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A B S T R A C T   

In the environmental sciences, there are ongoing efforts to combine multiple models to assist the analysis of 
complex systems. Combining process-based models, which have encoded domain knowledge, with machine 
learning models, which can flexibly adapt to input data, can improve modeling capabilities. However, both types 
of models have input data limitations. We propose a methodology to overcome these issues by using a process- 
based model to generate data, aggregating them to a lower resolution to mimic real situations, and developing 
machine learning models using a fraction of the process-based model inputs. We showcase this method with a 
case study of pasture nitrogen response rate prediction. We train models of different scales and test them in 
sampled and unsampled location experiments to assess their practicality in terms of accuracy and generalization. 
The resulting models provide accurate predictions and generalize well, showing the usefulness of the proposed 
method for tactical decision support.   

1. Introduction 

Digital twins are established in several industries, including 
manufacturing (He and Bai, 2021), healthcare (Liu et al., 2019), auto-
motive (Caputo et al., 2019). Their ability to replicate physical systems 
and provide decision support through data fusion, simulation, and 
technology integration makes them attractive to apply in complex 
multidisciplinary problem-solving. Recently, digital twins have drawn 
the attention of the environmental sciences community. Researchers are 
exploring digital twins in hydrology (Pedersen et al., 2021), agriculture 
(Pylianidis et al., 2021), smart farming (Verdouw et al., 2021), livestock 
farming (Neethirajan and Kemp, 2021), remote sensing (Nativi et al., 
2021) and earth sciences (Guo et al., 2020). Recently, the European 
Union has announced plans for a high-resolution Earth digital twin that 
aims at actionable intelligence from (big) data streams (Bauer et al., 
2021; Voosen, 2020). In the US, the research agenda for intelligent 
systems in geosciences (Gil et al., 2018) aims to incorporate extensive 
knowledge about the physical, geological, chemical, biological, 
ecological, and anthropomorphic factors that affect the Earth system 
while leveraging recent advances in data-driven research. 

Digital twins intertwine data streams from a variety of in-situ or 
remote sensors with simulation and learning components. These 

components are then used to estimate future system states and offer an 
understanding of how complex mechanisms evolve. Digital twins 
incorporate sensor data streams with process-based models (PBM) or 
machine learning (ML) models, to provide insights by analyzing what-if 
scenarios, or provide operational decision support for managing and 
controlling complex systems. PBMs implement mathematical represen-
tations of physical processes and their interactions, and estimate future 
system states by numerical integration. While PBMs embody system 
understanding, they require many inputs and tend to be computationally 
intensive. ML models follow an empirical, data-driven approach in 
making predictions based on large collections of historical data. ML 
models are computationally fast in making predictions and robust with 
noisy data, but typically harder to interpret, and expensive to develop 
from data. 

Digital twins need to be operational in a variety of data availability 
conditions. Their operation depends on the ability of the underlying 
models to cope with missing data streams or different resolutions. 
Problems with limited data arise when digital twins have to make de-
cisions for the not-immediate future and quantities have to be fore-
casted. Also, their application in locations where data are sparse or non- 
existent (unsampled locations) can be challenging. Another concern is 
that transitions between different aggregation levels may be impossible 
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due to the difference in the detail of the data that models expect. 
Therefore, digital twins need models or techniques to create models, that 
are able to handle such cases in order to provide operational decision 
support. 

ML models can be versatile to a varying extent and resolution of 
input data. However, they generally require large volumes of data for 
their development, accompanied by labels that are not easily available 
in environmental sciences. Techniques like few-shot learning (Yang and 
Jiachen, 2021) seem promising to learn from small datasets, but still 
novel research is needed to develop ML approaches that incorporate 
prior knowledge about environmental processes (Karpatne et al., 2017a) 
and use it to effectively supplement the available data (Gil et al., 2019). 
A path forward could be to employ synthetically generated datasets from 
simulations that mimic real conditions, which can be effectively used for 
developing ML models Gil et al. (2019). 

In this work, we showcase an approach to create ML models which 
tackles the challenges of data availability and data resolution while 
providing operational decision support for digital twins. We propose a 
method which (a) does not need forecasted data to be operational, (b) is 
applicable to locations where data are not yet available to calibrate 
PBMs, and (c) is applicable in cases where the available data do not have 
the resolution expected by the PBMs. We then demonstrate its usefulness 
in the context of a case study. In the case study, we create ML models of 
different scales to predict pasture nitrogen response rates (NRR) and 
examine their reliability by assessing their predictive and generalization 
capacity. 

