2011) supports the EDAM input and proces-
sing functions. The EDAM dissemination functions are implemented with

Fig. 2. EDAM unified data model. A station houses a number of sensors which measure observables and produce observations. An observation has a value for a given
timestamp. Data curators define observable_ids which represent observables.

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

241



Fig. 3. EDAM workflow. Upper part depicts data input, and lower part data output. The database component belongs to both. The output template file differs from the
input one, as the order of variables is reverted. This is reflected on the output data structure.

Fig. 4. Acquiring meteorological data from a dataset inspired by UK Met Office. (a) depicts the input file and (b) its corresponding template file.

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

242



the Flask web framework (Ronacher, 2010), and acquired timeseries
are offered as OGC SOS services through the Python implementation
reported in (Samourkasidis and Athanasiadis, 2017). The hardware
requirements of EDAM are minimal. We installed EDAM and tested its
functionalities on a Raspberry Pi 2 Model B mini-computer (Raspberry
Pi Foundation, 2018) without any issues.

EDAM operates as a local standalone system. This means, that
EDAM-parsed datasets are stored and can be accessed locally on user's
computer. Installation automatically creates a folder in the home di-
rectory, in which the user should store templates and metadata files.

After installing EDAM two commands are available via the com-
mand line: edam and viewer. These commands reflect the two distinct
modes of operation: the command-line mode and the graphical user
interface mode.

In the command line mode, data curators utilize the edam command
to define the input arguments (i.e. input, template and metadata file), in
order to parse and store a dataset. Optionally, they can define the output
parameters (i.e. template and metadata file), in order to transform a
dataset on-the-fly.

In the Graphical User Interface (GUI) mode, we assume that some
datasets have already been imported in EDAM's database and the user
wants to disseminate them via the EDAM web services. The viewer
command starts the EDAM web services, which currently are the API,
OGC SOS and the web front-end. Human users can access these services
on their browser, and machines via the appropriate protocol. Note that
the web front-end includes information about the EDAM API, how to
access the stored datasets, and the OGC SOS instance.

Figure 5. The metadata file for the input dataset reported in Fig. 4b. There are four sections (Station, Observables, Units of measurement, Sensors), under which data
curators define metadata. This is where an observable_id is defined and related with its corresponding observable name. Users also reference these ob-
servable_ids to relate an observable with the relative unit of measurement and sensor. The sensors utilized in this study are unknown and thus are defined as
Generic. The same result would be produced in case the Sensors section was omitted.

Table 1
EDAM functions distinguished by when they are applied. Input functions are applied by EDAM during data input. Processing functions are placed on output templates.
Dissemination services are automatically offered for EDAM acquired datasets.

# Function Description

Input URI generation (I1) Generate URIs based on a pattern. Each URI represents a data source, either online (i.e. URL) or a file (i.e. URI)
Online parsing (I2) Acquire online data sources via a URL
File parsing (I3) Acquire text data sources via a URI
Database parsing (I4) Acquire data sources from a relational database via a connection string and an SQL query
Folder exploration (I5) Navigate through folders and utilize I3 feature
Metadata curation (I6) Update station or observable with metadata found on timeseries resource (file or online source)
Conditional filtering (I7) Input a data point based on a condition. It can be used for QA/QC purposes
Timestamp assembly (I8) Construct a timestamp out of many components (i.e. day, month, year, hour). It supports for complex timestamp components

(i.e. julian dates and years)
Relationship establishment (I9) Resolves a relation between a data point and its related metadata. This function resembles the functionality of Foreign Keys in

relational databases
Timeseries merging (I10) Associate timeseries of a station, which are originally offered as multiple ones

Processing Resampling (P1) Upsample or downsample timeseries data. Resampling is performed upon a user-selected aggregation or interpolation
method∗

Summarization (P2) Generate a summary of statistical values for timeseries data. The summary concerns: count, mean, std, min, 25%, 50%, 75%,
max

Conditional export (P3) Similar to I7, it facilitates QA/QC
Dissemination Map projection (D1) Stations are projected on a map based on location metadata. Should they not be provided, EDAM attempts to estimate them

via station name.
OGC SOS (D2) Acquired datasets are offered as services through OGC SOS
Data transformation (D3) A dataset can be exported with a different template. This feature is available in cases where the output template is compatible

with the dataset∗∗

∗ This uses the resample function of the pandas library.
∗∗ In order for a template to be compatible, it should contain the same observable_id with the requested dataset. Generic templates are by-design compatible.

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

243



4. Demonstration

We demonstrate EDAM extended outreach by acquiring environ-
mental timeseries data from diverse data sources. In Table 2 we name
the seven sources we identified. Each of them poses a different chal-
lenge: a) timeseries with complex timestamp structures in custom for-
mats and datasets which have essential metadata in their preamble
(APSIM, AgMIP), b) online datasets having a simple timeseries structure
(UK Met Office), or a more complex one (BoM (Met)), c) datasets stored
in one file (KNMI) or dispersed in multiple files within folders (Swiss
TPH), and d) abstract data models applied to text files (HOA) and rela-
tional databases (BoM (Air)).

In Subsection 4.1 we describe the case studies against which we
evaluated EDAM. We also highlight challenges associated with each
dataset. These challenges were addressed by employing EDAM input
functions during the development of the input templates. Table 3 pre-
sents the exact functions used to cope with challenges for each case
study. Besides timeseries data, storing corresponding metadata is an
essential requirement for EDAM. The metadata curation (I6)
function was applied on every dataset.

