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Abstract—In air pollution health studies, measurements are conducted
intensively  but  only  periodically  at  numerous  locations  in  a  variety
of  environments  (indoors,  outdoors,  personal).  Often  a  variety  of
instruments  are  used  to  measure  various  pollutants  ranging  from
gases  (eg,  CO,  NO2,  O3,  VOCs,  PAHs)  to  particulate  matter  (eg,
particles smaller than 2.5um: PM2.5, PM10, ultrafine particles: UFP),
and  including  other  environmental  parameters  such  as  temperature,
relative humidity,  GPS position.  As a result  it  is  always a significant
challenge for researchers to effectively QA/QC, combine, and archive
these data so as to reliably assess people’s exposure to poor air quality.
With the CEDAR system presented here we aim to provide a solution
to  this  problem by  employing  a  platform using  templates  for  easily
reading  custom  formatted  files,  apply  rules  for  filtering  and  quality
checking  measurements,  and  ultimately  publishing  them  as  services
on the  web.  The  system is  demonstrated  for the  case  an  air quality
project conducted in a Swiss railway station where smoking is allowed.

I. Introduction

Environmental data collection and analysis are an integral part of
many  scientific  pursuits.  Environmental  data  management  tasks
exhibit  extreme  variation  for  several  reasons.  The  nature  of
each project or study significantly impacts the data management
techniques  employed  (if  any  at  all).  Each  discipline  has  its
own  preferred  methods,  including  nomenclature  and  standards.
Many details are domain-specific, hence well known, and several
decisions are ad-hoc. Last but not least, the scope of each project is
typically limited to the problem at hand, which narrows down the
intended scope of data management tasks to the very immediate
and short-term actions. As a result, there are few tools available for
efficient environmental data management, curation and sharing.

In this paper, we present our developments towards a system that
efficiently  manages  sensor-borne  data,  called  CEDAR.  CEDAR
(stands  for  Customizable  Environmental  Data  Archive)  aims  to
be domain-independent and customizable, so that it accommodates
the needs of different domains and studies, while at the same time
provides simple templates for common sensor and data manage-
ment tasks. CEDAR focuses on time series operations, as they are
integral to sensor-borne data. The CEDAR platform is designed so
that sensor and data semantics are explicitly declared, along with
processes  accounting  for  the  nature  of  different  measurements.

Built  on top of rich semantics, CEDAR is capable of providing
standardized  services,  for  data  archival,  curation  and  sharing.
Mechanisms for intra- and inter-unit  operations are set in place,
to  respond  to  user-defined  queries.  There  are  also  features  for
common tasks, such as extracting derivative quantities, performing
quality checks (QC) and quality assurance (QA) tasks.

From an architectural point of view, CEDAR is built on templates,
so that general solutions can be re-applied easily and dynamically,
i.e. without  the  need  to  recompile  the  software  or  append  the
database. Our assumption is that sensor data sets become available
in  custom file  formats,  which are  stored  by the  system “as  is”.
Each sensor output file is accompanied with template files, which
enable CEDAR to not only read the data, but also to understand it,
from its semantic metadata. Templates contain instructions on how
to parse the data as well as annotations of the observed quantities
and phenomena. In this way, data sets are stored as measurements
of certain phenomena in the common database, and extra functions
are enabled for quality checking, extracting derivative quantities,
and summaries.  These are also enabled through templates.  Last,
but  not  least,  environmental  datasets  are  offered on the web as
services,  which  allow  for  end  user  applications  to  query  and
retrieve them through a graphical user interface (GUI).

In this paper, we outline the CEDAR framework and present its
design and implementation.  Our first  experimentations with real
world data to demonstrate the system operation are in the domain
of air pollution health studies. The main driver for this choice is
the variety of pollutant monitoring equipment employed in such
studies. In this paper, we present our experiences with managing
data from a study of a Swiss railway station, where smoking is
still allowed. Scientists collected data using both fixed stations and
moveable equipment. The variety of data is being assembled via
templates into an archive and presents the challenges of working
with such data and what the next steps in this process could be.

II. Related Work

In environmental sciences, sensors are tools that produce measure-
ments,  which serve as ground truth observations for subsequent
studies.  In  principle,  sensors  can  be  of  several  kinds,  each
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addressing  different  needs  and  concerns,  and,  correspondingly,
their output can also vary. Combining many of them for a single
study,  and  analyzing  the  collected  information  in  an  organized
manner  often  poses  a  new  challenge:  not  of  discipline  or  of
science,  but  merely  one  of  appropriate  management.  Effective
management is a prerequisite for certain aspects of data analysis
[1].

