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12.1. Introduction

Environmental systems (ES) typically contain many interrelated components
and processes, which may be biological, physical, geological, climatic, chemical,
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or social. Whenever we attempt to analyse ES and associated problems, we are
immediately confronted with complexity stemming from various sources:

• Multidisciplinarity: a variety of technical, economical, ecological and social factors
are at play. Integration of knowledge as well as the use of analysis techniques from
different social and scientific disciplines is necessary for proper treatment.

• Ill-structured and non-linear domain: ES are poor or ill-structured domains and they
can be stochastic. That is, they are difficult to clearly formulate with a mathe-
matical theory or deterministic model due to their high complexity, involving
processes which are not yet well known. Many interactions between animal,
plant, human and climatic system components are highly non-linear. Solutions
to problems are often not unique.

• High dimensionality and multiscalarity: most environmental processes take place in
two or three spatial dimensions, and may also involve a time component. Within
this frame, multiple factors are acting at many different spatial and temporal scales
(see Section 12.2.9).

• Heterogeneity of data: environmental real world systems are characterised by an
abundance of heterogeneous data, from numerous sources, with different formats,
resolutions and qualities. Qualitative and subjective information is often very
relevant.

• Intrinsic non-stationarity: ES are in general not static, but evolve over time. The
assumption of stationarity cannot be justified since ES and problems deal with
many physical, chemical and biological phenomena that change over time (Guar-
iso and Werthner, ?).

• Stiff systems: some states in environmental processes change fast while others
change slowly. This means that cause and effect are not always closely related
in time and space and that sometimes delays in responses make management
more difficult.

• Controllability: controllability of ES is poor, due the unavailability of actuators
(Olsson, ?).

• Uncertainty and imprecise information: because environmental data collection is often
expensive and difficult, measurement error is often large, and spatial and tempo-
ral sampling may not fully capture system behaviour. Records may also contain
outliers, missing values and highly uncertain information. See Section 12.2.1.

• Cyclic behaviour: ES have no well-defined beginning or end, but they are charac-
terised by loops and continuously affected by feedbacks and other environmental
properties.

All these features may be emphasised when natural systems are affected or altered
by human activity. Because the consequences of an environmental system changing
behaviour or operating under abnormal conditions may be severe, there is a great
need for data analysis, modelling of ES and development of decision support systems
in order to improve the understanding of ES behaviour and the management of
associated complex problems (especially under abnormal situations).

The special features of environmental processes demand a new paradigm to im-
prove analysis and consequently management. Approaches beyond straightforward
application of conventional classical techniques are needed to meet the challenge of
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environmental system investigation. In some cases large quantities of data are avail-
able, but as the effort required to analyse the large masses of data generated by ES
is large, much of it is not examined in depth and the information content remains
unexploited. In this sense, the Knowledge Discovery from Databases (KDD) process
and several Data Mining (DM) techniques have demonstrated that they can provide
successful tools to deal with this complexity (see Section 12.2 for some examples).
DM techniques provide efficient tools to extract useful information and discover
knowledge from large databases, and are equipped to identify and capture the key
parameters controlling these complex ES.

In 1989, the first Workshop on Knowledge Discovery from Data (KDD) was held.
Seven years later, in the proceedings of the first International Conference on KDD,
Fayyad gave one of the most well known definitions of what is termed Knowledge
Discovery from Data:

“The non-trivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data” (Fayyad et al., 1996b).

KDD quickly gained strength as an interdisciplinary research field where a com-
bination of advanced techniques from Statistics, Artificial Intelligence, Information
Systems and Visualisation and new algorithms are used to face the task of knowledge
acquisition from huge data bases. The term Knowledge Discovery from Data appeared
in 1989 referring to high level applications which include particular methods of
Data Mining:

“[. . . ] overall process of finding and interpreting patterns from data, typically inter-
active and iterative, involving repeated application of specific data mining methods or
algorithms and the interpretation of the patterns generated by these algorithms.”

Thus, KDD is the high level process of combining DM methods with different
tools for extracting knowledge from data. The basic steps established by Fayyad are
shown in Figure 12.1 and details of the different techniques involved in this process
are provided in Fayyad et al. (1996a). Fayyad’s proposal marked the beginning of a
new paradigm in KDD research:

“Most previous work on KDD has focused on [. . .] DM step. However, the other
steps are of considerable importance for the successful application of KDD in practice.”

Fayyad’s proposal included prior and posterior analysis tasks as well as the ap-
plication of DM algorithms. These may in fact require great effort when dealing
with real applications. Data cleaning, transformation, selection of DM techniques
and optimisation of parameters (if required) are often time consuming and difficult,
mainly because the approaches taken should be tailored to each specific application,
and human interaction is required. Once those tasks have been accomplished, the
application of DM algorithms becomes trivial and can be automated, requiring only
a small proportion of the time devoted to the whole KDD process. Interpretation
of results is also often time consuming and requires much human guidance.