For all case studies we developed EDAM templates as needed and
successfully parsed the datasets using a single EDAM command. The
developed templates are available as Supplementary Material A, and
also on the EDAM GitHub repository, along with detailed instructions
on how to repeat the experiments, with the exception of Swiss TPH and
BoM as original data are not publicly available.

4.1. Test cases

4.1.1. AgMIP and APSIM weather data files
The Agricultural Model Intercomparison and Improvement Project

(AgMIP) (Porter et al., 2014) have brought agricultural model data

sharing into the spotlight. Within AgMIP, various agricultural model
data inputs and outputs (such as the APSIM (Keating et al., 2003)) were
transformed into the common AgMIP data scheme. Here we worked
only with the weather data files.

Note that, AgMIP and APSIM data files use different timestamp for-
mats. APSIM uses days of year and years, while AgMIP timestamp is
represented through year, month, date components. We addressed the
challenge of composing these into one universal timestamp with the
timestamp assembly (I8) function.

Another challenge was related to metadata encoded in the preamble
of APSIM data files. The APSIM weather file includes station metadata
above the timeseries data, such as station name, location and others.
We addressed this challenge of extracting metadata from the preamble
with the metadata curation (I6) function.

4.1.2. UK Meteorological Office
In the context of Open Data, the UK Meteorological Office reports

historical observations of 27 weather stations. For every station,
monthly observations are stored in one text document. New observa-
tions are appended every month and each weather station can be found
on a certain web location. They follow the pattern: http://www.
metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/{station_
name}/data.txt, where {station name} is replaced with an actual sta-
tion name.

Data points reported have special markers for the quality of the
reported values. Markers are weakly defined in each document pre-
amble. For example, estimated data is marked with a after the value
and missing values are represented through the — notation. Such mar-
kers make it difficult to parse and reuse the data directly. Capturing
such observation-specific quality attributes is a further challenge that
EDAM in its current version does not support. We used the condi-
tional filtering (I7) function in order to filter out the missing
values.

4.1.3. Australian Bureau of Meteorology (meteorological datasets)
The Bureau of Meteorology (BoM) in Australia offers historical

meteorological timeseries for a number of weather stations across
Australia. They concern daily observations which are published every
month as HTML and CSV documents with the same structure. Users can
access the timeseries by crafting URLs which comprise information
about the requested station id, and month/year. For example, the URL
for the meteorological data about Adelaide station (5002 station id) for
October 2018 is:http://www.bom.gov.au/climate/dwo/201810/text/
IDCJDW5002.201810.csv

The challenge in acquiring BoM timeseries is in regard to their
structure. It is a common practice in delimiter-separated files that every
row corresponds to one observation for a given timestamp. However,
each BoM row reports two observations for the same daily timestamp.
These two observations report the same measured quantity at different

Table 2
The seven data sources we selected to evaluate EDAM. They are distinguished based on a) how they are available (Source), b) how are they modelled (Data model), c)
the preamble type (Preamble), and d) whether related metadata are included in the dataset or not (Metadata). External metadata are declared by data curators in
metadata files.

Datasets Source Data model Preamble Metadata

file folder http database tabular abstract other tabular key-value included external

AgMIP ✓ ✓ ✓
APSIM ✓ ✓ ✓ ✓ ✓
BoM (Met) ✓ ✓a ✓ ✓ ✓
UK Met ✓ ✓ ✓ ✓ ✓
KNMI ✓ ✓ ✓ ✓ ✓
Swiss TPH ✓ ✓ ✓ ✓ ✓
HOA ✓ ✓ ✓ ✓ ✓
BoM (Air) ✓ ✓ ✓

a BoM (Met) data model has a tabular-like format. This is why some observables are repeated in more than one columns.

Table 3
Input functions utilization for each EDAM test case.

Datasets Input functions

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
AgMIP ✓ ✓
APSIM ✓ ✓ ✓
UK Met ✓ ✓ ✓ ✓ ✓
BoM (Met) ✓ ✓ ✓ ✓a ✓
KNMI ✓ ✓ ✓
Swiss TPH ✓b ✓ ✓ ✓
HOA ✓ ✓ ✓ ✓
BoM (Air) ✓ ✓

a According to BoM (Met) data model the timestamp of certain data points is
projected on their corresponding header column.

b The observables of a Swiss TPH station are formatted differently. Thus,
parsing is accomplished through more than one template files.

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

244

http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/station%20namedata.txt
http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/station%20namedata.txt
http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/station%20namedata.txt
http://www.bom.gov.au/climate/dwo/201810/text/IDCJDW5002.201810.csv
http://www.bom.gov.au/climate/dwo/201810/text/IDCJDW5002.201810.csv


times on the same day. Thus the sampling hour, needs to complement
the daily timestamp for the bi-daily observations, is included in the
dataset's header. We addressed this challenge with the timestamp
assembly (I8) function. We also utilized custom Jinja2 macros in
order to support this type of tabular timeseries.

4.1.4. Koninklijk Nederlands Meteorologisch Instituut (KNMI)
The Royal Netherlands Meteorological Institute (KNMI) provides

weather services for the Netherlands. They offer historical observations
as text documents. For our study, we parsed historical observations
from 37 Dutch weather stations from 1901 to 2016. Each weather
station reports daily observations for 39 observables. The dataset comes
as a whole in a single text file of 158 MB, which includes metadata in
the preamble.

The challenge here was to separate the metadata from the timeseries
using templates. We addressed this challenge by utilizing metadata
curation (I6) and relationship establishment (I9) func-
tions.