The aggregation and collective processing of many heterogeneous
datasets,  which  nevertheless  refer  to  the  same  core  physical
quantities for the same purpose, are very challenging to implement.
An approach in which semantic annotations are not only directly
tied with the actual data, but also considered for every operation,
can  circumvent  these  challenges  and  lay  the  groundwork  for  a
unified and semantically-aware management system [2], [3]. Lee
at  al. [4]  delve  further  into  these  challenges  and  present  the
Concinnity platform to addresses concerns about trustworthiness.

Software tools as EQuIS [5] and TerraBase [6] software, provide
a  wide  range  of  operations.  Both  accept  datasets,  subject  them
to arduous QA/QC processes, and store them in their respective
underlying databases. The database management systems are also
complemented  with  data  visualization  modules,  with  specific
emphasis on geological parameters.

A. Air pollution health studies data

In air pollution health studies, measurements are conducted inten-
sively  but  only  periodically  at  numerous  locations  in  a  variety
of  environments  (indoors,  outdoors,  personal).  Often  a  variety
of  instruments  is  used  to  measure  various  pollutants,  ranging
from  gases  (e.g.,  CO,  NO2,  O3,  VOCs,  PAHs)  to  particulate
matter  (e.g.,  particles  smaller  than  2.5μm:  PM2.5,  PM10,  ultra-
fine particles: UFP), and including other environmental parameters
such as temperature, relative humidity, GPS position. As a result,
it  is always a significant challenge for researchers to effectively
QA/QC, combine, and archive these data so as to reliably assess
people’s  exposure  to  poor  air  quality.  Now,  with  the  advent  of
cheap real-time sensors and the growing internet of things, there
is an increasing need for well-designed approaches to archiving
these  data,  so  that  they  can  be  flexibly  accessed  with  ease  by
researchers as well as the general public.

In  our  demonstrator,  we  deployed  our  framework  for  the  case
study  of  an  air  quality  project  conducted  in  a  Swiss  railway
station  where  smoking  is  permitted.  The  pollutants  monitored
were  PM2.5,  UFP,  black  carbon,  nicotine,  temperature,  relative
humidity (RH).  There was one fixed site,  and seven other  train
station micro-environments surveyed by field staff carrying real-
time instruments.

B. Time series data management and fusion

Management  systems  that  can  adequately  process  time  series
data have been in the spotlight of the inter-disciplinary research
community.  A lot  of  efforts  have  been  put  into  developing
management  systems,  specifically  designed  either  for  real  time

adaptation  and  processing  of  time  series  data,  or  for  archiving
them and providing a query service over them.

In GALILEO [7], database implementation is of great importance,
because  the  system is  optimized  for  storing  streaming  data.  In
order to cope with node failures, which would lead to data loss,
they replicate data storage nodes. Thus, GALILEO needs a lot of
computational power to function.

TSMS (Time Series Management System) is a specialized object-
oriented Database Management Systems for te banking industry
[8]. The system they envisioned should be able to interact with and
facilitate  the  functionality  of  external  programs  (e.g. modelling
platforms, decision support systems), and apply filters on existing
time series. In addition to that, the aforementioned system should
cope with data reliably, assigning tags on each measurement.

Mason  et  al  [9]  introduce  the  Virtual  Observatory  and  Ecolog-
ical  Informatics  System (VOEIS) Data  Hub,  a  centralized  data
management  system  which  curates  environmental  observations
through data life cycle. Metadata annotate every measurement and
templates are utilized for the data input process. While templating
facilitates input process, VOEIS software implements it only for
specific  types  of  files  (csv,  xls,  xlsx),  which  renders  our  input
approach more robust and promising.

In AiRCHIVE [10], the authors implemented an autonomous envi-
ronmental data archival system, which received input from sensors
attached to it.  While efforts  were concentrated on incorporating
web protocols  which enhance interoperability,  little  efforts  were
allocated on input and data storage methods.