It is convenient to remark here that in some scientific contexts, ES among them,
the term Data Mining (DM) refers to the whole KDD process (Siebes, 1996), and
not only to the application to a cleaned dataset. It is clear that either referring to
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Figure 12.1 Outline of the Knowledge Discovery from Data process.

the knowledge discovery process as KDD or simply as DM, tasks like data clean-
ing, variable selection, interpretation of results, and even the reporting phase are of
as much importance as the data analysis stage itself. This is particularly true when
dealing with environmental data which, due to the special features of ES mentioned
above, may need special treatment from any modelling scheme. Some of the par-
ticular requirements/needs implied by environmental data, which make the KDD
process and the application of DM techniques specifically appealing, include:

• Supporting systematic and objective exploration (data preprocessing) and visuali-
sation of data. For this purpose, inductive techniques are an alternative for several
activities of the environmental scientist, when analytical/traditional methods fail,
are too slow, or simply do not exist. An example would be extracting maximum
amount of useful information from on-line and heterogeneous large databases.
These activities are “per se” very important although they used to be preparatory
for an environmental software system development.
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• Modelling and systems analysis activities: knowledge acquisition step to extract
more meaningful knowledge and better models for simulation and prediction
of ES. This will also contribute to build more reliable intelligent environmental
decision support systems (Chapter 8; Poch et al., 2004).

• Discovering of knowledge contained in large time series.
• Facilitating the integration of different knowledge sources and expertise, and the

involvement of end-user (domain expert) criteria and stakeholder points of view
in algorithm design and result interpretation.

• Facilitating the sharing and rapid re-use of data and extracted technical knowl-
edge and experiences among domain experts.

• Selecting relevant features.
• Treating outliers, missing data and uncertainty of environmental data.
• Supporting transparency in the communication of environmental data to the

general population and decision-making processes.

These are some of the most important contributions where DM techniques
can help environmental scientists/managers in solving real-world problems. This
chapter attempts to show that DM techniques are valuable tools that could be used
to good effect in the environmental and natural resource science field, aims to
introduce the main concepts of DM and foster discussion of the ways in which it
could be used and encouraged in ES problems.

As mentioned above, most DM techniques have not found widespread ap-
plication in environmental science and management. A small number of re-
search groups focus on applying artificial intelligence and/or DM to ES. Most
notable, the BESAI (Binding Environmental Science and Artificial Intelligence,
http://www.lsi.upc.edu/webia/besai/besai.html) working group has organised sev-
eral international workshops as part of prestigious AI conferences (ECAI, IJCAI,
AAAI), with contributions addressing DM techniques. Also, from 1998, BESAI has
organised three special sessions devoted to ES and Artificial Intelligence during the
iEMSs biennial conferences (2002–2006). The European Network of Excellence
on KDD (KDnet, http://www.kdnet.org) has organised a workshop on KD for
Environmental Management (Voss et al., 2004). In addition, four international con-
ferences on Applications of Machine Learning to Ecological Modelling (Recknagel,
2001) have been held over the period 1997–2004, producing some of the papers
discussed in this chapter.

Selected algorithms are discussed in Section 12.2, along with preprocessing
methods, which will be explored in Sections 12.2.1 to 12.2.3. Also, a brief review
of previous environmental DM work is given. Later in the chapter, concerns such as
performance evaluation, model optimisation and validation, and dealing with dis-
parate data sources, are addressed. Good data mining practice guidelines are outlined
in Section 12.3. Available software is discussed in Section 12.4, with particular ref-
erence to the Weka (Whitten and Frank, 1991) and GESCONDA (Sànchez-Marrè
et al., 2004) packages. And in Section 12.5 some conclusions and challenges for
using DM techniques in environmental problem solving are highlighted.
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12.2. Data Mining Techniques

Here we shall introduce a variety of DM techniques: clustering (Sec-
tion 12.2.4), classification (Section 12.2.5), association rule extraction (Sec-
tion 12.2.6), artificial neural networks (Section 12.2.7), and other techniques
(Section 12.2.8), as well as preprocessing and other data issues. Of course, we cannot
hope to detail all DM tools in a short paper. An extensive review of DM tools for
environmental science is given in Spate and Jakeman (under review), and references
to specific papers are given throughout the text. Key reading material introduc-
ing the reader to essential points of KDD are Han and Kamber (2001), Whitten
and Frank (1991), Hastie et al. (2001), Larose (2004) and Parr Rud (2001). The
techniques listed below are some of the most common and useful. For each DM
technique, a brief introduction is given, followed by several applications to envi-
ronmental data. Preprocessing and visualisation are also included in this section, as
they are essential components of the KDD process.

12.2.1 Preprocessing: data cleaning, outlier detection, missing value
treatment, transformation and creation of variables

Sometimes, a number of cells are missing from the data matrix. These cells
may be marked as a *, ?, NaN (Not a Number), blank space or other spe-
cial characters or special numeric codes such as 99,999. The latter can in-
duce grave mistakes in calculations if not properly treated. It is also important
to distinguish between random and non-random missing values (Allison, 2002;
Little and Rubin, 1987). Non-random missing values are produced by identifiable
causes that will determine the proper treatment, also influenced by the goals of the
task. Inputation (see Rubin, 1987) is a complex process for converting missing data
into useful data using estimation techniques. It is important to avoid false assump-
tions when considering inputation methods, which may have a significant effect on
the results extracted. All the methods have pros and cons, and the choice must be
made with care. In particular, removing rows with missing cells from a dataset may
cause serious problems if the missing values are not randomly distributed. It is of
utmost importance to report any elimination performed.