4.1.5. Swiss Tropical and Public Health Institute
The Swiss Tropical and Public Health Institute (TPH) monitors air

quality in train stations among others. Both stationary and moving
stations are used, consisting of multiple sensing units. Each sensing
instrument exports its measurements in a file in a sensor-dependant
format. All station-related files are stored in a folder structure.
Additionally, there are multiple data formats associated with a station
as different sensor types are involved in the various studies. For ex-
ample, the GPS sensor exports its readings in a file with seven columns
(date, time, latitude, longitude, speed, bearing, altitude).

The challenge with the Swiss datasets is related to the aforemen-
tioned folder-tree structure. Not all file types are present in all folders,
so EDAM is challenged to match the various files found against several
templates in order to extract observations. We addressed this challenge
by navigating folders with the folder exploration (I5) function,
and matching files with the corresponding templates with the file
parsing (I3) function. We associated the different datasets to the
corresponding station with the timeseries merging (I19) func-
tion. The other challenge was to combine location data with the other
observations into one output file. Specifically, each sensor took ob-
servations at different time intervals. EDAM automatically solves the
issue by combining together observations sharing the same timestamp.
In a data fusion scenario, output templates could be used for homo-
genising the reporting timestamps of the various sensors involved in a
study.

4.1.6. Hydrological Observatory of Athens
The Hydrological Observatory of Athens (HOA) offers a service

endpoint for hydrological timeseries. Several observed properties are
reported for 23 stations. Each of them is offered separately on the web,
and every observed property dataset has a unique URL. Timeseries are
reported under the same abstract format, consisting of a preamble with
relevant metadata (i.e. about the station, observed property, unit of
measurement, etc), and the actual timeseries in the form of key-value
pairs.

The challenge in acquiring HOA timeseries concerns the abstract
data format. In non-abstract data formats a given file column corre-
sponds to a certain observable, which is mentioned in the header. In
contrast, the HOA abstract data format mentions the observed property
at the preamble of each document. We addressed this challenge by
drafting an abstract input template. The specific observable_id was
defined dynamically based on the metadata found in the document
preamble.

Again, here each station reports several files, one for each ob-
servable, but all have exactly the same format. Instead of drafting as
many templates as the available observed properties we use a generic
template that includes the observable_id. In a data fusion scenario,

output templates can be used for linking together the various ob-
servables of the same station.

4.1.7. Australian Bureau of Meteorology (air quality dataset)
BoM developed a historical database that contains hourly air quality

timeseries in several locations in Australia. We were given access to this
PostgreSQL database that contains data of common pollutants as SO2,
O3, CO, NO2 and PM10, in 99 stations and corresponds to a period of 20
years (1988–2008). In total, there are about 15 million records.
Observations are stored in key-value pairs, with detailed metadata
about the stations, and observed quantities. Metadata are stored in a
different relational database system (i.e. Oracle). In total, there are four
tables in this implementation. The challenge in acquiring these time-
series lies in the relational databases and the chosen structure. Data and
metadata are stored in different tables across different database sys-
tems. In the observations table, each observation is associated with the
corresponding station. In the station metadata (i.e. name, location, al-
titude) table, each station is referenced with the aforementioned iden-
tifier. We addressed the challenge of realizing the external relationships
so data are appropriately linked when harvested, with the re-
lationship establishment (I9) function.

4.2. Demonstrating EDAM output

With regard to dissemination services, an example output of EDAM
is shown in Fig. 6. We demonstrate EDAM acquisition and integration
for all Australian weather stations for July 2017. Specifically, EDAM
utilizes URI generation (I1) to discover 478 BoM stations. Em-
ploying online parsing (I2), and using one template for all stations,
EDAM acquired and stored approximately 210,000 data points. Above
operations were realized through a single EDAM command, that looks
like:

edam –input "http://www.bom.gov.au/climate/dwo/
201707/text/IDCJDW%7b2-8%7d0%7b01-82%7d.201707.csv"
–template bom. tmpl –metadata bom. yaml

EDAM processing capabilities are statistical filters and conditional
exports. Fig. 7 exhibits them when applied to a UK Met dataset. Spe-
cifically, we aggregate daily into monthly observations with the re-
sampling (P1) function. Consequently, we illustrate the condi-
tional export (P3) function exporting only those datapoints which
satisfy a given condition. Processing functions are typed in the output
template files.

The data transformation (D3) function facilitates the dataset
transformations from one format to another. We demonstrate this fea-
ture with the AgMIP dataset and the WebXTREME service (Klein et al.,
2017). The latter is a web service which, given an input in a certain
format, calculates extreme weather indicators. Transforming an EDAM
curated dataset requires the draft of a template file for the target
format. Fig. 8 demonstrates the creation of a custom data view, by
simply drafting a new template file.

4.3. Lessons learned

While we aimed with this work to lower the barrier for e-scientists,
we realized early that non-standard data formats usually lead to com-
plex templates. This is due to the inherent complexities of environ-
mental data domain, and the poor design choices that often come with
legacy formats. The most complex data format we faced was BoM Met.
In all other cases, each column represented a single observable.
However, in the case of BoM Met the same observable was reported in
two columns. Each column reported measurements taking place at
different times in a day. The exact time each measurement was taken
was noted in the header. Using EDAM functions and Jinja2 utility
helpers, we successfully acquired and integrated BoM datasets.

Another factor which leads to complex templates is when metadata
are mixed with timeseries data. This is the case with the KNMI dataset,

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

245



where metadata about all stations and all their observables precede the
observations.