Time  series  data  often  comes  in  very  high  volumes,  so  using
a document-based system like MongoDB is a common solution.
User activity monitoring [11], server logs and real system records
are all common applications; however, the systems implemented
for those tasks rarely need to address needs other than data storage
and  very  elementary  operations.  In  fact,  distributed  processing
techniques  are  often  pursued  for  the  purpose  of  analysis  [12].
Additionally,  efforts  have been made to resolve such issues not
by  implementing  new management  systems,  but  by  developing
interfaces  for  aggregated  information  retrieval  from  different
source databases [13], [14].

Ghanem et al [15] discuss data integration techniques on a grid-
based  collective  system,  but  ultimately  propose  the  design  of
different APIs for each specific workflow. They also mention the
potential in semantic tagging for such information, reinforcing our
belief that our system truly has potential.

C. Terminology

Concerning the vocabulary used in the following sections, and in
order to avoid any ambiguity, some terms have to be defined first.
A measurement refers to a set of values recorded simultaneously
by  a  single  sensor.  The  number  of  values  recored  is  entirely
dependent  on  the  sensor  used,  but  it  is  at  least  one.1 Note  the

1As an example consider a GPS sensor device that yields two or three values:
latitude, longitude and altitude (optional).
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constraint:  each  measurement  must  state  its  time  of  collection.
Furthermore, each measurement may carry several tags associated
with it. A time series consists of several measurements, i.e. pairs
of  time-stamped  values.  It  refers  to  a  single  physical  quantity
observed  over  a  time  interval.  Time  series  are  regular  when
measurements  are  taken  at  constant  time  intervals.  They  may
contain  missing  or  erroneous  values,  as  they  represent  the  raw
output of the sensor instrument, without other processing.

III. System specifications

The  main  objective  of  CEDAR is  to  provide  a  means  for
easier  data  management  and analysis  for  sensor-borne data.  Air
quality  health  studies  data  comprises  numerous  measurements,
heterogeneous in both meaning and format, as they are collected
by different equipment. Our goal is to organize all measurement
datasets  and  make  them  available  via  interoperable,  queryable
services.  In  the  following  sections  we  present  the  key  features
of our system.

A. Requirements

A CEDAR project involves the curation, archival and processing
of several time series, using one or more sensors, each observing
different phenomena. Each sensor produces a custom text file that
contains that results of each measurement for a certain period of
operation, and all these files are made available to CEDAR.

The first step is to make explicit the semantics of each observation
process  occurring.  This  inevitably  entails  the  identification  of
the  physical  meaning  and  unit  of  the  measurements  produced
by  each  sensor,  which  can  be  associated  with  other  factors  of
interest (e.g. substance, medium, etc.) or spatiotemporal references.
Undoubtedly this depends on the specific needs of each project.
Domain scientists need to be involved in this step to make such
information  available,  using  the  appropriate  metadata  templates.
Templates depend on the type of equipment, as each instrument
typically produces its own file format. The system may also extract
information from the underlying folder structure, as scientists tend
to encode valuable information there, which needs to be extracted
and processed.  Metadata templates serve as the source of  some
primary QC statements: minimum and maximum allowed values
for each measured quantity can first be stated there, and then used
to fix those not complying.

Secondly,  CEDAR is able to execute common time series oper-
ations.  These  may  occur  at  predefined  time  spans  (e.g. hourly,
weekly,  monthly,  etc.)  or  at  user-specified  ones.  The  system
provides built-in support for the most common operations,  such
as calculation of maximum, minimum, rolling mean, average and
percentile  values.  Additionally,  the user  is  able  to  specify more
functions via an extension mechanism.

Thirdly, CEDAR combines existing measurements into derivative
user-defined quantities, and appropriately tag them. This includes
operations across different units (and unit conversions), as well as
other transformations. Newly calculated information, based on a
user  query,  can  be  optionally  stored  into  the  archive  for  future

reference.  Such  operations  include  quality  test  and  assurance
procedures,  which can be done in two stages: Either when data
is initially imported into the archive, according to existing rules
given by the user,  or  later  by revisiting datasets  and expanding
them with QA/QC tags.

The system may also offer additional services: missing or suspect
measurements are detected and tagged as such,  and basic value
correction functions (e.g. due to calibration errors or offsets) may
also implemented via templates.

