
Towards an air pollution health study data management
system - A case study from a smoky Swiss railway

Evangelia Papoutsoglou∗, Argyrios Samourkasidis∗, Ming-Yi Tsai†, Mark Davey†,
Alex Ineichen†, Marloes Eeftens† and Ioannis N. Athanasiadis∗

∗Democritus University of Thrace
Xanthi, Greece

Email:(papoutsoglou.e@gmail.com, argysamo@gmail.com, ioannis@athanasiadis.info)
† Swiss Tropical and Public Health Institute

Basel, Switzerland
Email:(m.tsai,mark.davey,alex.ineichen,m.eeftens@unibas.ch)

Abstract—In air pollution health studies, measurements are conducted
intensively but only periodically at numerous locations in a variety
of environments (indoors, outdoors, personal). Often a variety of
instruments are used to measure various pollutants ranging from
gases (eg, CO, NO2, O3, VOCs, PAHs) to particulate matter (eg,
particles smaller than 2.5um: PM2.5, PM10, ultrafine particles: UFP),
and including other environmental parameters such as temperature,
relative humidity, GPS position. As a result it is always a significant
challenge for researchers to effectively QA/QC, combine, and archive
these data so as to reliably assess people’s exposure to poor air quality.
With the CEDAR system presented here we aim to provide a solution
to this problem by employing a platform using templates for easily
reading custom formatted files, apply rules for filtering and quality
checking measurements, and ultimately publishing them as services
on the web. The system is demonstrated for the case an air quality
project conducted in a Swiss railway station where smoking is allowed.

I. Introduction

Environmental data collection and analysis are an integral part of
many scientific pursuits. Environmental data management tasks
exhibit extreme variation for several reasons. The nature of
each project or study significantly impacts the data management
techniques employed (if any at all). Each discipline has its
own preferred methods, including nomenclature and standards.
Many details are domain-specific, hence well known, and several
decisions are ad-hoc. Last but not least, the scope of each project is
typically limited to the problem at hand, which narrows down the
intended scope of data management tasks to the very immediate
and short-term actions. As a result, there are few tools available for
efficient environmental data management, curation and sharing.

In this paper, we present our developments towards a system that
efficiently manages sensor-borne data, called CEDAR. CEDAR
(stands for Customizable Environmental Data Archive) aims to
be domain-independent and customizable, so that it accommodates
the needs of different domains and studies, while at the same time
provides simple templates for common sensor and data manage-
ment tasks. CEDAR focuses on time series operations, as they are
integral to sensor-borne data. The CEDAR platform is designed so
that sensor and data semantics are explicitly declared, along with
processes accounting for the nature of different measurements.

Built on top of rich semantics, CEDAR is capable of providing
standardized services, for data archival, curation and sharing.
Mechanisms for intra- and inter-unit operations are set in place,
to respond to user-defined queries. There are also features for
common tasks, such as extracting derivative quantities, performing
quality checks (QC) and quality assurance (QA) tasks.

From an architectural point of view, CEDAR is built on templates,
so that general solutions can be re-applied easily and dynamically,
i.e. without the need to recompile the software or append the
database. Our assumption is that sensor data sets become available
in custom file formats, which are stored by the system “as is”.
Each sensor output file is accompanied with template files, which
enable CEDAR to not only read the data, but also to understand it,
from its semantic metadata. Templates contain instructions on how
to parse the data as well as annotations of the observed quantities
and phenomena. In this way, data sets are stored as measurements
of certain phenomena in the common database, and extra functions
are enabled for quality checking, extracting derivative quantities,
and summaries. These are also enabled through templates. Last,
but not least, environmental datasets are offered on the web as
services, which allow for end user applications to query and
retrieve them through a graphical user interface (GUI).

In this paper, we outline the CEDAR framework and present its
design and implementation. Our first experimentations with real
world data to demonstrate the system operation are in the domain
of air pollution health studies. The main driver for this choice is
the variety of pollutant monitoring equipment employed in such
studies. In this paper, we present our experiences with managing
data from a study of a Swiss railway station, where smoking is
still allowed. Scientists collected data using both fixed stations and
moveable equipment. The variety of data is being assembled via
templates into an archive and presents the challenges of working
with such data and what the next steps in this process could be.

II. Related Work

In environmental sciences, sensors are tools that produce measure-
ments, which serve as ground truth observations for subsequent
studies. In principle, sensors can be of several kinds, each

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

65

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

addressing different needs and concerns, and, correspondingly,
their output can also vary. Combining many of them for a single
study, and analyzing the collected information in an organized
manner often poses a new challenge: not of discipline or of
science, but merely one of appropriate management. Effective
management is a prerequisite for certain aspects of data analysis
[1].

The aggregation and collective processing of many heterogeneous
datasets, which nevertheless refer to the same core physical
quantities for the same purpose, are very challenging to implement.
An approach in which semantic annotations are not only directly
tied with the actual data, but also considered for every operation,
can circumvent these challenges and lay the groundwork for a
unified and semantically-aware management system [2], [3]. Lee
at al. [4] delve further into these challenges and present the
Concinnity platform to addresses concerns about trustworthiness.