Parsing HTML tables using templates was rather cumbersome.
Initially we tried to parse BoM Met weather stations in their HTML
form. However, HTML comprises numerous tags which provide an
aesthetic view to the page (e.g. colors, aligns, fonts). These tags hinder
the draft of a reusable template file, and render its composition a rather
complex process. Thus, in its current release, EDAM cannot directly
parse timeseries stored along with HTML tags, rather these should be
stripped out as a pre-processing step.

There are also challenges in the way timestamps are represented in
different datasets. EDAM provides users with an intuitive mechanism to
annotate different timestamp components. Among the EDAM case stu-
dies we successfully parsed all different timestamp representations. In
most of the datasets we experimented with, timestamp components
were spread in more than one column and they were not in an ISO 8601
format. For instance, in APSIM weather files the timestamp is as ordinal
date, comprised of two columns: The first one for the year and the
second for the day of the year (Julian date). EDAM internally composes
a universal timestamp object, so data consumers during data output can
transform a timestamp in as many components as they want.

Timezone information is essential especially for spatially diverse
datasets. Among all case studies, the timezone of the reported ob-
servations was explicitly reported only in one (HOA). All other datasets
contained timezone information neither on the dataset nor on the
corresponding metadata files. Interestingly, the BoM online portal
which serves observations for the whole Australian continent, does not
state the timezone in which observations are reported. EDAM is able to
assign timezone information to datasets, either using station-level
metadata or deriving it from the station geolocation. In cases where no
timezone information is declared the GMT timezone is used.

While this is not a performance study, we measured some perfor-
mance indicators. The KNMI dataset was the most voluminous dataset
we parsed (158 MB). EDAM parsed and stored over 24 million data-
points in less than 8 minutes on a PC with 16 GB RAM. Nevertheless,
volume is not the only constraint. In our attempt to discover BoM Met
weather stations, EDAM generated and requested 574 unique URIs.
From the 574 generated stations, 478 existed. Submitting the HTTP
GET requests, reading the responses, and downloading the datasets took
about 5 minutes. Station data were about 2 MB in total. Iterating
through the 478 station timeseries and storing them took almost
11 minutes. In another example, the AgMIP dataset which consisted of
one 1 MB file and more than 90,000 datapoints, was parsed and stored
in about 2 seconds.

5. Discussion and conclusions

Today, environmental datasets are either available through inter-
operable environmental data management frameworks or can be found
in raw, non-standardized formats. Both approaches require significant
effort and usually a computer science background in order for data to
be acquired, integrated and re-used. In this work we present EDAM, a
template framework, as a universal strategy of acquiring and in-
tegrating diverse environmental timeseries data. EDAM copes with di-
versity in terms of data storage type (i.e. files, webpages, databases) and
data format (i.e. relational, key-value pairs).

The EDAM data acquisition and integration capabilities have been
investigated in the light of several test cases. Using EDAM we acquired
and integrated datasets with different characteristics, demonstrating its
generality. The evaluation of the software against timeseries with
simple and more complex structure provides insights about the system's
extended outreach. EDAM supports not only timeseries stored in files
(as the template parsing files introduced in (Mason et al., 2014)), but
also from webpages and relational databases.

Data transformation into consistent data formats and dissemination
through standardized protocols is essential for syntactic interoperability
in the IoT era. EDAM users can transform legacy environmental datasets
between data formats by using EDAM templates. In this way, EDAM
contributes towards a) environmental model re-usability by trans-
forming data inputs/outputs in scientific workflows (Granell et al.,
2010), and b) environmental data FAIRness as it facilitates timeseries
re-usability, and interoperability and enhances reproducibility (Wilkinson
et al., 2016). It also promotes further environmental data discovery and
access through standardized dissemination protocols, i.e. the OGC
Sensor Observation Service.

We consider that EDAM also contributes towards lowering the e-

Fig. 6. Issuing a single EDAM command we parsed 478 online weather stations
provided by BoM in Australia. Following parsing, these data are (a) projected
on a map, (b) offered as services via OGC SOS.

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

246



Fig. 7. Demonstrating EDAM processing functions. (a) depicts the output template. P1 function (blue color-box) down-samples monthly observations to yearly (‘Y′
argument), using mean aggregation method. P3 function (magenta color-box) filters missing values (i.e. ‘—‘) from output. The resulting custom data view is depicted
in (b). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Figure 8. Data format transformation through a template. (b) was the template we used to read data from input file (a). Output template (c), creates a custom data
view by changing the order and omitting some observables. The resulting output is depicted in (d).

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

247



science barriers (Swain et al., 2016). In contrast with most methodolo-
gies for acquiring EIoT datasets reported in the literature, EDAM does
not presuppose a strong computer science background. We argue that
templates offer a compromise between generality and complexity. The
system is founded around a template language which uses program-
ming language-agnostic semantics. Users are not required to have more
programming skills than they already have in order to draft an EDAM
template. As we demonstrated in Section 4, the templates drafted with
EDAM language are reusable, and can be used for both data input and
output.

The EDAM design embraces the open source principles, and allows
for future extensions. On the processing layer, the system offers some
pre-implemented processing functions which can be called by end-
users. These support the on-the-fly calculation of values which were not
originally stored in the database, and facilitate sensor data fusion, and/
or aggregation. External users more advanced with computer science
background can extend the system by defining such processing func-
tions.