Last,  but  not  least,  data  archived  by  CEDAR and  most  of  its
capabilities must be offered as services over the web. A RESTful
implementation was deemed preferable, to enhance transparency
and  promote  scalability,  among  other  advantages.  A GUI was
developed  in  order  to  provide  users  with  the  means  to  submit
queries  and  visualize  data,  effortlessly.  Data  dissemination  in  a
interoperable  way,  an  essential  feature  for  a  sensor  data  man-
agement system, was addressed by adopting Sensor Observation
Service  (SOS).  SOS is  an  Open  Geospatial  Consortium (OGC)
standard, which allows querying observations and sensor metadata,
employing a set of predefined and well documented requests.

B. Abstract architectural design

The CEDAR platform operates in four stages, shown in Figure 1.
Each input needs to be accompanied by two template files. The
input  template,  and  the  metadata  auxiliary  file.  They  allow the
template  reader  component  to  successfully  identify  and  tag  the
information  in  each  input  data  file.  The template  reader goes
through  each  input  data  file,  and  parses  its  text  according  to
the instructions in the input template. The metadata auxiliary file
provides with additional semantics for constructing a timeseries of
measurements from the data. It may also provide with additional
information  and  optionally  filters  suggested  to  generate  derived
timeseries  or  perform  common  tasks  as  QA/QC.  The  semantic
auxiliary  file  may  also  associate  the  quantity  measured  with
one or more corresponding ontologies, which subsequently allow
for  easier  collaboration  between  different  people  and  teams,  in
compliance with the semantic web vision.

In the second stage, the newly formatted and semantically-tagged
time series are imported into the database, which constitutes the
innermost layer of the application. For reasons explained below,
the document-based database MongoDB was deemed suitable for
this implementation. At the top level, time series are categorized
according to the study they are part of, the sensor that produced
them, and optionally by a more sophisticated structure, suitable for
each project. CEDAR always preserves the raw data, as initially
imported, along with the results of the QA/QC process.

The database component is connected with the processing layer.
This component intercepts all data from the database, and trans-
lates each time series into a set of objects for further processing.
It is also here where the more complex operations are executed,
as they become significantly easier with the object-oriented struc-
tures. The object-oriented application layer can also accept custom
user filters and use them in its operations.
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Fig. 1. CEDAR abstract architectural design

The output  layer is  the  module  in  direct  contact  with  the  end-
user  via  the  web.  It  accepts  custom queries  from the  graphical
user  interface,  and  subsequently  translates  them  in  a  way  the
object-oriented layer  can interpret.  Furthermore,  this  component
is responsible for resolving user queries, as well as for preparing
the responses to them.

An  additional  component  is  the  client  interface.  An  interactive
GUI is  preferred,  as  it  simplifies  the  querying  process,  and
is  able  to  present  the  user  with  additional  features,  executed
on  the  browser.  These  includes  on  the  fly  visualizations  and
transformations.

IV. Detailed design

In  this  section  we  provide  an  in-depth  description  of  each
component and its function and implementation details.

A. Template reader

The template reader is the component responsible for the initial
extraction and composition of each time series from an input file.
As mentioned above,  two additional  files  are  necessary for  this
process. We have developed the template reader from scratch and
it was written in Python. The input template file is a text file that
mimics the structure of its corresponding input file. Usually these
input files consist of a header section, with details pertaining to
the  entire  measurement  set,  and  a  table-like  section  containing
the measurements themselves. Both sections can include valuable

data that we want to acquire. It is imperative that the structure of
the template file and the input data file be identical, as anything
else would result in complications. This includes whitespace, tabs
or  other  non-visible  characters,  which is  very important  for  the
detection  of  irregularities  (in  particular,  missing  values).  The
template reader is  able to handle any text file as input,  ranging
from the easily-parsable CSV files, to the less strictly-formatted
text  files.  Our  current  implementation  uses  regular  expressions,
which are derived from the template file.

We sought  a  simple  way to  compose  input  templates,  and  con-
cluded that a pattern similar to popular output template libraries as
Cheetah [16], or Mako [17] would be sufficient. In these, constant
text is simply represented as such, and variables follow a specific
pattern. Mimicking that, we use the identifier to mark variables,
followed by the variable name surrounded in curly brackets .
The result of this format is of the type: .

Variables  may  be  found  in  both  header  and  tabular  sections.
Typically  in  headers  we  have  some  kind  of  simple  key-value
assignments  of  values  to  variables.  Some  of  them  could  be
optional. In the tabular section we need more constructs to fully
describe the content,  as  we need to  associate  values  with refer-
ences (temporal or spatial coordinates) and possibly an unknown
number of occurrences.