The rest of the paper is organized as follows: in section 2 we describe 
the requirements of PMBs, the proposed method and related work. In 
section 3, we present the case study and the methodology to experi-
mentally evaluate the proposed method. Section 4 reports the results of 
our experiments, followed by a discussion in section 5, and the 
conclusion (in section 6). 

2. Simulation-assisted machine learning 

2.1. Process-based model data requirements 

PBMs typically require several high-resolution data streams as inputs 
to simulations (Julie Ramanantenasoa et al., 2019; Kasampalis et al., 
2018). Data availability becomes a problem with PBMs when applying 
models in new locations, where no or little data have been collected yet. 
In such cases, input data need to be estimated or collected, which can be 
a lengthy and expensive process. Also, when input data are available, 
they are needed in a prolonged temporal horizon of interest. For 
example, daily weather forecasting may be necessary for in-season crop 
model predictions (Togliatti et al., 2017). Without such detailed fore-
casts of inputs, PBMs can make estimations only up to the present day. 
They may extend their reach to the near future if quantitative short-term 
weather forecasts are available. Otherwise, PBMs are used with histor-
ical data to estimate probability or risk distributions based on simula-
tions, e.g. as in (Vogeler et al., 2013), and often together with data 
assimilation techniques to integrate them with sensor observations of 
system states (Dorigo et al., 2007). 

Another factor affecting the operational use of PBMs is data resolu-
tion. Usually, sensor input is not available at the resolution required by 
the models. For example, input data streams may be available on a 
weekly basis, while models require daily inputs (Cichota et al., 2008). 
Data availability and resolution are two factors that can prohibit the use 
of existing PBMs in digital twins. A depiction of the data requirements of 
PBMs can be seen in Fig. 1a. 

2.2. Requirements for operational decision making 

In order to have digital twins for operational decision making, we 
need models which are able to operate when less data are available. 
Specifically, we identified three requirements. First, we need models 

which can make predictions for the future with data only until the 
prediction date, without requiring the future values of variables. Second, 
these models should be accurate in locations where historical data are 
available (sampled locations1) but also in locations where data have not 
been collected in the past (unsampled locations). Third, the models 
should be able to work in cases where high-resolution data are not 
available e.g. due to lower frequency sampling rates or when less input 
data streams are available in unsampled locations. The data re-
quirements of such models can be seen in Fig. 1b. 

2.3. Proposed method 

To satisfy the requirements for operational decision making, we can 
train ML models on PBM input/output data (so they are also meta-
models, see paragraph 2.4), discard data we do not need, and then 
aggregate on lower resolutions. Having a PBM, a target variable and 
historical data to make simulations, we propose the following steps from 
an application-based perspective:  

1. Define the decision horizon, i.e. how far in the future predictions are 
going to be made. Based on this boundary, we know how much data 
we need to retain, as any data after the prediction date are going to 
be discarded. 

2. Choose an aggregation level for the retained data (wherever appli-
cable), with lower resolution than the original data. This will allow 
the ML model to make predictions even when high-resolution data 
are not available.  

3. Generate data. To generate data we need to define a hyperspace of 
input combinations for the model. We can choose a full factorial 
design (Antony, 2014) to contain all the possible combinations of the 
input variables, or decide to retain only the physically consistent 
combinations.  

4. If possible, discard inputs/output datastreams of the PBM. The fewer 
inputs the better, because in this way the data requirements of the 
model are reduced. This decision can be made based on domain 
knowledge or feature selection procedures.  

5. Finally, develop one or several ML models using the data resulting 
from the above steps. 

Evaluation is an important factor to verify that the created models 
are useful for operational/tactical decision making. A practical way to 
estimate the predictive capacity of the models is to compare their errors 
with a threshold based on domain expertise. Also, the models should be 
tested for their generalization capacity. A way to do this is to consider 
both sampled and unsampled locations for testing experiments, where 
data from some locations are excluded from the model training sets, and 
examine model performance in the excluded locations. Another evalu-
ation aspect is to determine the appropriate training data size of the 
models. The more variability a model has seen in its training data the 
more accurate prediction and generalization capacity it should have. In 
the case where more data do not increase prediction performance it 
could mean that they do not add any variability and hence we do not 
need to generate much data in the future. In our case, data quantity is 
controlled by the amount of data that we generate with the PBM. 
Therefore, an evaluation step could be to test models of different scales 
by including different amounts of locations, years, or other parameters. 