Software tools as EQuIS [5] and TerraBase [6] software, provide
a wide range of operations. Both accept datasets, subject them
to arduous QA/QC processes, and store them in their respective
underlying databases. The database management systems are also
complemented with data visualization modules, with specific
emphasis on geological parameters.

A. Air pollution health studies data

In air pollution health studies, measurements are conducted inten-
sively but only periodically at numerous locations in a variety
of environments (indoors, outdoors, personal). Often a variety
of instruments is used to measure various pollutants, ranging
from gases (e.g., CO, NO2, O3, VOCs, PAHs) to particulate
matter (e.g., particles smaller than 2.5μm: PM2.5, PM10, ultra-
fine particles: UFP), and including other environmental parameters
such as temperature, relative humidity, GPS position. As a result,
it is always a significant challenge for researchers to effectively
QA/QC, combine, and archive these data so as to reliably assess
people’s exposure to poor air quality. Now, with the advent of
cheap real-time sensors and the growing internet of things, there
is an increasing need for well-designed approaches to archiving
these data, so that they can be flexibly accessed with ease by
researchers as well as the general public.

In our demonstrator, we deployed our framework for the case
study of an air quality project conducted in a Swiss railway
station where smoking is permitted. The pollutants monitored
were PM2.5, UFP, black carbon, nicotine, temperature, relative
humidity (RH). There was one fixed site, and seven other train
station micro-environments surveyed by field staff carrying real-
time instruments.

B. Time series data management and fusion

Management systems that can adequately process time series
data have been in the spotlight of the inter-disciplinary research
community. A lot of efforts have been put into developing
management systems, specifically designed either for real time

adaptation and processing of time series data, or for archiving
them and providing a query service over them.

In GALILEO [7], database implementation is of great importance,
because the system is optimized for storing streaming data. In
order to cope with node failures, which would lead to data loss,
they replicate data storage nodes. Thus, GALILEO needs a lot of
computational power to function.

TSMS (Time Series Management System) is a specialized object-
oriented Database Management Systems for te banking industry
[8]. The system they envisioned should be able to interact with and
facilitate the functionality of external programs (e.g. modelling
platforms, decision support systems), and apply filters on existing
time series. In addition to that, the aforementioned system should
cope with data reliably, assigning tags on each measurement.

Mason et al [9] introduce the Virtual Observatory and Ecolog-
ical Informatics System (VOEIS) Data Hub, a centralized data
management system which curates environmental observations
through data life cycle. Metadata annotate every measurement and
templates are utilized for the data input process. While templating
facilitates input process, VOEIS software implements it only for
specific types of files (csv, xls, xlsx), which renders our input
approach more robust and promising.

In AiRCHIVE [10], the authors implemented an autonomous envi-
ronmental data archival system, which received input from sensors
attached to it. While efforts were concentrated on incorporating
web protocols which enhance interoperability, little efforts were
allocated on input and data storage methods.

Time series data often comes in very high volumes, so using
a document-based system like MongoDB is a common solution.
User activity monitoring [11], server logs and real system records
are all common applications; however, the systems implemented
for those tasks rarely need to address needs other than data storage
and very elementary operations. In fact, distributed processing
techniques are often pursued for the purpose of analysis [12].
Additionally, efforts have been made to resolve such issues not
by implementing new management systems, but by developing
interfaces for aggregated information retrieval from different
source databases [13], [14].

Ghanem et al [15] discuss data integration techniques on a grid-
based collective system, but ultimately propose the design of
different APIs for each specific workflow. They also mention the
potential in semantic tagging for such information, reinforcing our
belief that our system truly has potential.

C. Terminology

Concerning the vocabulary used in the following sections, and in
order to avoid any ambiguity, some terms have to be defined first.
A measurement refers to a set of values recorded simultaneously
by a single sensor. The number of values recored is entirely
dependent on the sensor used, but it is at least one.1 Note the

1As an example consider a GPS sensor device that yields two or three values:
latitude, longitude and altitude (optional).

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

66

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

constraint: each measurement must state its time of collection.
Furthermore, each measurement may carry several tags associated
with it. A time series consists of several measurements, i.e. pairs
of time-stamped values. It refers to a single physical quantity
observed over a time interval. Time series are regular when
measurements are taken at constant time intervals. They may
contain missing or erroneous values, as they represent the raw
output of the sensor instrument, without other processing.

III. System specifications

The main objective of CEDAR is to provide a means for
easier data management and analysis for sensor-borne data. Air
quality health studies data comprises numerous measurements,
heterogeneous in both meaning and format, as they are collected
by different equipment. Our goal is to organize all measurement
datasets and make them available via interoperable, queryable
services. In the following sections we present the key features
of our system.

A. Requirements

A CEDAR project involves the curation, archival and processing
of several time series, using one or more sensors, each observing
different phenomena. Each sensor produces a custom text file that
contains that results of each measurement for a certain period of
operation, and all these files are made available to CEDAR.