Outliers are objects with very extreme values in one or more variables (Barnett
and Lewis, 1978). Graphical techniques were once the most common method for
identifying them, but increases in database sizes and dimensions have led to a variety
of automated techniques. The use of standard deviations is possible when and only
when considering a single variable that has a symmetric distribution, but outliers
may also take the form of unusual combinations of two or more variables. The data
point should be analysed as a whole to understand the nature of the outlier.

The treatment will depend on the nature of the outlier (error, member of
another population, intrinsic extreme value, etc.). The influence of outliers can
dramatically disturb the results or certain methods, a concern which should feature
in the choice of tools used throughout the rest of the process. See Moore and Mc-
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Cabe (1993) for an interesting discussion on the dangers of eliminating rows with
outliers:

“In 1985 British scientists reported a hole in the ozone layer of the Earth’s at-
mosphere over the South Pole. [. . .] The British report was at first disregarded, since
it was based on ground instruments looking up. More comprehensive observations from
satellite instruments looking down had shown nothing unusual. Then, examination
of the satellite data revealed that the South Pole ozone readings were so low that the
computer software [. . .] had automatically suppressed these values as erroneous out-
liers! Readings dating back to 1979 were reanalysed and showed a large and growing
hole in the ozone layer [. . .] suppressing an outlier without investigating it can keep
valuable information out of the sight” (Moore and McCabe, 1993).

Sometimes transformation of variables may assist analysis. For example, normal-
ity may be forced when using ANOVA or, for ease of interpretation, variables with
a large number of categorical labels can be grouped according to expert knowledge.
Under some circumstances, discretisation of continuous variables is appropriate (e.g.
Age into Child under 18 years, Adult between 18 and 65 years, Elderly over 65 years).

Noise is often a critical issue, and especially with environmental data some bias
may exist that can be removed with a filter. Transformations should always be jus-
tified and documented, and the biases that may be introduced noted (Gibert and
Sonicki, 1999). Interpretability of transformed variables should be kept.

Creation of additional variables is also used in KDD. Here, expert knowledge
is usually the guide. Exploratory variable creation without such assistance is almost
always prohibitively time consuming, and as noted in Section 12.2.2, may obfuscate
physical interpretation and exacerbate noise. Efficient techniques for data reduction,
however, do exist and are well used.

12.2.2 Data reduction and projection

When the number of variables is too high to deal with in a reasonable way, which
is not unusual in a data mining context, a data reduction method can be applied.
This may be accomplished by eliminating some variables wholesale, or projecting
the feature space of the original problem into a reduced fictitious space, with fewer
dimensions. Principal Component Analysis (PCA) (Dillon and Goldstein, 1984) is
one of the best known techniques used for the latter purpose. Each principal com-
ponent is a linear combination of the original variables, and the aim is to work with
a reduced set of these, such that the loss of information is not relevant. Interpreta-
tion of the new variables may be lost.

Regarding the former method, datasets may contain irrelevant or redundant
variables (Spate et al., 2003). Automated techniques for identifying and remov-
ing unhelpful, redundant or even contradictory variables usually take one of two
forms: statistical examination of the relevance of candidate variables, or searching
for the best combination of attributes in terms of model performance. The former
are called filters and the latter wrappers (see Hall, 1999 for details). For a survey of
common attribute selection techniques, see Molina et al. (2002).
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Other techniques are based on feature weighting (see for example Aha, 1998,
and Núñez et al., 2003), which is a more general and flexible approach than feature
selection. The aim is to assign a degree of relevance (a weight) to each attribute.
Similarities (or dissimilarities) become emphasised according to the relevance of
the attribute, and irrelevant attributes will not influence the results, so quality of
inductive learning improves.

12.2.3 Visualisation
Visualisation is a powerful strategy for leveraging the visual orientation of sighted
human beings. Sighted humans are extraordinarily good at recognising visual pat-
terns, trends and anomalies; these skills are valuable at all stages of the KDD (Miller,
2007). For example, the presence of outliers, missing values, or errors are typical
pre- and post-processing KDD tasks where visualisation techniques can be valuable.

Graphs commonly used for classical exploratory visualisation, like boxplots, his-
tograms, time series plots or two-dimensional scatter plots, may perform poorly
considering the great number of variables involved in environmental datasets, along
with their complex interrelations, and spatiotemporal references. Thus, more so-
phisticated visualisation methods are required, as for example:

• distributional plots,
• three-, four-, and five-dimensional plots (colour and symbols may be used to

represent the higher dimensions),
• dimension scaling, for example log scales,
• rotatable frames,
• animation with time and interactive graphs,
• geo-referenced visualisations and maps.

Most DM packages, such as Weka, include visualisation tools, while more ad-
vanced features are provided with widespread tools such as Matlab or a dedicated
data language such as IDL or the CommonGIS tool (Andrienko and Andrienko,
2004). The reader is also directed to dedicated visualisation tools such as XGobi
(Swayne et al., 1998). Visual representations are extremely effective, and may con-
vey knowledge far better than numerical or analytical forms. They should always be
considered in environmental KDD.