2.4. Related work 

Efforts to overcome the inherent shortcomings of PBMs for opera-
tional decision-making have been focused on combining PBMs with ML 

1 Throughout the manuscript we use the term location(s), but without loss of 
generality this can be considered as situation(s), when considering non-spatially 
explicit systems. 
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through the concept of metamodeling. Metamodels (also called surro-
gate or hybrid models) refer to models which mimic the behavior of 
other models (Blanning, 1975). ML metamodels have been used in 
agricultural and environmental sciences to cope with a variety of 
problems. To instill domain knowledge to ML models the authors of 
(Karpatne et al., 2017b) train a neural network on PBM output using a 
custom loss function to predict the water temperature in lakes. To 
reduce the long execution times of PBMS, metamodels have been 
employed to predict maize yield and compare the results with those of 
the PBMs and ML models (Shahhosseini et al., 2021; Roberts et al., 
2017). To accelerate sensitivity analysis, metamodels have been trained 
on the output of agricultural simulators (Gladish et al., 2019). Also, 
hydrological metamodels have been evaluated for their performance in 
terms of speed and accuracy (Zhang et al., 2020; Villa-Vialaneix et al., 
2012), as well as generalization capacity (domain adaptation) in 
unsampled areas (Nolan et al., 2018). Likewise, to extrapolate at 
regional and national levels, metamodels have been deployed in envi-
ronmental management (Ramanantenasoa et al., 2019). Lastly, to work 
in situations where PBM inputs are not available, the authors of 
(Shahhosseini et al., 2019) create metamodels to predict pre-season 
maize yield for decision support. 

The aforementioned studies focus on each of the advantages of 
metamodeling individually, whether it is domain knowledge imputa-
tion, faster computation times, improved generalization capacity over 
PBMs, or working with less data. Also, most of these studies make an 
effort to create models that predict the variable of interest at any time of 
its evolution, similar to what PBMs do, i.e. by predicting state variables 
for each simulation step. In this work, we introduce a generic method to 
exploit these advantages, as well as to deal with data resolution prob-
lems which were not explicitly mentioned in those studies, and also we 
do it for a specific point in time in the future of the target variable. 

3. Methods 

3.1. Overview 

To assess the method described in 2.3 we performed a case study of 
grass pasture NRR prediction in different locations (see Fig. 2) of New 
Zealand. The application of nitrogen along with environmental factors 
such as temperature and time of year greatly affects pasture growth 
(Gillingham et al., 2008), so it is important to know the nitrogen 
response rate. 

To examine the reliability of our models we performed a sampled and 
an unsampled location experiment. In the sampled location experiment, 
we assessed the predictive capacity of the models in cases where data 
from the testing locations are available. In the unsampled location 
experiment, we examined the generalization capacity of the models in 

cases where data from the testing locations are unavailable. For both 
sampled and unsampled location experiments, we iteratively considered 
each location to be a testing location to be able to better establish our 
verdicts. To argue about the predictive and generalization capacities we 
used a case study-specific example where we compared the models’ 
performance with a threshold that makes sense for crop practitioners. 
Also, we created models of different scales by using various amounts of 
data for training, and examined how data quantity included in training 
affects their performance. 

3.2. Case study 

The target of our prediction was the expected two-month nitrogen 
response rate (NRR; kg of additional, i.e. compared to not applying any 
fertilizer) of pasture dry matter grown in the two months after fertilizer 
application per kg of N fertilizer applied. As in most countries, pastures 
in New Zealand suffer a chronic deficiency of nitrogen (Rotz et al., 2005; 
Whitehead, 1995) and farmers apply nitrogen-containing fertilizers to 
increase pasture growth rates (Clark et al., 2007; Pembleton et al., 

Fig. 1. Data requirements of PBMs (a) and our approach (b). The PBM needs n inputs that span through the entire duration of the simulation to produce an output at 
the end of the simulation. The model of our approach requires a subset k, k < n, of the PBM inputs. The required data are limited to what has been observed prior to 
the prediction date (i.e. the date on which the prediction is required to be made). The red circles represent the outputs (predictions) of the model. 

Fig. 2. The eight locations included in the generated dataset.  
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2013). Nitrogen fertilizer can be applied regularly (e.g. after each 
grazing event) or more tactically to manipulate the supply of pasture 
available to feed stock. As fertilizer costs increase, environmental con-
cerns about leaching of nitrogen increase and/or the prices received for 
meat and milk decrease, farmers become more interested in under-
standing when best to apply nitrogen fertilizer to obtain the best NRR. 
Current NRR estimators are based on rules-of-thumb that consider the 
month of year, soil temperature, soil nitrogen, or pasture growth rate 
(Waikato Regional Council, 2015; NZ farm source, 2021; DairyNZ, 
2012). 