The first step is to make explicit the semantics of each observation
process occurring. This inevitably entails the identification of
the physical meaning and unit of the measurements produced
by each sensor, which can be associated with other factors of
interest (e.g. substance, medium, etc.) or spatiotemporal references.
Undoubtedly this depends on the specific needs of each project.
Domain scientists need to be involved in this step to make such
information available, using the appropriate metadata templates.
Templates depend on the type of equipment, as each instrument
typically produces its own file format. The system may also extract
information from the underlying folder structure, as scientists tend
to encode valuable information there, which needs to be extracted
and processed. Metadata templates serve as the source of some
primary QC statements: minimum and maximum allowed values
for each measured quantity can first be stated there, and then used
to fix those not complying.

Secondly, CEDAR is able to execute common time series oper-
ations. These may occur at predefined time spans (e.g. hourly,
weekly, monthly, etc.) or at user-specified ones. The system
provides built-in support for the most common operations, such
as calculation of maximum, minimum, rolling mean, average and
percentile values. Additionally, the user is able to specify more
functions via an extension mechanism.

Thirdly, CEDAR combines existing measurements into derivative
user-defined quantities, and appropriately tag them. This includes
operations across different units (and unit conversions), as well as
other transformations. Newly calculated information, based on a
user query, can be optionally stored into the archive for future

reference. Such operations include quality test and assurance
procedures, which can be done in two stages: Either when data
is initially imported into the archive, according to existing rules
given by the user, or later by revisiting datasets and expanding
them with QA/QC tags.

The system may also offer additional services: missing or suspect
measurements are detected and tagged as such, and basic value
correction functions (e.g. due to calibration errors or offsets) may
also implemented via templates.

Last, but not least, data archived by CEDAR and most of its
capabilities must be offered as services over the web. A RESTful
implementation was deemed preferable, to enhance transparency
and promote scalability, among other advantages. A GUI was
developed in order to provide users with the means to submit
queries and visualize data, effortlessly. Data dissemination in a
interoperable way, an essential feature for a sensor data man-
agement system, was addressed by adopting Sensor Observation
Service (SOS). SOS is an Open Geospatial Consortium (OGC)
standard, which allows querying observations and sensor metadata,
employing a set of predefined and well documented requests.

B. Abstract architectural design

The CEDAR platform operates in four stages, shown in Figure 1.
Each input needs to be accompanied by two template files. The
input template, and the metadata auxiliary file. They allow the
template reader component to successfully identify and tag the
information in each input data file. The template reader goes
through each input data file, and parses its text according to
the instructions in the input template. The metadata auxiliary file
provides with additional semantics for constructing a timeseries of
measurements from the data. It may also provide with additional
information and optionally filters suggested to generate derived
timeseries or perform common tasks as QA/QC. The semantic
auxiliary file may also associate the quantity measured with
one or more corresponding ontologies, which subsequently allow
for easier collaboration between different people and teams, in
compliance with the semantic web vision.

In the second stage, the newly formatted and semantically-tagged
time series are imported into the database, which constitutes the
innermost layer of the application. For reasons explained below,
the document-based database MongoDB was deemed suitable for
this implementation. At the top level, time series are categorized
according to the study they are part of, the sensor that produced
them, and optionally by a more sophisticated structure, suitable for
each project. CEDAR always preserves the raw data, as initially
imported, along with the results of the QA/QC process.

The database component is connected with the processing layer.
This component intercepts all data from the database, and trans-
lates each time series into a set of objects for further processing.
It is also here where the more complex operations are executed,
as they become significantly easier with the object-oriented struc-
tures. The object-oriented application layer can also accept custom
user filters and use them in its operations.

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

67

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

Fig. 1. CEDAR abstract architectural design

The output layer is the module in direct contact with the end-
user via the web. It accepts custom queries from the graphical
user interface, and subsequently translates them in a way the
object-oriented layer can interpret. Furthermore, this component
is responsible for resolving user queries, as well as for preparing
the responses to them.

An additional component is the client interface. An interactive
GUI is preferred, as it simplifies the querying process, and
is able to present the user with additional features, executed
on the browser. These includes on the fly visualizations and
transformations.

IV. Detailed design

In this section we provide an in-depth description of each
component and its function and implementation details.

A. Template reader

The template reader is the component responsible for the initial
extraction and composition of each time series from an input file.
As mentioned above, two additional files are necessary for this
process. We have developed the template reader from scratch and
it was written in Python. The input template file is a text file that
mimics the structure of its corresponding input file. Usually these
input files consist of a header section, with details pertaining to
the entire measurement set, and a table-like section containing
the measurements themselves. Both sections can include valuable

data that we want to acquire. It is imperative that the structure of
the template file and the input data file be identical, as anything
else would result in complications. This includes whitespace, tabs
or other non-visible characters, which is very important for the
detection of irregularities (in particular, missing values). The
template reader is able to handle any text file as input, ranging
from the easily-parsable CSV files, to the less strictly-formatted
text files. Our current implementation uses regular expressions,
which are derived from the template file.