12.2.4 Clustering and density estimation
Clustering techniques cover an exploratory goal rather than a predictive one. They
are used to divide a data set into groups, being suitable for discovering the under-
lying structure of the target domain, if this is unknown. Thus, they belong to the
group of unsupervised learners. They identify distinct groups of homogeneous objects
(according to some criteria) that can be considered together, which is very useful
in the DM context where the number of cases to be analysed can be huge. Appro-
priate choice of criteria (distance, dissimilarity, logics or mixtures) for comparing
objects is essential (Gibert et al., 2005a), and different measures will result in dif-
ferent clustering algorithms, a point which is discussed in detail in Spate (2006),
Gibert et al. (2005b), Núñez et al. (2004) and Dubes and Jain (1988).

diea2 v.2008/03/03 [BSM2] Prn:16/05/2008; 11:07 F:diea212.tex; VTEX/EA p. 8
aid: 12 pii: S1574-101X(08)00612-1 docsubty: REV



Data Mining for Environmental Systems 213

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Clustering can also be viewed as a density estimation problem by assuming
that the data was generated by a mixture of probability distributions, one for each
cluster (e.g. Witten and Frank, ?). A standard approach is to assume that the data
within each cluster is normally distributed. Treating clustering as a density estima-
tion problem makes it possible to objectively evaluate the model’s goodness-of-fit,
for example by computing the likelihood of a separate test set based on the mixture
model inferred from the training data.

Applications: The use of clustering algorithms has been reported in various ap-
plication fields; for dimensionality reduction in streamflow timeseries (Zoppou et
al., 2002; Sanborn and Bledsoe, 2005), wastewater treatment plants (Sànchez-Marrè
et al., 1997), cyclone path identification (Camargo et al., 2004), and water sample
grouping based on chemical composition (Ter Braak et al., 2003).

12.2.5 Classification and regression methods
In classification and regression, the identity of the target class is known a priori and
the goal is to find those variables that best explain the value of this target, either for
descriptive purposes or prediction of the class value of a new data point. They are
an example of supervised learning methods. A popular and accessible classification
model is a decision tree, like the C4.5 method.

Classical linear regression is a technique for finding the best linear equation
defining the relationship between a numerical response and the independent vari-
ables, all of which should also be numerical (Draper and Smith, 1998). It is mainly
used for prediction of the target variable, but also for identifying which variables
have the strongest influence on the behaviour of the response variable. In that sense
it is useful for descriptive purposes. Regression is suitable under normality, ho-
moscedasticity and independence of the regressors. Other models are to be used if
those conditions do not hold (e.g. ANOVA, logistic regression, non-linear models,
neural networks).

Case-Based Reasoning (CBR) is a general problem-solving, reasoning and
learning paradigm (see Kolodner, 1993) within the artificial intelligence field.
When CBR is used as a classification method, the assumption is that similar cases
should have similar classifications: given a new case, similar cases are selected from
the case library, and the new case is classified according to the classifier values of
those neighbours. Quality of the case library is critical, as is the choice of an ap-
propriate measure of similarity (see Núñez et al., 2004). It must also be noted that
CBR does not produce an explicit model describing system behaviour.

Rule induction or rule extraction is the process of discovering rules that sum-
marise common or frequent trends within a dataset (i.e. which variables and values
are frequently associated). Classification rules can be induced from labelled exam-
ples. Some rule extraction routines can combine numerical and categorical data,
and a time component can also be introduced into the rule format.

Applications: Classification techniques seem to be very popular. For example,
in Spate (2002) and Spate et al. (2003) rainfall intensity information was ex-
tracted from daily climate data; Ekasingh et al. (2003) discusses the classification
of farmers’ cropping choices using decision trees; in Sweeney et al. (2007) mos-
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quito population sites are categorised, while in Stadler et al. (2006) decision trees
are applied in a European life-history trait database. Agriculture-related applica-
tions include Holmes et al. (1998) for apple bruising, Cunningham and Holmes
(1999) for mushroom grading, Yeates and Thomson (1996) for bull castration and
venison carcass analysis and the Michalski and Chilausky’s (1980) soybean dis-
ease diagnosis work, which is a classic benchmark problem in machine learning.
Considerable efforts are recorded in water-related fields, using rule-based reason-
ing (Zhu and Simpson, 1996; Riaño, 1998; Dzeroski et al., 1997; Comas et al.,
2003, and Spate, 2005), Case-Based Reasoning (Rodríguez-Roda et al., 1999;
Wong et al., 2007), regression trees (Dzeroski and Drumm, 2003) or hybrid tech-
niques (Rodríguez-Roda et al., 2001, 2002, and Cortés et al., 2002). In the
study of air quality, classification has been used for air quality data assurance is-
sues (Athanasiadis and Mitkas, 2007) and the operational estimation of pollutant
concentrations (Kaburlasos et al., ?).

Classification has also found spatial applications. For example, fish distribution
(Su et al., 2004) and soil erosion patterns (Ellis, 1996) have both been modelled with
classification methods, as was soil erosion, and other soil properties in McKenzie and
Ryan (1999), which also used regression trees and other techniques with a view to
obtaining system information.

Comas et al. (2001) discusses the performance of several DM techniques (de-
cision tree creation, two types of rule induction, and instance-based learning) to
identify patterns from environmental data. And a comparison between statistical
and classification algorithms in air quality forecasting has shown the potential of
DM techniques (Athanasiadis et al., 2005).