To  signify  that  a  set  of  rows  should  be  processed  according
to  a  common  template  line  we  introduce  the tag,
inserted  into  the  line  before  the  template  line  in  question.  The
line following the becomes the common pattern, and
is  used  for  all  lines  following  the  subsequent  <%process>  tag.
These tags  are  always expected to  appear  together,  and mark a
tabular portion of a file.

An assumption made should be noted here: we expect that each
measurement is fully contained in a single line, and that each one
of them includes a time stamp. Template files ignore consecutive
whitespace characters, as these can be inserted by various sensors
liberally to enhance the readability of their output files. Unfortu-
nately,  this  also  implies  that  spaces  cannot  be  reliably  used  as
delimiters  in  the  measurement  section,  as  missing measurement
values would complicate the proper parsing of a file.

This  way,  given  one  piece  of  an  input  file,  we  can  effortlessly
create  a  fitting  template  by only  editing it,  and thus  specifying
the variables we wish to be read by the framework, as shown in
the code segments below.

Code Segment 1: Example input file. Note that ( ) stands for a
single space and ( ) signifies the tab character.
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Code Segment 2:  Corresponding input template. A template file
is expected to be found with the file extension.

The metadata  auxiliary  file  contains  all  relevant  semantic  meta-
information  for  each  sensor  type.  Each  variable  defined  in  the
input  template  has  a  dedicated  section  here,  which  includes  all
metadata  and tags  that  need to  be  indexed and archived in  the
database.  Semantic  awareness  relies  on  these  files,  so  this  is  a
very crucial component. Most commonly, each variable declares
its physical quantity, units,  spatiotemporal reference and custom
properties may be added as necessary. A short example follows:

Names are case-sensitive,  and variable names should always be
unique in each template.  As mentioned earlier,  all  variables are
expected  to  have  the  first  two  fields,  namely and

. Other predefined fields, such as , can be used to
indicate the format of the variable to be read. Furthermore, a user
can define own fields (e.g. )  to  specify more properties
to be indexed for that variable, which are subsequently available
to the processing layer.  The metadata auxiliary file is  formatted
as a common file [18].

B. Database

The database  selected  for  this  project  is  the  NoSQL document-
oriented  database  MongoDB [19].  As  opposed  to  its  traditional
relational counterparts, a document database presents the follow-
ing redeeming features for our given scenario:

1. More efficient and easier handling and management of the
potentially huge “tables” which hold the set  of each kind
of measurements, as regards table sparsity.

2. No obligation of adherence to a predefined database schema;
increased  adaptability  to  new  formats  of  sensor  inputs,
domains of application, etc.

3. Excellent  horizontal  scalability  (scaling  out),  as  project
datasets  (or  even  different  time  series,  on  a  lower  level)
are split and saved as separate documents.

4. Connected information, such as elements of the same time
series  and  their  direct  derivatives  (e.g. averages),  can  all
be easily retrieved from the storage in relatively contiguous
read operations, as documents display less fragmentation.

The above is directly derived from the nature of document-based
databases: as the name implies, their elementary storage and basic
structural units are documents, which directly correspond to files.
Each  of  them  can  follow  a  different  schema,  and  allows  for
further nested documents inside it, as well as references to other
documents.  Document  size  is  generally  on  the  scale  of  a  few
megabytes up to a maximum of 16MB, which is appropriate for
even exceedingly long time series data.

In  our  case,  each  time  series  is  stored  in  a  single  document.
Splitting a set of measurements with numerous variables into as
many independent time series provides certain benefits: document
size can be kept to a minimum, and queries requesting information
about  a  single  variable  need  not  be  subject  to  the  overhead
involved in reading all data collected in that specific session from
the sensor. It is also desirable to avoid over-fragmentation of data
in many document files, so it is conceivable that homogenous mea-
surements  from  consecutive  measurement  sessions  –potentially
recorded  from  the  sensor  into  separate  input  files–  can  all  be
included in the same document.  Another benefit of splitting the
data into individual time series is the possibility of incorporating
more data,  in  the  form of  e.g. tags  for  each measurement  as  a
result of a user query, into the same file more easily.