We sought a simple way to compose input templates, and con-
cluded that a pattern similar to popular output template libraries as
Cheetah [16], or Mako [17] would be sufficient. In these, constant
text is simply represented as such, and variables follow a specific
pattern. Mimicking that, we use the identifier to mark variables,
followed by the variable name surrounded in curly brackets .
The result of this format is of the type: .

Variables may be found in both header and tabular sections.
Typically in headers we have some kind of simple key-value
assignments of values to variables. Some of them could be
optional. In the tabular section we need more constructs to fully
describe the content, as we need to associate values with refer-
ences (temporal or spatial coordinates) and possibly an unknown
number of occurrences.

To signify that a set of rows should be processed according
to a common template line we introduce the tag,
inserted into the line before the template line in question. The
line following the becomes the common pattern, and
is used for all lines following the subsequent <%process> tag.
These tags are always expected to appear together, and mark a
tabular portion of a file.

An assumption made should be noted here: we expect that each
measurement is fully contained in a single line, and that each one
of them includes a time stamp. Template files ignore consecutive
whitespace characters, as these can be inserted by various sensors
liberally to enhance the readability of their output files. Unfortu-
nately, this also implies that spaces cannot be reliably used as
delimiters in the measurement section, as missing measurement
values would complicate the proper parsing of a file.

This way, given one piece of an input file, we can effortlessly
create a fitting template by only editing it, and thus specifying
the variables we wish to be read by the framework, as shown in
the code segments below.

Code Segment 1: Example input file. Note that () stands for a
single space and () signifies the tab character.

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

68

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

Code Segment 2: Corresponding input template. A template file
is expected to be found with the file extension.

The metadata auxiliary file contains all relevant semantic meta-
information for each sensor type. Each variable defined in the
input template has a dedicated section here, which includes all
metadata and tags that need to be indexed and archived in the
database. Semantic awareness relies on these files, so this is a
very crucial component. Most commonly, each variable declares
its physical quantity, units, spatiotemporal reference and custom
properties may be added as necessary. A short example follows:

Names are case-sensitive, and variable names should always be
unique in each template. As mentioned earlier, all variables are
expected to have the first two fields, namely and

. Other predefined fields, such as , can be used to
indicate the format of the variable to be read. Furthermore, a user
can define own fields (e.g.) to specify more properties
to be indexed for that variable, which are subsequently available
to the processing layer. The metadata auxiliary file is formatted
as a common file [18].

B. Database

The database selected for this project is the NoSQL document-
oriented database MongoDB [19]. As opposed to its traditional
relational counterparts, a document database presents the follow-
ing redeeming features for our given scenario:

1. More efficient and easier handling and management of the
potentially huge “tables” which hold the set of each kind
of measurements, as regards table sparsity.

2. No obligation of adherence to a predefined database schema;
increased adaptability to new formats of sensor inputs,
domains of application, etc.

3. Excellent horizontal scalability (scaling out), as project
datasets (or even different time series, on a lower level)
are split and saved as separate documents.

4. Connected information, such as elements of the same time
series and their direct derivatives (e.g. averages), can all
be easily retrieved from the storage in relatively contiguous
read operations, as documents display less fragmentation.

The above is directly derived from the nature of document-based
databases: as the name implies, their elementary storage and basic
structural units are documents, which directly correspond to files.
Each of them can follow a different schema, and allows for
further nested documents inside it, as well as references to other
documents. Document size is generally on the scale of a few
megabytes up to a maximum of 16MB, which is appropriate for
even exceedingly long time series data.

In our case, each time series is stored in a single document.
Splitting a set of measurements with numerous variables into as
many independent time series provides certain benefits: document
size can be kept to a minimum, and queries requesting information
about a single variable need not be subject to the overhead
involved in reading all data collected in that specific session from
the sensor. It is also desirable to avoid over-fragmentation of data
in many document files, so it is conceivable that homogenous mea-
surements from consecutive measurement sessions –potentially
recorded from the sensor into separate input files– can all be
included in the same document. Another benefit of splitting the
data into individual time series is the possibility of incorporating
more data, in the form of e.g. tags for each measurement as a
result of a user query, into the same file more easily.

Semantic fields and tags, as drawn from the semantic information
file in the templating stage, are common to all associated mea-
surements, and are placed at the root of the document. The mea-
surements themselves is structured in the way described below,
similar to the technique seen at [20]. Date and time is expressed
by means of nested documents at varying depths, and creating
in this way multiple sub-documents. Year information is placed
at the top of the hierarchy, followed by month and then day in
their respective subdocuments. At this point we can also separate
each day into hours or even minutes or seconds, depending
on the granularity of the data provided. A side advantage of
this is also found in keeping subdocument volumes low. The
lowermost level of the hierarchy consists of key-value pairs; time
information is expressed in the former, while the latter is another
document containing all the information associated with a single
measurement. This includes the actual values measured at that
specific point in time, as well as custom tags as provided by the
user or calculated by the system.