There are PBMs that can estimate NRR based on site (soil properties, 
pasture type) and the prevailing conditions (weather) but they have 
limited usefulness as operational estimators of NRR, because the 
weather for the two months after a proposed current or future applica-
tion date are not known, and such data are required to run the model. 
Also, while there are some NRR data available from experiments, they 
are sparse and not sufficient to train ML models. 

3.3. Data generation 

We used APSIM v7.10 r4191 (APSIM, 2021; Holzworth et al., 2014) 
to generate the training and testing data. Pasture growth was simulated 
with the AgPasture module (Li et al., 2011) which has already been 
demonstrated to be a reasonable estimator of pasture growth in New 
Zealand (Cichota et al., 2013, 2018). The range of input conditions 
covered eight contrasting locations in New Zealand (Fig. 2) and are 
given in Table 1. 

Pasture NRR is known to be influenced by soil water and nitrogen 
availability, temperature, and solar radiation. The combinations of input 
conditions were designed to provide coverage across these variables, 
along with 40 years of historical weather data from the New Zealand 
Virtual Climate Station Network (Tait et al., 2006; Cichota et al., 2008), 
which gave a rich source of variation in weather after fertilizer 
application. 

A hyperspace of parameters was created using the full factorial of the 
input conditions and put into APSIM. The total number of generated 
simulations was 1,658,880. After removing the control simulations (see 
Table 1), 1,382,400 remained. 

3.4. Data preprocessing 

The data generated by APSIM were processed to form a regression 
problem where the target variable was the NRR and the inputs were the 
weather, treatment options regarding the fertilizer and irrigation, and 
biophysical variables. First, the NRR was calculated at two months after 
fertilization for each non-control simulation. Second, from the generated 
daily data only the samples in a window of 28 days before fertilization 
were retained. This window was selected because in the experience of 
the authors, pasture ’loses memory’ of past conditions relatively quickly 
provided it is not under- or over-grazed. Weather data after the fertil-
ization were also not considered as such data would be unavailable 

under operational conditions. Third, the generated data were split into 
80/20% training/test sets based on years to avoid information leakage 
during the later stages of preprocessing. The training and test sets 
included the year ranges 1979–2010 and 2011–2018, respectively. 
Fourth, the weather and biophysical variables were aggregated using 
their weekly mean values. Finally, only a subset of the variables was 
preserved. This subset included weather variables, simulation parame-
ters (soil water, soil fertility, irrigation, fertilizer month, fertilizer rate), 
and biophysical variables produced by APSIM (above ground pasture 
mass, net increase in herbage above-ground dry matter, potential 
growth if there was no water and no N limitation, soil water stored from 
0 to 300 mm, soil temperature at 300 mm, soil temperature at 50 mm, 
herbage nitrogen concentration in dry matter). These variables were 
preserved because they were considered to be likely drivers and also 
known prior to fertilization (to ensure operational usefulness), based on 
expert knowledge of the authors. 

3.5. Model scale 

Different models were created using different amounts of data. We 
considered models on three scales: local, regional, and national, each 
including a different number of locations. The criterion for selecting the 
locations differed, based on whether the experiment was performed in 
sampled or unsampled locations. 

In the sampled location experiment, the locations were selected 
based on a climate matching process. The degree of climatic similarity 
between sites was assessed using the CLIMEX “Match Climates” algo-
rithm (Kriticos et al., 2015). This algorithm produces a composite match 
index (CMI, from 0 to 1) which indicates the similarity between two 
locations in weekly average maximum and minimum temperatures, 
total annual rainfall, seasonal pattern of rainfall, relative humidity and 
modelled soil moisture. The required climate data were obtained for the 
nearest 0.05◦location from NIWA’s Virtual Climate Station Network 
(Tait et al., 2006) for the period 1979 to 2010, i.e. using data only from 
the training set. The results were expressed as a matrix of pairwise CMIs 
between all sites. In this experiment, the local model included data from 
the sampled location, the regional model from the sampled location and 
the best two matches for this location, and the national model data from 
all the locations. 

In the unsampled location experiment, the locations included in each 
model were selected based on minimum haversine distances from the 
testing locations. The reason for not using climate matching with CLI-
MEX was the assumption that data from the unsampled locations were 
not available, and as a result climate matching could not be performed. 
The local model included data from the nearest neighbor of the 
unsampled location, the regional from the three nearest neighbors, and 
the national from all the locations except the unsampled one. See Fig. 3 
for a visualization of training models of different size, and Table A1 in 
the appendix for the locations included in each model. 

Table 1 
The simulation parameters of APSIM. The factorial of those parameters was used 
to create a hyperspace of input combinations.  