Semantic fields and tags, as drawn from the semantic information
file  in  the  templating stage,  are  common to  all  associated  mea-
surements, and are placed at the root of the document. The mea-
surements  themselves  is  structured  in  the  way described  below,
similar to the technique seen at [20]. Date and time is expressed
by  means  of  nested  documents  at  varying  depths,  and  creating
in this  way multiple  sub-documents.  Year information is  placed
at the top of the hierarchy, followed by month and then day in
their respective subdocuments. At this point we can also separate
each  day  into  hours  or  even  minutes  or  seconds,  depending
on  the  granularity  of  the  data  provided.  A side  advantage  of
this  is  also  found  in  keeping  subdocument  volumes  low.  The
lowermost level of the hierarchy consists of key-value pairs; time
information is expressed in the former, while the latter is another
document containing all the information associated with a single
measurement.  This  includes  the  actual  values  measured  at  that
specific point in time, as well as custom tags as provided by the
user or calculated by the system.

This way of separating date and time information into successive
subdocuments  benefits  the  type  of  operations  we would  like  to
perform on each time series.  Calculations  of  quantities  such as
averages, maxima and minima can be easily executed, stored and
retrieved for each of the subdivisions. Other valuable information,
such as the number of measurements with specific tags over easily
defined time periods  (e.g. over  a  month)  can  also  be  explicitly
stored at a corresponding document depth.
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C. Processing layer

This layer consists  of two sub-components associated with core
data processing operations.  The first  sub-component connects to
the database and creates measurement objects. The second is able
to  apply  operations  on  those  objects  by  applying  filters  (opera-
tions) in order to generate derived measurements or other results.
In  the  processing  layer,  each  object  represents  a  measurement,
or  a  set  of  measurements  combined  in  a  meaningful  manner.
Variables store the IDs of each element of a measurement, their
corresponding time stamps, units, and other tags. The output layer
reads  each  part  of  a  user’s  query,  and  determines  which  time
series  should  be  read  from the  database.  Each  element  of  that
time series is  transformed into an object  holding all  of  its  data,
and these objects are then assembled into one primary time series
object. The time series object also draws from the database any
information pertaining to all  objects-elements it  encloses, which
are at the very least annotations for the physical meaning of their
values as well  as their  units.  Furthermore,  the same time series
object is instructed to mark the methods that will produce from it
a secondary time series object with all  necessary properties and
values, as a step towards answering the user’s query. Finally, one
or more time series objects are passed to the output layer, as they
contain the final response information.

D. Output layer

The output layer acts as the front end of the system to the outer
world.  It  receives  queries  from the  web,  either  from end  users
via the GUI or from other machines via REST-full protocols, and
responds to them appropriately by calling the appropriate objects
and activate filters in the processing layer. As regards the output,
this  component  simply  transforms  the  objects  produced  in  the
processing layer into the appropriate format. This can range from
simple serialization into text (e.g. XML, JSON, YAML formats)
to commands that would insert the information contained in the
objects and queried for by the user back into the database itself
for  future  use.  Output  templates  can also  be  used at  this  stage,
so the results  of  processing can be presented to the user in the
form desired. The templating engine Mako [17] was used in this
project  for  this  purpose.  In  order  for  this  feature  to  work,  the
output translator must also be able to connect the variable names
inside  a  template  file  with  their  associated  query  results,  since
these engines generally function with text substitution.

Following  the  submission  of  a  user  query  to  the  system,  the
input  translator’s  first  task  is  to  formulate  a  query  toward  the
database  and  then  pass  it  to  the  object-oriented  layer,  where  it
will eventually be submitted to the database. Simple queries, such
as  the  presentation  of  all  measurements  in  a  time  series,  only
involve a direct request to the database and appropriate formatting
of the data returned. More complex ones would necessitate more
object  structures  and  potentially  more  queries  to  the  database,
so all relevant information can be retrieved. The most important
operation of this translator lies in defining these object structures
as would best suit the given task, the relationships between these
structures,  and  queries  to  draw  their  data  from  the  database.

Among  the  data  structures  provided  there  has  to  be  one  that
will  suit  the result.  Especially considering that  this result  might
be stored back into  the  database,  regardless  of  what  the  output
presentation to the user entails, the resulting object has to contain
all data necessary to uniquely identify its sources and be stored
with references to them, if not enclosed in its parent time series.
Finally,  it  also  provides  the  logic  to  answer  a  user’s  query,
expressed  in  terms  of  the  objects  that  the  object-oriented  layer
will construct under the guidance of the input translator.