This way of separating date and time information into successive
subdocuments benefits the type of operations we would like to
perform on each time series. Calculations of quantities such as
averages, maxima and minima can be easily executed, stored and
retrieved for each of the subdivisions. Other valuable information,
such as the number of measurements with specific tags over easily
defined time periods (e.g. over a month) can also be explicitly
stored at a corresponding document depth.

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

69

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

C. Processing layer

This layer consists of two sub-components associated with core
data processing operations. The first sub-component connects to
the database and creates measurement objects. The second is able
to apply operations on those objects by applying filters (opera-
tions) in order to generate derived measurements or other results.
In the processing layer, each object represents a measurement,
or a set of measurements combined in a meaningful manner.
Variables store the IDs of each element of a measurement, their
corresponding time stamps, units, and other tags. The output layer
reads each part of a user’s query, and determines which time
series should be read from the database. Each element of that
time series is transformed into an object holding all of its data,
and these objects are then assembled into one primary time series
object. The time series object also draws from the database any
information pertaining to all objects-elements it encloses, which
are at the very least annotations for the physical meaning of their
values as well as their units. Furthermore, the same time series
object is instructed to mark the methods that will produce from it
a secondary time series object with all necessary properties and
values, as a step towards answering the user’s query. Finally, one
or more time series objects are passed to the output layer, as they
contain the final response information.

D. Output layer

The output layer acts as the front end of the system to the outer
world. It receives queries from the web, either from end users
via the GUI or from other machines via REST-full protocols, and
responds to them appropriately by calling the appropriate objects
and activate filters in the processing layer. As regards the output,
this component simply transforms the objects produced in the
processing layer into the appropriate format. This can range from
simple serialization into text (e.g. XML, JSON, YAML formats)
to commands that would insert the information contained in the
objects and queried for by the user back into the database itself
for future use. Output templates can also be used at this stage,
so the results of processing can be presented to the user in the
form desired. The templating engine Mako [17] was used in this
project for this purpose. In order for this feature to work, the
output translator must also be able to connect the variable names
inside a template file with their associated query results, since
these engines generally function with text substitution.

Following the submission of a user query to the system, the
input translator’s first task is to formulate a query toward the
database and then pass it to the object-oriented layer, where it
will eventually be submitted to the database. Simple queries, such
as the presentation of all measurements in a time series, only
involve a direct request to the database and appropriate formatting
of the data returned. More complex ones would necessitate more
object structures and potentially more queries to the database,
so all relevant information can be retrieved. The most important
operation of this translator lies in defining these object structures
as would best suit the given task, the relationships between these
structures, and queries to draw their data from the database.

Among the data structures provided there has to be one that
will suit the result. Especially considering that this result might
be stored back into the database, regardless of what the output
presentation to the user entails, the resulting object has to contain
all data necessary to uniquely identify its sources and be stored
with references to them, if not enclosed in its parent time series.
Finally, it also provides the logic to answer a user’s query,
expressed in terms of the objects that the object-oriented layer
will construct under the guidance of the input translator.

E. Client interface

This component is responsible for presenting the user with a
practical graphical interface, and transmitting the choices made
by the user to the server hosting the service. The GUI draws
from the database information concerning:

• available physical quantities, as expressed in the semantic
information file

• tags accompanying these physical quantities
• sensor information
• available time information.

With the above the user can select their desired inputs, apply
filters among a collection of predefined and user-defined ones,
and specify the desired output format. Time granularity is also
an important parameter which can affect the presentation of the
output.

Inputs can be processed individually, i.e. depend on a single
physical quantity time series to produce the output. For instance,
this would be the case for an averaging operation. More inputs
can be combined for more complex processing, where accounting
for more variables over certain time periods is preferable.

F. Sensor Observation Service interface

SOS component is currently under development, but when avail-
able, it will provides an interface to make CEDAR’s sensors and
sensor data archives, accessible via an interoperable web based
interface. Core profile, which is defined in the SOS specification
offers three operations. The corresponding requests to these
operations are:

• , responds with a self-description of the
service. It includes detailed information regarding the hosted
data and the available operations.

• , responds with metadata about the re-
quested sensors and sensor systems (key).

• , responds with measurements of a
selected quantity (key), measured
by a specific sensor (key) at a specific
time (key), in a requested response format
(key).

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

70

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

V. Implementation

A. Case study

Since May 1st 2010, Switzerland has had a federal law against
environmental tobacco smoke (ETS) in enclosed spaces that
are publicly accessible or where workers are present; however,
smoking is allowed in separate smoking rooms, open spaces and in
private homes. In terms of public spaces, there has been much con-
troversy around smoking in hospitality venues: e.g., restaurants,
cafes, bars, but minimal discussion about smoking in quasi indoor
public environments such as train stations with the exception of
several newspaper articles about ETS in Zürich’s main station
during Oktoberfest (www.tagesanzeiger.ch, 2014). Switzerland has
the densest train network in Europe and railway travel is the
main mode of transportation in Switzerland with Zurich, Bern,
and Basel having >400’000, >200’000, and >100’000 passengers
per day, respectively. However, despite general public reliance
on this travel mode, smoking in train stations is hardly restricted.
[21]