12.2.6 Association analysis

Association analysis is the process of discovering and processing interesting rela-
tions from a dataset. The concept was originally developed for supermarket analysis,
where the aim is to discover which items are frequently bought together. They have
the advantage that as no initial structure is specified, the results may contain rules
that are highly unexpected and which would never have been specifically searched
for, because they are inherently surprising. The format summarising only frequently
occurring patterns can also be useful for anomaly detection, because those data
points violating rules that usually hold are easy to identify and may be examples of
interesting behaviour.

Rule extraction algorithms, for both association and classification, tend to fall
into two broad categories. There are those built by generalising very specific rules
until they cover a certain number of instances; for example the AQ family of al-
gorithms described in Wnek and Michalski (1991), or the RISE algorithm by
Domingos (1996). And there are those that begin with a broad rule covering all
or a large fraction of the data and refine that rule until a sufficient level of precision
is achieved, such as the PRISM (Cendrowska, 1998) and RIPPER (Cohen, 1995)
algorithms. For obvious reasons, the specific to general variety are for the most part
classification rule learners. Many rule extraction algorithms are extremely fast, and
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can thus be applied to very large databases in their entirety. They may be used either
for predictive purposes or for system investigation.

12.2.7 Artificial neural networks
We have mentioned above that DM techniques are not widely used in the area of
environmental modelling and software applications. An exemption is the adoption
of Artificial Neural Networks (ANNs), which have become an accepted part of
the environmental modelling toolbox. The basis of the ANN methodology is to
emulate the behaviour of human neural networks. Human neural networks make
synaptic connections among many neurons, producing several output signals. ANNs
activate some neuron output by means of weighted combination of values of some
other neurons, and using an output activating function. Thus, the main role of
ANNs is as an approximation function, especially suited for predicting non-linear
functions.

Applications: Numerous applications have been developed, and as an indication
we refer to the works of Kralisch et al. (2001) and Almasri and Kaluarachchi (2005)
on nitrogen loading, Mas et al. (2004) on deforestation, Babovic (2005) on hydrol-
ogy, those of Belanche et al. (2001), Gibbs et al. (2003) and Gatts et al. (2005)
on water quality, or the discussion on non-linear ordination and visualisation of
ecological data by Kohonen networks, and ecological time-series modelling by re-
current networks (Recknagel, 2001), along with the recent application of Dixon et
al. (2007) to anaerobic wastewater treatment processes.

12.2.8 Other techniques
DM and machine learning are of course not restricted to the methods discussed
here, and some less common techniques have been applied to environmental prob-
lems. In Robertson et al. (2003), Hidden Markov Models were used to model
rainfall patterns over Brazil with interesting results, and Mora-López and Conejo
(1998) applied Qualitative Reasoning to meteorological problems. Cloud screening
for meteorological purposes was also investigated with Markov Random Fields in
Cadez and Smyth (1999). Sudden death of oak trees was modelled with Support
Vector Machines in Guo et al. (2005). In Comas et al. (2001), several Instance-
Based and Inductive Methods were applied in wastewater treatment plants. Vellido
et al. (2007) present Generative Topographic Mapping to investigate river ecol-
ogy.

12.2.9 Spatial and temporal aspects of environmental data mining
Spatiotemporal DM does not simply deal with data situated in time and space,
rather it has a broader goal which is to identify knowledge models (i.e. patterns)
with spatial and temporal references. Roddick and Spiliopoulou (?) identified that
temporal DM research deals with three “time-stamped datatypes”: conventional
scalar values, events and the DM results (patterns). Similarly, in spatiotemporal DM
these three datatypes can be considered to be referenced in both time and space.
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Temporal relationships include “before-after” relations, while spatial relationships
deal either with metric (distance) relations, or with non-metric topology relations.
The classical DM methods do not consider those particularities, while KDD algo-
rithms require to be altered for accommodating spatiotemporal data dimensions. In
this respect, spatiotemporal DM is potentially useful for a variety of tasks, includ-
ing:

(1) spatiotemporal pattern identification (as in pattern analysis, neighbourhood
analysis),

(2) data segmentation and clustering (spatiotemporal classification),
(3) dependency analysis, correlation analysis and fault detection in data (outlier

detections, surprising pattern identification),
(4) trend discovery and sequence mining (as in regression analysis and time series

prediction).

However promising it might seem, spatiotemporal mining suffers from scale ef-
fects. In general, spatial resolution or time granularity affects the support of the
extracted patterns. In this respect, visualising data and extracted patterns, by em-
ploying maps and GIS technology (e.g. see Andrienco, ?) could prove valuable. Also,
recently Case-Based Reasoning has been shown as a promising modelling tool for
spatiotemporal databases, such as in the work by Sànchez-Marrè et al. (2005) and
Martín and Plaza (2004).

12.3. Guidelines for Good Data Mining Practice

As with all modelling paradigms, good practice modelling involves far more
than applying a single algorithm or technique (see Chapter 2). Each of the DM steps
detailed in Section 12.2.1 must be followed with due attention. In this section, we
record a few notes and considerations that may be of use to those contemplating
the use of DM in ES. In this section general recommendations on the most suitable
use of the presented techniques are provided, together with a set of considerations
to ensure good practice in real applications.

• Devote all required time to a proper preprocessing.
Input Data Uncertainty: Environmental data is subject to high uncertainty.