5.1. Future work

Future work may focus on issues related to semantic interoper-
ability. EDAM supports metadata annotation of observables using
ontologies. While these annotations are stored in the system, they are
not fully utilized. In its current version, EDAM lacks a semantic layer to
act upon datasets and templates. In principle, a dataset that was ac-
quired through an input template can be transformed with another
template only if both templates utilize the very same observable_ids. The
observable_ids are drafted by data curators, and represent certain ob-
servables. Future work may investigate the use of a reasoner to resolve
relations between the different observable_ids. In this way, a certain data
file format can be represented through a single template, and by as-
signing synonym terms in an ontology we could enable automatic
transformation into other formats.

Another direction for future work is to support environmental
timeseries datasets in other formats. In this work we evaluated EDAM
against text-based documents and relational databases. However, en-
vironmental datasets are also available in data cubes and non-relational
databases. EDAM could be extended to support such other sources.

5.2. Conclusions

In this work we provided a proof-of-concept and a tested im-
plementation of a template system that can be used for environmental
timeseries acquisition and integration. We demonstrated that the use of
templates for data acquisition in the Environmental Internet of Things
provides a compromise between generality and complexity. We de-
signed and implemented an open-source, extensible template frame-
work, called EDAM, to support environmental timeseries data acquisi-
tion, integration and dissemination services, without the prerequisite of
a strong computer science background. We enable users to extract da-
tasets and create custom views out of them by defining the desired
output format as a template. In this way, users can re-use environ-
mental timeseries data into scientific workflows. EDAM also supports
opening legacy datasets as services on the web through OGC SOS.
Currently, EDAM supports data acquisition and integration of timeseries
stored in relational databases, files in folder structures, and webpages.
The test cases we used to evaluate EDAM provided us with insights
about its general-purpose nature. The novelty of this approach is that
we are not trying to propose another standard, but rather that we have
developed a specific language for describing data file structures in a
generic way, using templates. Also, such templates are programming
language-agnostic so that users of different computer literacy profiles
could develop them.

Software availability

Name of software: EDAM (Environmental Data Acquisition
Module).

Developers: Argyrios Samourkasidis, Evangelia Papoutsoglou,
Ioannis N. Athanasiadis.

Contact: argysamo@gmail.com.
Software required: Any operating system with Python 3.
Program language: Python 3.
License: GNU General Public License.
Software availability: Released via Python's pip package manage-

ment system. Source code on https://github.com/BigDataWUR/edam.

Acknowledgements

We would like to offer our special thanks to Mr Stavros
Foteinopoulos for his valuable and constructive suggestions during the
design and implementation of the software. We are grateful to Dr
Robert Argent and Dr Andre Zerger from the Australian Bureau of
Meteorology for providing us with the historical air quality database.
We would also like to express our gratitude to Dr Ming-Yi Tsai and Dr
Mark Davey from the Swiss Tropical and Public Health Institute for
providing us with the air quality dataset and case study. IA was par-
tially supported by the Wageningen University and Research Strategic
Investment Theme programme Resilience. Finally, we are grateful to Dr
S. Osinga and the three anonymous reviewers for their constructive
feedback and comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envsoft.2018.10.009.

References

Ames, D.P., Horsburgh, J.S., Cao, Y., Kadlec, J., Whiteaker, T., Valentine, D., 2012.
Hydrodesktop: Web services-based software for hydrologic data discovery, download,
visualization, and analysis. Environ. Model. Software 37, 146–156. https://doi.org/
10.1016/j.envsoft.2012.03.013.

Andrae, S., Gruber, G., Hecke, A., Wieser, A., 2009. Sensor web enablement–standards
and open source implementations for observation data. In: Schweizer, J., van
Herwijnen, A. (Eds.), Proceedings 1st International Snow Science Workshop (ISSW),
Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
Davos, Switzerland.

Athanasiadis, I.N., 2015. Challenges in modelling of environmental semantics. In:
Environmental Software Systems. Infrastructures, Services and Applications.
Springer, pp. 19–25. https://doi.org/10.1007/978-3-319-15994-2_2.

Athanasiadis, I.N., Mitkas, P.A., 2004. An agent-based intelligent environmental mon-
itoring system. Management of Environmental Quality 15, 238–249. https://doi.org/
10.1108/14777830410531216.

M. Bayer, Mako templates for python, http://www.makotemplates.org; accessed 1-
August-2017.

Beran, B., Cox, S.J.D., Valentine, D., Zaslavsky, I., McGee, J., 2009. Web services solutions
for hydrologic data access and cross-domain interoperability. International Journal
on Advances in Intelligent Systems 2 (2&3), 317–324.

Boote, K.J., Porter, C.H., Hargreaves, J., Hoogenboom, G., Thorburn, P., Mutter, C., 2015.
Agmip training in multiple crop models and tools. In: HANDBOOK OF CLIMATE
CHANGE AND AGROECOSYSTEMS: The Agricultural Model Intercomparison and
Improvement Project Integrated Crop and Economic Assessments, Part 2. World
Scientific, pp. 393–410.

Botts, M., Robin, A., 2014. OGC SensorML: Model and XML, Encoding Standard 12-000.
Open Geospatial Consortium.

Botts, M., Percivall, G., Reed, C., Davidson, J., 2008. OGC Sensor Web Enablement:
Overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(Eds.), GeoSensor Networks, Vol. 4540 of Lecture Notes in Computer Science (LNCS).
Springer Berlin Heidelberg, pp. 175–190. https://doi.org/10.1007/978-3-540-
79996-2_10.