In the interest of assessing if the air quality in a Swiss train
station presented a potential public health concern, we conducted
a pilot measurements study in Basel’s SBB main train station in
the Fall of 2014 [22]. The pilot consisted of taking measurements
with a backpack of direct-reading instruments from mid-afternoon
to early evening. The team made four circuits/loops around the
train station stopping at 7 pre-selected locations where 6-minute
measurements were made (~1 hour/circuit). Another team operated
a reference site at one location on the Passerelle (main elevated
area of the station where most shops, food stalls, and restaurants
are located with access to nearly all tracks). Additionally, nicotine
measurements at each of the 7 locations were made in the 4-day
period leading up to and including the afternoon of sampling.
The pollutants measured were particulate matter of size 2.5um
and less (PM2.5), ultrafine particles (UFP, between 10 and
300nm), and black carbon (BC) all at one second resolution.
The PM2.5 mass measurement represents the finer fraction of
particles that can penetrate to the deeper airways of the lung; UFP
particles measured in number of particles per cubic centimeter
are sub-micrometer particles that are almost entirely generated by
combustion processes; and black carbon is an indication of the
darkness of the aerosol and, in the ambient environment, is often
indicative of diesel sources. At the reference site, in addition to
UFP, BC, two aerosol size spectrometers for the nanometer and
micrometer ranges were deployed [22].

The main measurements from the circuits provided data for 7
distinct locations from one set of instruments. This affordable ap-
proach, however, results in each location being only characterized
for short periods of time and non-simultaneously. Nevertheless,
the patterns between locations were consistently similar from one
circuit/loop to the next. The reference site provided a continuous
picture of the temporal evolution of pollutant levels at one location.
Reliable data management and fusion is critical for the effective
analysis of these data.

Devices used in these types of measurements are not integrated

into one data-logging system. Instead, each device has its own
output file, some of which need to be post-processed using propri-
etary software, where, e.g., a calibration is applied. The format of
these data is expectedly heterogeneous (headers, date/time stamps,
measurement units); furthermore, depending on the device and the
aerosol sampled, researchers may apply an additional correction
factor. Other integrated data (non-real-time data such as multi-day
passive nicotine samplers) that only provide a single average for
their sampling period need to also be included. These data will
be compared to World Health Organization’s (WHO) 24-hr air
quality guidelines as well as to other ETS studies.

This case study provides one example of the complexity of air
pollution exposure science monitoring data. For other studies, with
different study designs, such data can be collected in patently
different ways and over much longer time periods. A methodology
that can flexibly accommodate data is increasingly important as
data generation explodes with technological developments.

B. Deployment

CEDAR components were designed to function not only for
the purposes of this specific project, but be generally applicable
for a wider scope of work. To demonstrate this case study we
created templates for reading and annotating the different kinds
of sensors involved in this study. The input template is read
first by CEDAR, and regular expressions are formed based on
it. Comparing each line of the data file with a regular expression
isolates the variable values, which can then be treated as regular
strings. At the same time, the metadata auxiliary file specifies
the semantics of these variables, which can be converted and
processed accordingly in CEDAR. Time and date information in
the measurement section is tagged as such in the yaml file along
with its format, and is combined to form the time stamp for all
elements of that measurement. Measurements are all recomposed
into their respective time series, marking missing values as such
with a tag, and incorporating the header variables at the top level
of each time series.

Simple operation to be applied without any further user action
can easily been incorporated in a filter file. These filters should
be one-to-one relationships, i.e. simple checks for each element
of a time series, and are especially useful for selective initial
tagging. Example uses include annotation of out-of-limits values
and warning labels that would contribute to easier understanding
of the data. These filters are only read during the input stage, and
actually applied after all data has been imported into the database.
They are therefore treated as user queries and executed auto-
matically. The database component is fairly straightforward, as
MongoDB document structure can be fully replicated with Python
dictionaries, which can be accepted without further processing.

The remaining components are simpler to approach in a backwards
fashion, starting with the graphical user interface. A complex user
request is broken down by the user into its elementary parts. This
not only aids readability, but is also directly translatable into object
terms. Each part is given a by the user, and can be referred

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

71

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

to by other parts of the query. For example, consider a sample
query as: “For every hour check if the average concentration of
substance A exceeds value X, and the average particle size of
substance A was less than Y, then return the two quantities”. This
can be broken down as follows:

This query would ultimately yield two partial time series as
its result, with time stamps accompanying the value averages
fulfilling the given conditions. The timestamp storing technique
described earlier is a good way to improve the efficiency of time
frame lookups, which is a conceivably common operation for time
series.

The graphical over-the-web user interface is presented to the user
incrementally, depending on their choices. A label, for which
a field is always present in each input panel, is given to each
quantity, so that the users can refer to them in other sections of
the same query. Once a label has been filled in, a dropdown list
prompts the user to select the physical quantity of the subject
time series. The list is retrieved from the database. A filter and
required tags, as well as unit conversions, can then be selected
for that physical quantity, with valid options presented again
in a list. Parameters to each filter are also defined here, as
well as time constraints or granularity for the time series, when
applicable. Finally, the user has to confirm the output time series
and condition as well as the preferred output format in the output
panel.