Tracking and reporting of uncertainties related to measurement and other sources
of noise is another area that is sometimes not treated rigorously, despite the im-
plications. Therefore, the minimum theoretically achievable error of any model
built on the data cannot be less than the error contained in the original data.
Models with reported fit greater than this are overfitted and their performance
measures do not reflect true predictive capacity. In general, where there is more
data, there is less uncertainty, or at least that uncertainty can be better quanti-
fied.

Cautions on data cleaning: Data cleaning is a fundamental aspect, and one which
is often neglected. When working with real data, the process is often very time
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consuming, but is essential for obtaining good quality results, and from there
useful new knowledge. The quality of the results directly depends on the qual-
ity of the data, and consequently, on the correct missing data treatment, outlier
identification, etc. Data miners should become conscious of the importance of
performing very careful and rigorous data cleaning, and allocate sufficient time
to this activity accordingly.

Cautions on transformations: Avoidance of unnecessary transformations is rec-
ommended, especially if the transformation decreases interpretability (for exam-
ple Y = log streamflow, although Y is normal). If transformations are definitely
required, some bias may be introduced into the results. Thus, it is convenient
to minimise arbitrariness of the transformation as much as possible (in recording
Age, Adult may be defined from 18 to 65 or from 15 to 70), and this implies
that the goals of the analysis must also be taken into account. For arithmetic
transformations, imputation of missing data before the transformation is thought
to be better. Note that where data are numeric and the scale changes between
variables, normalisation may be necessary.

• Select DM method taking into account dataset size. Where datasets are small,
choose simpler methods and be mindful of the maximum theoretical certainty
that can be obtained.

Parameter selection and model fitting: While parameter-free DM algorithms do
exist, most require some a priori set up. Parameters for DM algorithms are decided
by the same methods as more common models – expert knowledge, guessing,
trial and error, automated and manual experimentation. In addition, it is often
helpful to learn a little about the role of the parameter within the algorithm,
as appropriate values for the problem at hand can often be set or estimated this
way. Some experimentation may improve the output model and reporting the
process of parameter fitting in detail adds credibility to any modelling project.
It is important that parameter values are not chosen based on the final test data.
Otherwise optimistic performance estimates will be obtained.

• Use Principal Component Analysis for synthesising an original set of numerical
variables into a small number of fictitious variables, conserving as much infor-
mation as possible from the original dataset.
o Multiple correspondence analysis is suitable if the original variables are quali-

tative.
Cautions: Multivariate techniques reduce the original variables to a set of fic-

titious ones (or factors). Conceptual interpretation of a factor may not be clear,
and if this is the case, there will be implications for interpretability of the final
results. Principal Component Analysis is only recommended when all original
variables are numerical. For qualitative data, multiple correspondence analyses
should be used in its place (Lebart et al., 1984; Dillon and Goldstein, 1984).

• Use feature weighting techniques for calculating the importance of the variables
according to the information they provide.

• Use clustering techniques for finding groups of homogeneous objects in a dataset.
o Density estimation techniques for finding the combination of density functions

associated with homogeneous groups of objects in data.
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Cautions: Most clustering methods generate a set of clusters even where no
set of distinguishable groups really exists. This is why it is very important to care-
fully validate the correctness of the discovered clusters. Meaning and usefulness of
discovered classes are one validation criteria, although this is largely subjective. A
more quantitative approach is to perform multiple runs of the algorithm or differ-
ent algorithms with slightly different parameters or initial values, which will give
a good indication of the stability of the cluster scheme. Some software packages
also contain tools to assess structural quality of the classes. As a measure of cluster
‘goodness,’ the ratio of average distance within the clusters with respect to average
distance between clusters may be useful where a numerical distance measure ex-
ists, although it is redundant if the same criterion were used to build the clusters
themselves, as is the case of using Ward’s (1963) method. Cluster validation where
no reference partition exists (and in real-world applications none is present, or the
clustering would be unnecessary) is an open problem, but stability and meaning
of classes should be observed as a minimum treatment (Gibert et al., 2005c).

• Use decision trees or classification rules for a new unclassified object in order to
discriminate to which group or class it belongs or better fits.

Classification: When classifying real data, it is often useful to consider accuracy
on a class-by-class basis. In this way, the modeller can keep track of where errors
are occurring. These errors may be given unequal weighting, if the consequences
are not equal. The most common device for this is the confusion matrix. The
distribution of input data should also receive consideration, as many classification
algorithms tend towards predicting the majority class. An in-depth discussion of
this topic can be found in Weiss and Provost (2001). Tree (and other classifier)
stability can be assessed as cluster stability (see above).

• Use statistical modelling for finding the combination of variables that better pre-
dicts a target variable:
o Linear regression if the target is numeric, regressors are independent, and nor-

mality and linearity holds.
o Non-linear regression or neural nets under the same conditions but when

linearity does not hold.
o ANOVA for a numerical target and qualitative regressors; independence and

normality are required.
o ANCOVA for a numeric target and both numeric and qualitative regressors.

Normality, independence and linearity required.
o Binary logistic regression if the target is binary and regressors numeric.