Simulation parameters 

Location daily weather from eight sites spanning the country 
Soil water 42, 67, 110 and 177 mm of plant-available water stored to 600 mm 

deep 
Soil fertility carbon concentration in the top 75 mm of 2, 4, and 6% 
Irrigation irrigated with a centre-pivot or dryland 
Fertilizer year years 1979–2018 
Fertilizer 

month 
January–December 

Fertilizer day 5th, 15th and 25th of the month 
Fertilizer rate 0 (control), 20, 40, 60, 80 and 100 kg N/ha  

Fig. 3. The splitting of the processed data to create models for testing in 
sampled and unsampled location experiments. 
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3.6. Machine learning pipeline 

The models were developed with the Random Forest algorithm. 
Random Forest was selected based on the results of preliminary explo-
ration (see Table B1 in the appendix). Feature selection was not per-
formed since we had only a few features, which were all considered 
explanatory. Training data were standardized for each location and 
experiment, and test set data were standardized with the corresponding 
scaler. Categorical variables like irrigation (on/off) were converted to 
ordinal. Hyperparameter tuning was performed using Bayesian optimi-
zation with 25 iterations and the 5-fold cross-validation score as a metric 
for each iteration. The tuned parameters can be seen in Table 2. 

3.7. Evaluation 

The predictive capacity of the models was evaluated using the root 
mean squared error (RMSE) and the residuals of the models on a 
monthly and yearly basis. A threshold of 5 kgDM/ha/KgN2 (NRR) was 
selected, based on expert knowledge, to investigate if the models were 
accurate enough from a practical perspective. To test the generalization 
of the models, RMSE and residuals were also examined against the 
threshold of 5 in unsampled locations. 

3.8. Experimental setup 

The data preprocessing stage was carried out utilizing the Apache 
Spark framework in standalone mode. The machine learning models 
were developed using the scikit-learn library in Python. The experiments 
took place in a computing node with an Intel Xeon E5-2630 v4 CPU and 
120 GB of RAM. 

3.9. Software availability 

The code used for the case study of this paper can be found in https 
://github.com/BigDataWUR/simulation-assisted-ML. 

4. Results 

In the following sections we present RMSE values and residual plots 
for sampled and unsampled locations. The errors of the models fluctu-
ated depending on model scale, location, month and year of application, 
and whether the location was considered to be sampled/unsampled. 
None of the models proved to be universally better on all the locations or 
in both the sampled/unsampled testing experiments. However, some of 
them showed higher performance and generalization capacity than 
others in certain cases. 

4.1. Sampled locations experiment 

For the sampled location experiment, regional models had lower 
RMSEs than the local and national in 4 out of 8 locations, but the error 
differences between the models were smaller than 0.03. National models 

had the second-best performance. RMSEs for each model and location 
can be seen in Table 3. 

Prediction residuals are illustrated in Fig. 4. We observe that errors 
were mostly below the operational threshold of 5 kgDM/ha/KgN. Ex-
ceptions were the months January and February which showed errors 
close to 5 in some cases. On a closer inspection, we observed large 
fluctuations based on whether there was irrigation or not (Fig. C1). In 
the non-irrigated case, we noticed that for January, February and 
December the residuals were larger than our threshold of 5 kgDM/ha/ 
KgN. For the other months the performance was well below our 
threshold. In the irrigated case, the residuals took considerably smaller 
values. 

On a yearly basis (Fig. 5), the candles of the residuals were below 2.5, 
except for Ruakura in 2016 and some years in Lincoln which were higher 
than 2.5 but still lower than 5. Separating the irrigated and non-irrigated 
cases, we found that the irrigated cases had residuals consistently lower 
than our threshold. For the non-irrigated cases (Fig. C3) we observed 
that the years 2015, 2016 had larger residuals in several locations. 

4.2. Unsampled location experiment 

In the unsampled location experiment (Fig. 4), we observed that the 
performance of the models generally decreased compared to the 
sampled experiment. This decrease was more evident in Lincoln and 
Kokatahi while in the rest of the locations the differences are minor. The 
regional models outperformed the national and local models in 4 loca-
tions (Fig. 3). The performance of the regional models was close to that 
of the national models in many cases. The only location where a local 
model outperformed the other two was in Mahana. 

From the residual plots on a monthly basis (Fig. C2) we observed 
considerable variation in the residuals between the irrigated and non- 
irrigated cases. Also, we noticed that the interquartile ranges had been 
increased compared to the sampled locations, especially for the local 
models, and were higher than 5 in many occasions, with the largest 
errors happening in Lincoln. 