A query can be broken down into as many sections as neces-
sary. Each of them conveys a simple transformation, and they
collectively build a request of arbitrary complexity. The graphical
user interface is presented incrementally to the user depending on

their previous choices, and facilitates the definition of each query
section by presenting all available options at each step, as well
as prohibiting entry of non-applicable filters and transformations
(e.g., requesting an average of a status code time series would
not be allowed). This process involves communication with the
database at various stages, but provides the user with a simple,
robust, and easy to use query builder. Results can also be imported
back into the database, as suggested by the “store in database”
field for future reference.

Each field of this query is transmitted over the net to the
server with an HTTP GET request. The input-output translator
produces the queries that retrieve from the database the elementary
quantities, i.e. concentration and size for this particular case.
Time series objects are built from each, carrying all relevant
information. However, they also contain the query information to
transform them as required. In this case, the object that holds the
concentration time series also includes the average filter, with its
parameters as set by the user, the units, and the store in database
value. A concept for this particular example can be seen on Figure
2.

These objects undergo the transformations now specified by their
internal parameters, and continue through the instructions the input
translator has provided. Semantic information is never discarded.
Finally, two objects are returned to the translator, which now
formats them and outputs them in two channels. First, a
file is provided to the user as the output format suggests, and
secondly the two time series are stored back into the database. If
they are results of simple processing, they can be stored in the
same document as their original time series. Simple processing is
indicated by common origin of the tags and semantic information
for all measurements in the time series. Otherwise, separate
documents are formed, and all relevant tags are carried over.

This type of querying covers a very wide range of operations.
Users can define custom filters as they wish, adhering to specific
limitations, to provide additional functions. A filter is provided
as Python code and is placed in the appropriate folder. Built-in
filters are present in three relationship variations: one-to-one, one-
to-many, many-to-one.

• A filter expressing a one-to-one relationship is the numerical
transformation filter, which implements simple arithmetic on
the given quantities, e.g. temperature + 273.

• A filter expressing a one-to-many relationship is the interpo-
lation filter, which could be used to increase the granularity
of a time-wise sparse series.

• Finally, a filter expressing a many-to-one relationship is the
averaging filter, which derives a single value from many
more.

Currently present filters range in their function from filters offering
simple numerical operations and logic checks, to filters that
calculate minimum and maximum values, averages, and rolling
means.

As far as quality checks are concerned, CEDAR provides some
elementary functionality. The first stage of quality controlling

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

72

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

Fig. 2. Screenshot of the GUI

consists of basic comparisons against the higher and lower
limits provided along with the metadata for each value. Missing
values are explicitly tagged as such, but never removed from
the database. This also represents CEDAR’s general philosophy:
in cases where new values are calculated to provide a quality-
checked replacement for their old counterparts, those remain in the
database, tagged as such. Information loss and one-way transforms
are thus discouraged.

In this particular study, no measures were developed to account
for the time drifting of sensors. In some cases the sensors are
automatically or manually re-calibrated, but these processes are
not reflected in the datasets provided to CEDAR. Beyond that,
overly long sessions of data-logging were avoided in this instance,
so any residual effects of time drifting are considered to be
negligible. The system —partly owing to the range of its desirable
flexibility— has no way of countering false semantics. We are
operating under the assumption such issues this can be mitigated
on the end users’ side, by careful metadata input.

VI. Discussion and Future work

CEDAR software platform was motivated by AiRCHIVE’s ini-
tiative [10], resulting to a more mature implementation and a
fresh system design. CEDAR counts as a sensor data management
system, which can take input from any file, utilizing a sophis-
ticated template engine. On the other hand, AiRCHIVE serves
real-time data publisher incorporated in a sensor system. Also,

the document-based Mongo DB, used in CEDAR, facilitates a
lot of complex operations on data, unlike AiRCHIVE’s relational
database which lacks of flexibility.

Although still under development, this system’s potential is signifi-
cant. The case study with air quality monitoring data from a smoky
Swiss railway is a solid test to validate the system’s functionality.
We aspire to evaluate it against different case studies, involving
meteorological and hydrological time series data. We also aim to
develop more variant built-in filters, which users could apply on
data, without developing them. Finally, the backend performance
optimization is of great importance to us, so it would respond to
queries and operate robustly and time- and energy-efficiently.

References

[1] R. P. Mount et al., “The office of science data-management challenge,”
Stanford Linear Accelerator Center (SLAC), Tech. Rep., 2005.

[2] A. E. Rizzoli, M. Donatelli, I. N. Athanasiadis, F. Villa, and D. Huber,
“Semantic links in integrated modelling frameworks,” Mathematics and
Computers in Simulation, vol. 78, no. 2-3, pp. 412–423, Jul 2008.

[3] F. Villa, I. N. Athanasiadis, and A. E. Rizzoli, “Modelling with knowledge:
a review of emerging semantic approaches to environmental modelling,”
Environmental Modelling and Software, vol. 24, no. 5, pp. 577–587, May
2009.