Cautions: Scalar real-valued performance criteria such as the determination co-
efficient (R2, also known as efficiency), used together with residual plots (Moore
and McCabe, 1993), constitute a very useful tool for validation of the model, far
more powerful than numeric indicators by themselves. Outliers, influent values,
non-normalities, non-linearities and other anomalies can be investigated in this
way. Note however that R2 can be applied only to real numerical data.

• Use classical time series techniques for predicting a numeric value of a variable
taking into account the past temporal values of the same variable.
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• Use Case-Based Reasoning or Instance-based Learning for solving a new prob-
lem (codified as an object) by means of reusing the most similar problem (object)
in the data set.

• Use Rule-induction to obtain, from a set of labelled data, a set of discriminating
rules that can be used as a classification rules for new objects.

• Use Association algorithms to induce rules that can extract regular correlation
patterns among several variables within the data set.

• Validate the models using proper tools.
Caution on p values: As the amount of data increases, variance of classical es-

timators tends to zero, which usually implies that very small sample differences
may appear statistically significant. This phenomenon requires serious attention
and great care must be exercised in the interpretation of those statistical results. In
fact, serious revision of classical statistical inference is necessary to enable suitable
use in the context of DM.

Uncertainty quantification and model validation: As mentioned in the note re-
garding input data above, proper consideration of uncertainty is essential for
meaningful modelling. One must also give thought to how best to quantify and
represent the performance of the final model. For some purposes, a single-valued
measure such as R2 may be sufficient provided that the model has been properly
validated as unbiased, but for most applications more information is useful. It
is seldom possible to represent model performance against all goals of the in-
vestigation with one number. It may also have a systematic tendency to slightly
overpredict lower values to compensate for missing extreme events. All of this
cannot be expressed as a single number, but a comparison of distributions will
reveal the necessary information.

Model validation is as important for automatically extracted models as it is for
those constructed with more human interaction, perhaps more so. To this end
we recommend the usual best practice procedures such as holding back a portion
of the dataset for independent validation (if the size of database allows) and n-fold
cross validation.

12.3.1 Integrated approaches
The main goal of many environmental system analyses is to support posterior de-
cision making to improve either management or control of the system. Intelligent
Environmental Decision Support Systems (IEDSSs) are among the most promising
approaches in this field (see Chapter 8). IEDSS are integrated models that provide
domain information by means of analytical decision models, and allow the decision
maker access to databases and knowledge bases. They intend to reduce the time in
which decisions can be made as well as assist repeatability and the quality of even-
tual decisions by offering criteria for the evaluation of alternatives or for justifying
decisions (Poch et al., 2004). Often, multiple scenarios are modelled and evaluated
according to environmental, social and economic criteria.

There are six primary approaches to the problem of building an integrated model
(Ekasingh et al., 2005): expert systems, agent-based modelling, system dynamics,
Bayesian networks, coupled complex models, and meta-modelling. Of these, the
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last three are most relevant to the field of DM. Opportunities exist for automation
of Bayesian network and meta-model construction and parameterisation, simplifi-
cation and summarisation of complex submodels, and also interpretation of results.
DM techniques are important tools for the knowledge acquisition phase of inte-
grated model building, and because integrated models are very high in complexity,
results are often correspondingly difficult to interpret and the decision maker may
benefit from a postprocessing DM step. Of course, data mined models may also
form part of the integrated model as in Ekasingh et al. (2005).

12.4. Software – Existing and Under Development

In this section, some software tools available to perform Data Mining on real
data are referenced. These software tools or packages include some of the Data
Mining techniques presented in this chapter. On the one hand, there are many pro-
prietary Data Mining packages that merit mentioning and they are briefly described
in the following paragraphs.

SAS’s Enterprize miner (see http://www.sas.com/technologies/analytics/
datamining/miner/) SAS Enterprise Miner streamlines the entire data mining
process from data access to model deployment by supporting all necessary tasks
within a single, integrated solution, all while providing the flexibility for efficient
workgroup collaborations. It provides tools for graphical programming, avoiding
manual coding, which makes for easy to develop complex data mining processes.

It was designed for business users, and provides several tools to help with pre-
processing data (descriptives, advanced statistical graphics) together with advanced
predictive modelling tools and algorithms, including decision trees, neural nets, au-
toneural nets, memory-based reasoning, linear and logistic regression, clustering,
association rules, time series. It provides a facility for direct connection with data
warehouses. It also offers tools for comparing the results of different modelling
techniques.

It is integrated with other tools from the wider SAS statistical framework, which
at present is one of the most powerful statistical packages commercially available.
SAS and Enterprise Miner are delivered as a distributed client-server system. Both
are especially well suited for large organisations.

IBM has released Intelligent Mine (http://www-306.ibm.com/software/data/
iminer/). IBM’s in-database mining capabilities integrate with existing systems to
provide scalable, high performing predictive analysis without moving data into pro-
prietary data mining platforms. SQL, Web Services, or Java can be used to access
DB2’s data mining capabilities directly from the own user’s applications or busi-
ness intelligence tools from IBM’s business partners. It provides a set of products
for data warehouse editing, modelling, scoring or visualisation, including: market
basket analysis, clustering or categorisation, or summarisation. It is available in a
number or different languages including English, Danish, Spanish and Arabic. It
also provides a graphical programming interface.
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Clementine (http://vvv.spss.com/Clementine) was one of the first commercial
tools oriented to Data Mining. Later absorbed by the firm of SPSS, which also
commercialises a very popular and widely used statistical package. Clementine is
designed to support the CRISP-DM, the de facto standard data mining methodol-
ogy. It provides a visual interactive workflow interface supporting the data mining
process and has an open architecture for integration with other systems and with
all SPSS predictive analytics. It includes facilities for database access, text, survey
and web data preparation, model management, automatic version control, user au-
thentication, etc. From the point of view of data mining techniques, it provides
neural networks, decision trees, rule induction, association rules, classification, data
visualisation and the statistical functionalities of SPSS.