From the residual plots on a yearly basis (Fig. C4), we observed that 
the interquartile ranges had been increased compared to the sampled 
location experiment. Again, the years 2014–2016 had the widest inter-
quartile ranges, with those of the Lincoln local model displaying the 
largest errors. Except for those years, we could say that the performance 
of each model is stable across the years, for each location. 

5. Discussion 

In our experiments, the models captured in most cases sufficient 
variation from the data to achieve RMSEs lower than the threshold of 5 
kgDM/ha/KgN. This means that they could be potentially used in 
practical applications where weather data after fertilization are missing, 
or data are on a lower resolution than those that APSIM expects. These 
results persisted in the unsampled location experiment, thus providing 
evidence that the models are operational in locations where data do not 
exist to calibrate PBMs, as well as locations not included in the training 
set of the models. In the following sections, we interpret the results of 
the local, regional and national models, and discuss the models as a 
product of the proposed model development methodology. 

5.1. Predictive capacity (sampled locations) 

When separately analyzing the irrigated/non-irrigated cases, we 
observed that the lack of irrigation hindered the predictive capacity of 
the models. The reason for this impediment is that when no irrigation is 
provided, the weather conditions become the driving factor of the NRR, 
because the grass relies solely on rain to grow. Therefore, as several 
uncertainty factors pile up (weather volatility, NRR sensitivity to 
weather, predictions two months in the future without knowing the 
weather), the results are expected to deteriorate, but they are not 

Table 2 
Tuned parameters of Random Forest and their ranges.  

Random Forest parameters 

n_estimators 50–800 
max_depth 3–12 
min_samples_split 30–500 
min_samples_leaf 30–500 
max_features 0.33  

2 kg of dry matter/ha/kg of nitrogen. 
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Table 3 
The test set RMSEs of the models in the sampled/unsampled location experiments.  

Experiment Model size Waiotu Ruakura Wairoa Marton Mahana Kokatahi Lincoln Wyndham 

Sampled locations Local 2.42 2.84 2.7 2.92 3.16 1.97 3.86 2.13 
Regional 2.32 2.83 2.65 2.63 3.08 1.99 3.47 2.13 
National 2.3 2.78 2.76 2.72 3.26 2.09 3.56 2.1 

Unsampled locations Local 2.53 2.94 3.15 2.93 3.26 3.15 4.57 2.44 
Regional 2.4 2.82 2.86 2.66 3.97 2.4 3.88 2.28 
National 2.39 2.8 2.96 2.83 3.46 2.27 3.92 2.34  

Fig. 4. Monthly test set residuals of models for sampled (a) and unsampled (b) location experiments.  
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indicative of the general model performance. The deterioration was 
sharper during the spring/summer months November, December, 
January and February because irregular rainfall is most critical in these 
seasons. Also, the performance degradation was not the same in all the 
locations since some locations have more favorable weather conditions 
than others. 

Comparing the models, we observed small differences in model 
performance. At first glance, this seems counter-intuitive since bigger 
models were trained on supersets of the smaller model data. This means 
that they have the same information to learn from, and thus they should 
perform at least equally well. However, this is not the case since the 
smaller models seem to benefit more from additional data from locations 
with similar climates than from having more data from locations with 

less similar climates. Regarding the national models, they have some-
what higher RMSEs than the other two models because they include data 
from all the locations, which makes them harder to adapt to local 
conditions. 

The models showed good performance through each month of the 
year for the irrigated case. Interquartile ranges were mostly below 5 
which means that 50% of the values lie within this range. In different 
locations we see different months having the largest residuals. This has 
to do with the variation in their microclimates, since rainfall and tem-
peratures can be disparate. Residuals went as high as 7.5 in Lincoln, 
which is characterized by low precipitation amounts as can be seen in 
Fig. D1. 

Also, we observed that the errors of the models are consistent 

Fig. 5. Yearly test set residuals of models for sampled and (a) and unsampled location experiments (b).  
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throughout the years. There is some variation for 2016 and 2018 in 
Kokatahi and Wairoa, mainly due to local weather conditions and 
extreme events which the models were unable to capture. This aligns 
with our expectation, since extreme events are rare (so there are only a 
few in the dataset) and also because their presence may be imbalanced 
between the training/test sets. Yet in most cases the model shows 
adequate predictive capacity, even eight years after the last year that 
was included in the training set. 