[4] C.-H. Lee, D. Birch, C. Wu, D. Silva, O. Tsinalis, Y. Li, S. Yan, M. Ghanem,
and Y. Guo, “Building a generic platform for big sensor data application,”
in Big Data, 2013 IEEE International Conference on. IEEE, 2013, pp.
94–102.

[5] EarthSoft, “Environmental quality information system: EQuIS,” Online at
http://www.earthsoft.com, 2002. [Online]. Available: https://books.google.gr/
books?id=DNcbtwAACAAJ

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

73

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

https://books.google.gr/books?id=DNcbtwAACAAJ
https://books.google.gr/books?id=DNcbtwAACAAJ

[6] Terrabase. website. [Online]. Available: http://terrabase.com/
[7] A. Albano, L. Cardelli, and R. Orsini, “Galileo: A strongly-typed, interactive

conceptual language,” ACM Transactions on Database Systems (TODS),
vol. 10, no. 2, pp. 230–260, 1985.

[8] W. Dreyer, A. K. Dittrich, and D. Schmidt, “An object-oriented data
model for a time series management system,” in Scientific and Statistical
Database Management, 1994. Proceedings., Seventh International Working
Conference on. IEEE, 1994, pp. 186–195.

[9] S. J. Mason, S. B. Cleveland, P. Llovet, C. Izurieta, and G. C. Poole,
“A centralized tool for managing, archiving, and serving point-in-time data
in ecological research laboratories,” Environmental Modelling & Software,
vol. 51, pp. 59–69, 2014.

[10] A. Samourkasidis and I. N. Athanasiadis, “Towards a low-cost, full-service
air quality data archival system,” in Proc. 7th Intl. Congress on Environ-
mental Modelling and Software, International Environmental Modelling and
Software Society (iEMSs), 2014.

[11] P. J. Guo and M. Seltzer, “Burrito: Wrapping your lab notebook in
computational infrastructure.” in TaPP, 2012.

[12] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrishnan,
“Performance evaluation of a mongodb and hadoop platform for scientific
data analysis,” in Proceedings of the 4th ACM workshop on Scientific cloud
computing. ACM, 2013, pp. 13–20.

[13] G. Ball, V. Kuznetsov, D. Evans, and S. Metson, “Data aggregation system-a
system for information retrieval on demand over relational and non-relational
distributed data sources,” in Journal of Physics: Conference Series, vol. 331,
no. 4. IOP Publishing, 2011, p. 042029.

[14] A. Vaikuntam and V. K. Perumal, “Evaluation of contemporary graph
databases,” in Proceedings of the 7th ACM India Computing Conference.
ACM, 2014, p. 6.

[15] M. Ghanem, Y. Guo, J. Hassard, M. Osmond, and M. Richards, “Grid-based
data analysis of air pollution data,” in The Fourth International Workshop
on Environmental Applications of Machine Learning EAML 2004, 2004,
p. 25.

[16] T. Rudd, M. Orr, I. Bicking, and C. Esterbrook, “Cheetah-the python-
powered template engine,” in 10th International Python Conference.—2002.
http://www. python. org/workshops/2002-02/papers/08/index. htm, 2007.

[17] Mako contributors, “Mako: Hyperfast and lightweight templating for the
python platform,” 2013. [Online]. Available: http://www.makotemplates.org/

[18] O. Ben-Kiki, C. Evans, and I. döt Net, “YAML Ain’t Markup Language,
version 1.2,” http://www.yaml.org/spec/1.2/spec.html, 2009.

[19] K. Chodorow, MongoDB: the definitive guide. O’Reilly Media, 2013.
[20] S. Parikh. (2014, October) Schema design for time series data in

mongodb. [Online]. Available: http://blog.mongodb.org/post/65517193370/
schema-design-for-time-series-data-in-mongodb

[21] jan 2015. [Online]. Available: http://www.tagesanzeiger.ch/zuerich/stadt/
Raucherhoehle-Hauptbahnhof/story/10581808

[22] M. Tsai, A. Ineichen, B. Flückiger, and M. Davey, “AT-Tagung - résultats
préliminaires des mesures de qualité de l’air réalisées en gare de Bâle CFF,”
Arbeitsgemeinschaft Tabakprävention Schweiz, Tech. Rep., nov 2014.

Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015 Copenhagen, Denmark September 7-9, 2015

74

Copyright: If not stated otherwise, all rights are reserved by the authors. ISBN: 978-87-7903-712-0

http://terrabase.com/
http://www.makotemplates.org/
http://blog.mongodb.org/post/65517193370/schema-design-for-time-series-data-in-mongodb
http://blog.mongodb.org/post/65517193370/schema-design-for-time-series-data-in-mongodb
http://www.tagesanzeiger.ch/zuerich/stadt/Raucherhoehle-Hauptbahnhof/story/10581808
http://www.tagesanzeiger.ch/zuerich/stadt/Raucherhoehle-Hauptbahnhof/story/10581808