Broering, A., Stasch, C., Echterhoff, J., 2012. OGC Sensor Observation Service 2.0,
Implementation Standard 12-006. Open Geospatial Consortium.

Broytman, O., Croy, T., 2001. Cheetah3, the python-powered template engine. http://
cheetahtemplate.org, Accessed date: 1 August 2017.

Cox, S., 2011. Observations and Measurements - XML implementation, Implementation
Standard 10-025r1. Open Geospatial Consortium.

Eberle, J., Clausnitzer, S., Hüttich, C., Schmullius, C., 2013. Multi-source data processing
middleware for land monitoring within a web-based spatial data infrastructure for

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

248

mailto:argysamo@gmail.com
https://github.com/BigDataWUR/edam
https://doi.org/10.1016/j.envsoft.2018.10.009
https://doi.org/10.1016/j.envsoft.2018.10.009
https://doi.org/10.1016/j.envsoft.2012.03.013
https://doi.org/10.1016/j.envsoft.2012.03.013
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref2
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref2
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref2
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref2
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref2
https://doi.org/10.1007/978-3-319-15994-2_2
https://doi.org/10.1108/14777830410531216
https://doi.org/10.1108/14777830410531216
http://www.makotemplates.org
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref6
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref6
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref6
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref7
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref7
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref7
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref7
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref7
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref8
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref8
https://doi.org/10.1007/978-3-540-79996-2_10
https://doi.org/10.1007/978-3-540-79996-2_10
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref10
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref10
http://cheetahtemplate.org
http://cheetahtemplate.org
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref12
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref12


siberia. ISPRS Int. J. Geo-Inf. 2 (3), 553–576. https://doi.org/10.3390/ijgi2030553.
Elag, M.M., Kumar, P., Marini, L., Myers, J.D., Hedstrom, M., Plale, B.A., 2017.

Identification and characterization of information-networks in long-tail data collec-
tions. Environ. Model. Software 94, 100–111. https://doi.org/10.1016/j.envsoft.
2017.03.032.

Python Software Foundation, P.S., 2018. PyPI - the Python Package Index. https://pypi.
python.org/pypi, online, Accessed date: 22 February 2018.

Geebelen, K., Michiels, S., Joosen, W., Geebelen, K., Michiels, S., Joosen, W., 2008.
Dynamic reconfiguration using template based web service composition. In: Proc. 3rd
workshop on Middleware for Service Oriented Computing. MW4SOC ’08, ACM, ACM,
New York, NY, USA, pp. 49–54. http://doi.acm.org/10.1145/1462802.1462811.

Granell, C., Díaz, L., Gould, M., 2010. Service-oriented applications for environmental
models: Reusable geospatial services. Environ. Model. Software 25 (2), 182–198.

Hart, J.K., Martinez, K., 2015. Towards an environmental internet of things. Earth and
Space Science 2 (5), 194–200. https://doi.org/10.1002/2014EA000044.

Harth, A., Knoblock, C., Stadtmller, S., Studer, R., Szekely, P., 2013. On-the-fly integra-
tion of static and dynamic sources. In: Hartig, O., Sequeda, J., Hogan, A., Matsutsuk,
T. (Eds.), Proceedings 4th International Workshop on Consuming Linked Data
(COLD2013). vol. 1034 CEUR-WS.org.

Hey, T., Trefethen, A., 2003. e-science and its implications. Phil. Trans. Roy. Soc. Lond.:
Mathematical, Physical and Engineering Sciences 361 (1809), 1809–1825.

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G.,
Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish,
J.P., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z.,
Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S.,
Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E.,
Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H.,
McClelland, T., Carberry, P.S., Hargreaves, J.N., MacLeod, N., McDonald, C.,
Harsdorf, J., Wedgwood, S., Keating, B.A., 2014. Apsim evolution towards a new
generation of agricultural systems simulation. Environ. Model. Software 62,
327–350. https://doi.org/10.1016/j.envsoft.2014.07.009.

Holzworth, D.P., Snow, V., Janssen, S., Athanasiadis, I.N., Donatelli, M., Hoogenboom, G.,
White, J.W., Thorburn, P., 2015. Agricultural production systems modelling and
software: Current status and future prospects. Environ. Model. Software 72, 276–286.
https://doi.org/10.1016/j.envsoft.2014.12.013.

Horita, F.E., de Albuquerque, J.P., Degrossi, L.C., Mendiondo, E.M., Ueyama, J., 2015.
Development of a spatial decision support system for flood risk management in Brazil
that combines volunteered geographic information with wireless sensor networks.
Comput. Geosci. 80, 84–94. https://doi.org/10.1016/j.cageo.2015.04.001. https://
doi.org/10.1016/j.cageo.2015.04.001.

Horsburgh, J.S., Tarboton, D.G., 2007. CUAHSI ODM streaming data loader design spe-
cifications, Design Specification Document 1.1. Consortium of Universities for the
Advancement of Hydrologic Science (CUAHSI. https://www.cuahsi.org/uploads/
pages/img/ODM_SDL_Design_Specifications_(2).pdf.

Horsburgh, J.S., Tarboton, D.G., Maidment, D.R., Zaslavsky, I., 2008. A relational model
for environmental and water resources data. Water Resour. Res. 44 (5). http://doi.
org/10.1029/2007WR006392.

Horsburgh, J.S., Tarboton, D.G., Piasecki, M., Maidment, D.R., Zaslavsky, I., Valentine,
D., Whitenack, T., 2009. An integrated system for publishing environmental ob-
servations data. Environ. Model. Software 24 (8), 879–888. https://doi.org/10.1016/
j.envsoft.2009.01.002.