From the perspective of model operationalization, the models proved 
that they can complement the PBMs to provide predictions of adequate 
accuracy, and overcome the problem of data availability to a certain 
degree. This degree depends on the level of uncertainty involved in the 
predictions and the ML pipeline used to build the models. In a digital 
twin, these models could provide the first line against working with 
limited data. Several models could be included with different tasks. For 
example, a model providing predictions for the irrigated case of a spe-
cific location with a specific soil type, one trained on extreme weather, 
one on non-irrigated cases and so on. These ensembles of models could 
potentially capture a large degree of variation while waiting for more 
data to become available. 

5.2. Model generalization (unsampled locations) 

In the unsampled location experiment, the differences between the 
models became more evident, as the local models’ performance deteri-
orated more than the others (Fig. C2). The reason behind this difference 
is that the local models had data from only one location, which was not 
the location where the testing happened. On the other hand, the bigger 
models were favored in this experiment since they included data from 
multiple locations and could extrapolate better. This phenomenon is 
more noticeable in the non-irrigated cases (Fig. C2a) where the local 
model shows high deviations from the simulated NRRs. Having said that, 
with the exception of January, February and December, the RMSEs were 
below 5 for all models. Those three months included temperatures 
higher than 25 ◦C (Fig. D2) which can be harmful to the grass, and when 
combined with the non-irrigated case the uncertainty for the future 
increases. 

On the monthly residual plots of the unsampled location experiment 
(Fig. C2a) we saw a more detailed picture of model performance with 
respect to size. Many times the residuals surpassed our threshold, 
especially those of the local and regional models. From these cases we 
can deduce that the national models are superior to the local and 
regional ones. The cases where the national models had increased 
interquartile ranges happened on the same months and locations as in 
the sampled location experiment (e.g. January–February in Ruakura, 
February–March in Marton). The latter observation means that the 
increased ranges are not a matter of hindered generalization among 
locations, but of an inability to capture variability in those climates due 
to the features included in the models. 

From the residuals on a yearly basis we observed that the errors are 
mostly consistent across the years in each location. The local models 
showed the highest fluctuations throughout the years (like in Ruakura 
and Lincoln). The regional models had the second-highest discrepancies 
throughout the years (like in Mahana, Lincoln). The national models 
were the most stable ones. This behavior can be attributed to the amount 
of data included in each model, because the more data from different 
locations a model includes the more divergent weather conditions it has 
seen. This means that it can generalize better in the weather conditions 
of the years to come. Also, it is interesting to see that models can 
generalize in unsampled locations many years (8) later since the last 
year included in the training sets. 

From an operational perspective, the models showed a capacity to 
generalize in previously unseen conditions. A recommendation we 
would make when starting modeling in unsampled locations would be to 
begin with a national model rather than a model from the single nearest/ 
similar location. In digital twins where existing models cannot be 

applied due to lack of calibration data or insufficient observation 
training data, these models can provide a first impression of variables of 
interest in the future, even though there are still limitations. Again, the 
model performance could be improved by training for more specific 
scenarios and using more advanced ML techniques. 

5.3. Future work 

This line of research could be improved further by generating data 
from multiple PBMs, and by trying different aggregation levels to find a 
balance between performance and working with low-resolution data. 
Also, it would be beneficial to evaluate model performance against 
ground truth data, which were not available for this case study. 
Regarding the case study, the data preprocessing and ML procedures 
could be adapted to better fit the domain of the application by using 
custom features, performing training/test splits which better balance 
underrepresented phenomena between the sets, or using stratified 
sampling to select which simulations are going to be included in each 
set. More elaborated ML model architectures could further improve 
performance metrics. 

6. Conclusions 

In this work, we introduced a method to develop operational digital 
twins by creating models which overcome the problems of data avail-
ability and data resolution. We showcased this method using a grass 
pasture nitrogen response rate case study. 

Experimental results verified that this method is able to produce 
digital twins to offer tactical advice in highly non-linear situations 
where local conditions and treatment options affect the outcome of the 
predictions. 

The ability of the models to provide accurate predictions in different 
locations, for both sampled and unsampled experiments, indicates that 
they can adequately capture the variability encoded in process-based 
models. The developed models were able to capture the target vari-
able, even without having the complete weather and biophysical time 
series. This practically allows to develop operational digital twins in 
cases of limited data availability. Also, model predictions were made on 
field-level using weekly data instead of daily data that a process-based 
model would require. As a result, digital twins using these models are 
capable of operating in situations where process-based models cannot. 
These advantages, combined with the fact that we did not need to 
forecast any future weather values to get those results, differentiate this 
method from the creation of metamodels which just summarize process- 
based models, and demonstrate that simulation-assisted machine 
learning is able to offer advice in practical conditions. 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
Given his role as Associate Editor of Environmental Modelling & Soft-
ware, I.N. Athanasiadis was not involved in the peer-review of this 
article and had no access to information regarding its peer-review. Full 
responsibility for the editorial process for this article was delegated to 
the Editor-in-Chief D.P.Ames. 