Salford System’s CART (http://www.salford-systems.com/) is a decision tree tool
that automatically sifts large, complex databases, searching for and isolating signifi-
cant patterns and relationships. This discovered knowledge is then used to generate
reliable, easy-to-grasp predictive models for applications such as profiling customers,
targeting direct mailings, detecting telecommunications and credit card fraud, and
managing credit risk. In addition, CART is an excellent pre-processing comple-
ment to other data analysis techniques.

The WEKA workbench (Witten and Frank, ?) contains a collection of visu-
alisation tools and algorithms for data analysis and predictive modelling, together
with graphical user interfaces for easy access to this functionality. Weka supports
several standard DM tasks: data preprocessing, clustering, classification, regression,
visualisation, and feature selection. Weka provides access to SQL databases using
Java Database Connectivity and can process the result returned by a database query.

Weka’s main user interface is the Explorer, shown in Figure 12.2, but essentially
the same functionality can be accessed through the component-based Knowledge
Flow interface and from the command line. There is also the Experimenter, which
allows the systematic comparison of the predictive performance of Weka’s machine
learning algorithms on a collection of datasets rather than a single one. Weka is a
general purpose package, freely available on the Internet and is well utilised in the
Artificial Intelligence Community.

GESCONDA (Gibert et al., 2004; Sànchez-Marrè et al., 2004) is the name
given to an Intelligent Data Analysis System developed, with partial financing of
project TIN2004-01368, with the aim of facilitating KD and especially oriented to
environmental databases. On the basis of previous experiences, it was designed as a
four level architecture connecting the user with the environmental system or process
(Figure 12.2 shows a screen capture from the clustering GUI): Data Filtering, Rec-
ommendation and Meta-Knowledge Management, Data Mining techniques for
KDD, Knowledge Management.

Central characteristics of GESCONDA are the integration of statistical and AI
methods into a single tool, together with mixed techniques for extracting knowl-
edge contained in data, as well as tools for qualitative analysis of complex relation-
ships along the time axis (Sànchez-Marrè et al., 2004). All techniques implemented
in GESCONDA can share information among themselves to best co-operate for ex-
tracting knowledge. It also includes a capability for explicit management of results
produced by the different methods. Portability of the software between platforms
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Figure 12.2 (Top) GESCONDA clustering interface; (bottom) The Weka Explorer user inter-
face.

is provided by a common Java platform. The GESCONDA design document is in
http://www.eu-lat.org/eenviron/Marre.pdf.

Finally, other DM libraries for general computation as well as statistical environ-
ments like Matlab and the software R have been built, providing a wide range of
techniques that can be useful in complex Data Mining processes.
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12.5. Conclusions and Challenges for Data Mining of

Environmental Systems

In this chapter a general introduction is provided to Data Mining techniques
relevant to their use for Environmental Systems. Special focus is on the contri-
butions of DM techniques to environmental applications as well as on general
guidelines for good practice in real world domains. Technical details on the spe-
cific DM techniques are not a focus of this paper. Rather the aim is to provide
general guidance to a non-expert user so that they can decide which technique
is appropriate for solving their problem and appreciate the cautions required to
avoid erroneous analyses. For in-depth details on specific techniques, references are
provided. The overview presented does not attempt to be exhaustive. Those DM
techniques deemed more suitable for environmental applications are included, but
there are some others that may be useful in particular applications, and several ref-
erences are provided in the paper on more specific techniques.

Finally, in this section, we shall comment on the hot issues and challenging
aspects in the interdisciplinary field of environmental DM sciences. Achievement
of the following aims would increase utility and applicability of DM methods:

• improvement of automated preprocessing techniques,
• elaboration of protocols to facilitate sharing and reuse of data,
• development of standard procedures (benchmarks) for experimental testing and

validation of DM tools,
• involvement of end-user (domain expert) criteria in algorithm design and result

interpretation,
• development and implementation of mixed DM methods, combining different

techniques for better KDD,
• formulation of tools for explicit representation and handling of discovered knowl-

edge for greater understandability,
• improvement of DM techniques for on-line and heterogeneous databases,
• design and use of temporal/spatial data mining techniques,
• research towards integrated modelling that combines different partial models from

different natures (statistical, qualitative, graphical) in a single global one,
• further development of guidelines and recommendations to assist with method

and algorithm selection.

Another factor that is often of great importance is (conceptual) interpretability
of output models. Indeed, some of the results of the Data Mining step appear under
some formalisms not intuitive enough to be easily understandable by an environ-
mental scientist (think, for example, about the results of a logistic regression, or a
random forest’s results). Tools that clearly and usefully summarise extracted knowl-
edge are of great value to environmental scientists, as are those that assist in the
quantification of uncertainties.
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