Horsburgh, J.S., Tarboton, D.G., Maidment, D.R., Zaslavsky, I., 2011. Components of an
environmental observatory information system. Comput. Geosci. 37 (2), 207–218.
https://doi.org/10.1016/j.cageo.2010.07.003.

Ihaka, R., Gentleman, R., 1996. R: A language for data analysis and graphics. J. Comput.
Graph Stat. 5 (3), 299–314. https://doi.org/10.1080/10618600.1996.10474713.
arXiv.

IEEE International Conference on eScience, 2018. What is eScience? https://escience-
conference.org, Accessed date: 26 July 2018.

Jones, A.S., Horsburgh, J.S., Reeder, S.L., Ramírez, M., Caraballo, J., 2015. A data
management and publication workflow for a large-scale, heterogeneous sensor net-
work. Environ. Monit. Assess. 187 (6), 1–19. https://doi.org/10.1007/s10661-015-
4594-3.

Kandel, S., Paepcke, A., Hellerstein, J., Heer, J., 2011. Wrangler: Interactive visual spe-
cification of data transformation scripts. In: Proceedings of SIGCHI Conference on
Human Factors in Computing Systems. ACM, pp. 3363–3372. https://doi.org/10.
1145/1978942.1979444.

Keating, B., Carberry, P., Hammer, G., Probert, M., Robertson, M., Holzworth, D., Huth,
N., Hargreaves, J., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V.,
Dimes, J., Silburn, M., Wang, E., Brown, S., Bristow, K., Asseng, S., Chapman, S.,

McCown, R., Freebairn, D., Smith, C., 2003. An overview of apsim, a model designed
for farming systems simulation. Eur. J. Agron. 18 (3), 267–288. modelling Cropping
Systems: Science, Software and Applications. https://doi.org/10.1016/S1161-
0301(02)00108-9.

Klein, T., Samourkasidis, A., Athanasiadis, I.N., Bellocchi, G., Calanca, P., 2017. webx-
treme: R-based web tool for calculating agroclimatic indices of extreme events.
Comput. Electron. Agric. 136, 111–116. https://doi.org/10.1016/j.compag.2017.03.
002.

Mason, S.J., Cleveland, S.B., Llovet, P., Izurieta, C., Poole, G.C., 2014. A centralized tool
for managing, archiving, and serving point-in-time data in ecological research la-
boratories. Environ. Model. Software 51, 59–69.

McFerren, G., Hohls, D., Fleming, G., Sutton, T., 2009. Evaluating sensor observation
service implementations. Proceedings International Geoscience and Remote Sensing
Symposium (IGARSS), vol. 5. IEEE, pp. 363–366. https://doi.org/10.1109/IGARSS.
2009.5417655.

McKinney, W., 2011. Pandas: a foundational python library for data analysis and statis-
tics. In: Workshop Python for High Performance and Scientific Computing (SC11).
ACM, New York, NY, USA.

Negru, C., Pop, F., Mocanu, M., Cristea, V., 2016. A Unified Approach to Data Modeling
and Management in Big Data Era. Springer International Publishing, pp. 95–116. Ch.
Data Science and Big Data Computing. https://doi.org/10.1007/978-3-319-31861-
5_5.

Papoutsoglou, E., Samourkasidis, A., Tsai, M.-Y., Davey, M., Ineichen, A., Eeftens, M.,
Athanasiadis, I.N., 2015. Towards an air pollution health study data management
system-a case study from a smoky swiss railway. In: Johannsen, V.K., Jensen, S.,
Wohlgemuth, V., Preist, C., Eriksson, E. (Eds.), Adjunct Proc. 29th EnviroInfo and 3rd
ICT4S Conference. University of Copenhagen, 978-87-7903-712-0, pp. 65–74.

Peckham, S.D., Goodall, J.L., 2013. Driving plug-and-play models with data from web
services: A demonstration of interoperability between CSDMS and CUAHSI-HIS.
Comput. Geosci. 53, 154–161. modeling for Environmental Change. https://doi.org/
10.1016/j.cageo.2012.04.019.

Raspberry Pi Foundation, 2018. Raspberry Pi Model B. https://www.raspberrypi.org/
products/raspberry-pi-2-model-b/, Accessed date: 12 July 2018.

Porter, C.H., Villalobos, C., Holzworth, D., Nelson, R., White, J.W., Athanasiadis, I.N.,
Janssen, S., Ripoche, D., Cufi, J., Raes, D., et al., 2014. Harmonization and translation
of crop modeling data to ensure interoperability. Environ. Model. Software 62,
495–508. https://doi.org/10.1016/j.envsoft.2014.09.004.

Ronacher, A., 2008. Jinja2. http://jinja.pocoo.org, Accessed date: 12 December 2016.
Ronacher, A., 2010. Flask. http://flask.pocoo.org, Accessed date: 12 December 2016.
Samourkasidis, A., Athanasiadis, I.N., 2017. A miniature data repository on a Raspberry

Pi. Electronics 6 (1). http://doi.org/10.3390/electronics6010001.
Samourkasids, A., Athanasiadis, I.N., Papoutsoglou, E., 2018. Edam software. https://

github.com/BigDataWUR/EDAM, Accessed date: 22 February 2018.
Stadtmüller, S., Speiser, S., Harth, A., Studer, R., 2013. Data-fu: a language and an in-

terpreter for interaction with read/write linked data. In: Proceedings 22nd
International Conference on World Wide Web. ACM, pp. 1225–1236.