Acknowledgements 

Funding: This work has been partially supported by the European 
Union Horizon 2020 Research and Innovation program (Grant 
#810 775, “Dragon”); the Wageningen University and Research In-
vestment Program “Digital Twins” and AgResearch Strategic Science 
Investment Fund (SSIF) “Emulation of pasture growth response to ni-
trogen application”. 

C. Pylianidis et al.                                                                                                                                                                                                                              



Environmental Modelling and Software 148 (2022) 105274

9

Appendices. 

ALocations included in each model  

Table A.1 
Location data included in each model. The locations of the sampled location experiment were chosen based on climate similarity while the ones of the unsampled 
location experiment were based on haversine distance.  

Target location Scenario 

Sampled location Unsampled location 

Local Regional Global Local Regional Global 

Waiotu Waiotu Waiotu, Wairoa, Ruakura, all Ruakura Ruakura, Wairoa, Marton all except Waiotu 
Ruakura Ruakura Ruakura, Marton, Wairoa, all Wairoa Wairoa, Marton, Waiotu all except Ruakura 
Wairoa Wairoa Wairoa, Ruakura, Waiotu all Marton Marton, Ruakura, Mahana all except Wairoa 
Marton Marton Marton, Mahana, Ruakura all Wairoa Wairoa, Mahana, Ruakura all except Marton 
Mahana Mahana Mahana, Marton, Ruakura all Marton Marton, Kokatahi, Lincoln all except Mahana 
Kokatahi Kokatahi Kokatahi, Waiotu, Wairoa all Lincoln Lincoln, Mahana, Wyndham all except Kokatahi 
Lincoln Lincoln Lincoln, Mahana, Marton all Kokatahi Kokatahi, Mahana, Wyndham all except Lincoln 
Wyndham Wyndham Wyndham, Marton, Mahana all Lincoln Lincoln, Kokatahi, Mahana all except Wyndham  

BPreliminary machine learning algorithm comparison  

Table B.1 
The gridsearch and RMSE results of different machine learning algorithms for training in Ruakura and testing in Waiotu, with the 
yearly split mentioned in the text, as a preliminary test to choose an algorithm. The gridsearch parameters as denoted as found in 
scikit-learn’s documentation. The parameters in bold are those that gridsearch selected for each algorithm.   

Gridsearch parameters RMSE 

Random Forest n_estimators:[100, 200] 
max_depth:[3, 7, 12] 
min_samples_split:[10, 20] 
min_samples_leaf:[10, 30] 
max_features:[0.33] 

2.51 

Gradient Boosting Trees learning_rate:[0.05, 0.1, 0.2] 
n_estimators:[100, 200] 
min_samples_split:[10, 20] 
min_samples_leaf:[10, 30] 
max_depth:[3, 7, 12] 
max_features:[0.33] 

2.52 

Linear Support Vector Regression C:[0.2, 0.5, 1] epsilon:[0.05, 0.1, 0.2] 
loss:[epsilon_insensitive, squared_epsilon_insensitive] 

2.68 

Elastic Net alpha: [0.2, 0.5, 1] 
max_iter: [500, 1000, 2000] 
l1_ratio: [0.2, 0.5, 0.8] 

2.69 

Support Vector Regression kernel:[rbf] 
C:[0.2, 0.5, 1] epsilon:[0.05, 0.1, 0.2] 

2.78 

Multi-Layer Perceptron hidden_layer_sizes:[(40), (40,40), (60,60)] 
activation:[relu] 
batch_size:[32, 64] 
max_iter:[100] 
early_stopping:[True] 
n_iter_no_change:[20] 

3.98  

CRainfed vs irrigated plots 
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Fig. C.1. Monthly test set residuals of models for sampled locations in rainfed (a) and irrigated cases (b).   
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Fig. C.2. Monthly test set residuals of models for unsampled locations in rainfed (a) and irrigated cases (b).   
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Fig. C.3. Yearly test set residuals of models for sampled locations in rainfed (a) and irrigated cases (b).   
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Fig. C.4. Yearly test set residuals of models for sampled locations in rainfed (a) and irrigated cases (b).  

D. Weather plots 
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Fig. D.1. Average rainfall per month and location for the four weeks that we assume to have data.  

Fig. D.2. Average maximum temperature per month and location for the four weeks that we assume to have data.  
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