Swain, N.R., Christensen, S.D., Snow, A.D., Dolder, H., Espinoza-Dvalos, G., Goharian, E.,
Jones, N.L., Nelson, E.J., Ames, D.P., Burian, S.J., 2016. A new open source platform
for lowering the barrier for environmental web app development. Environ. Model.
Software 85, 11–26. https://doi.org/10.1016/j.envsoft.2016.08.003 http://www.
sciencedirect.com/science/article/pii/S1364815216304625.

Taylor, P., 2014. OGC WaterML 2.0: Part 1- Timeseries, Implementation Standard 10-
126r4. Open Geospatial Consortium.

Terrizzano, I., Schwarz, P.M., Roth, M., Colino, J.E., 2015. Data wrangling: The chal-
lenging journey from the wild to the lake. In: Proceeding 7th Biennial Conference on
Innovative Data Systems Research (CIDR). Online Proceedings, Asilomar, California,
USA..

Van Rossum, G., Drake, F.L., 2003. Python language reference manual. Network Theory
United Kingdom.

Wikipedia contributors, List of tz database time zones — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=List_of_tz_database_time_
zones&oldid=851163045, Accessed date: 7 August 2018.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E., et al., 2016. The FAIR
guiding principles for scientific data management and stewardship. Sci. Data 3
(160018). http://doi.org/10.1038/sdata.2016.18.

Woodard, J., 2016. Big data and Ag-Analytics: An open source, open data platform for
agricultural & environmental finance, insurance, and risk. Agric. Finance Rev. 76 (1),
15–26. https://doi.org/10.1108/afr-03-2016-0018.

A. Samourkasidis, et al. Environmental Modelling and Software 117 (2019) 237–249

249

https://doi.org/10.3390/ijgi2030553
https://doi.org/10.1016/j.envsoft.2017.03.032
https://doi.org/10.1016/j.envsoft.2017.03.032
https://pypi.python.org/pypi,%20online
https://pypi.python.org/pypi,%20online
http://doi.acm.org/10.1145/1462802.1462811
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref17
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref17
https://doi.org/10.1002/2014EA000044
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref19
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref19
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref19
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref19
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref20
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref20
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.1016/j.envsoft.2014.12.013
https://doi.org/10.1016/j.cageo.2015.04.001
https://doi.org/10.1016/j.cageo.2015.04.001
https://www.cuahsi.org/uploads/pages/img/ODM_SDL_Design_Specifications_(2).pdf
https://www.cuahsi.org/uploads/pages/img/ODM_SDL_Design_Specifications_(2).pdf
http://doi.org/10.1029/2007WR006392
http://doi.org/10.1029/2007WR006392
https://doi.org/10.1016/j.envsoft.2009.01.002
https://doi.org/10.1016/j.envsoft.2009.01.002
https://doi.org/10.1016/j.cageo.2010.07.003
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1080/10618600.1996.10474713
https://escience-conference.org
https://escience-conference.org
https://doi.org/10.1007/s10661-015-4594-3
https://doi.org/10.1007/s10661-015-4594-3
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.1016/j.compag.2017.03.002
https://doi.org/10.1016/j.compag.2017.03.002
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref34
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref34
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref34
https://doi.org/10.1109/IGARSS.2009.5417655
https://doi.org/10.1109/IGARSS.2009.5417655
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref36
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref36
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref36
https://doi.org/10.1007/978-3-319-31861-5_5
https://doi.org/10.1007/978-3-319-31861-5_5
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref38
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref38
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref38
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref38
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref38
https://doi.org/10.1016/j.cageo.2012.04.019
https://doi.org/10.1016/j.cageo.2012.04.019
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://doi.org/10.1016/j.envsoft.2014.09.004
http://jinja.pocoo.org
http://flask.pocoo.org
http://doi.org/10.3390/electronics6010001
https://github.com/BigDataWUR/EDAM
https://github.com/BigDataWUR/EDAM
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref46
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref46
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref46
https://doi.org/10.1016/j.envsoft.2016.08.003
http://www.sciencedirect.com/science/article/pii/S1364815216304625
http://www.sciencedirect.com/science/article/pii/S1364815216304625
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref48
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref48
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref49
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref49
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref49
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref49
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref50
http://refhub.elsevier.com/S1364-8152(18)30262-7/sref50
https://en.wikipedia.org/w/index.php?title=List_of_tz_database_time_zones&oldid=851163045
https://en.wikipedia.org/w/index.php?title=List_of_tz_database_time_zones&oldid=851163045
http://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1108/afr-03-2016-0018

	A template framework for environmental timeseries data acquisition
	Introduction
	Background and related work
	Environmental data management frameworks
	Data integration through scripting
	Environmental data management with web template systems
	Summary

	The EDAM framework
	Objectives
	Abstract architectural design
	Workflow
	Implementation and modes of operation

	Demonstration
	Test cases
	AgMIP and APSIM weather data files
	UK Meteorological Office
	Australian Bureau of Meteorology (meteorological datasets)
	Koninklijk Nederlands Meteorologisch Instituut (KNMI)
	Swiss Tropical and Public Health Institute
	Hydrological Observatory of Athens
	Australian Bureau of Meteorology (air quality dataset)

	Demonstrating EDAM output
	Lessons learned

	Discussion and conclusions
	Future work
	Conclusions

	Software availability
	Acknowledgements
	Supplementary data
	References