E. Client interface

This  component  is  responsible  for  presenting  the  user  with  a
practical  graphical  interface,  and  transmitting  the  choices  made
by  the  user  to  the  server  hosting  the  service.  The  GUI draws
from the database information concerning:

• available  physical  quantities,  as  expressed  in  the  semantic
information file

• tags accompanying these physical quantities
• sensor information
• available time information.

With  the  above  the  user  can  select  their  desired  inputs,  apply
filters  among  a  collection  of  predefined  and  user-defined  ones,
and  specify  the  desired  output  format.  Time granularity  is  also
an important parameter which can affect the presentation of the
output.

Inputs  can  be  processed  individually,  i.e. depend  on  a  single
physical quantity time series to produce the output. For instance,
this  would be the case for an averaging operation.  More inputs
can be combined for more complex processing, where accounting
for more variables over certain time periods is preferable.

F. Sensor Observation Service interface

SOS component is currently under development, but when avail-
able, it will provides an interface to make CEDAR’s sensors and
sensor  data  archives,  accessible  via  an interoperable  web based
interface. Core profile, which is defined in the SOS specification
offers  three  operations.  The  corresponding requests to  these
operations are:

• , responds with a self-description of the
service. It includes detailed information regarding the hosted
data and the available operations.

• ,  responds  with  metadata  about  the  re-
quested sensors and sensor systems ( key).

• ,  responds  with  measurements  of  a
selected  quantity  ( key),  measured
by  a  specific  sensor  ( key)  at  a  specific
time  ( key),  in  a  requested  response  format
( key).
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V. Implementation

A. Case study

Since May 1st  2010,  Switzerland has had a federal  law against
environmental  tobacco  smoke  (ETS) in  enclosed  spaces  that
are  publicly  accessible  or  where  workers  are  present;  however,
smoking is allowed in separate smoking rooms, open spaces and in
private homes. In terms of public spaces, there has been much con-
troversy around smoking in  hospitality  venues:  e.g.,  restaurants,
cafes, bars, but minimal discussion about smoking in quasi indoor
public environments such as train stations with the exception of
several  newspaper  articles  about  ETS in  Zürich’s  main  station
during Oktoberfest (www.tagesanzeiger.ch, 2014). Switzerland has
the  densest  train  network  in  Europe  and  railway  travel  is  the
main  mode  of  transportation  in  Switzerland  with  Zurich,  Bern,
and Basel having >400’000, >200’000, and >100’000 passengers
per  day,  respectively.  However,  despite  general  public  reliance
on this travel mode, smoking in train stations is hardly restricted.
[21]

In  the  interest  of  assessing  if  the  air  quality  in  a  Swiss  train
station presented a potential public health concern, we conducted
a pilot measurements study in Basel’s SBB main train station in
the Fall of 2014 [22]. The pilot consisted of taking measurements
with a backpack of direct-reading instruments from mid-afternoon
to early evening.  The team made four circuits/loops around the
train station stopping at 7 pre-selected locations where 6-minute
measurements were made (~1 hour/circuit). Another team operated
a reference site at one location on the Passerelle (main elevated
area of the station where most shops, food stalls, and restaurants
are located with access to nearly all tracks). Additionally, nicotine
measurements at each of the 7 locations were made in the 4-day
period  leading  up  to  and  including  the  afternoon  of  sampling.
The  pollutants  measured  were  particulate  matter  of  size  2.5um
and  less  (PM2.5),  ultrafine  particles  (UFP,  between  10  and
300nm),  and  black  carbon  (BC) all  at  one  second  resolution.
The  PM2.5  mass  measurement  represents  the  finer  fraction  of
particles that can penetrate to the deeper airways of the lung; UFP
particles  measured  in  number  of  particles  per  cubic  centimeter
are sub-micrometer particles that are almost entirely generated by
combustion processes;  and black carbon is  an  indication of  the
darkness of the aerosol and, in the ambient environment, is often
indicative of diesel sources. At the reference site, in addition to
UFP, BC, two aerosol size spectrometers for the nanometer and
micrometer ranges were deployed [22].

The  main  measurements  from  the  circuits  provided  data  for  7
distinct locations from one set of instruments. This affordable ap-
proach, however, results in each location being only characterized
for  short  periods  of  time  and  non-simultaneously.  Nevertheless,
the patterns between locations were consistently similar from one
circuit/loop to the next. The reference site provided a continuous
picture of the temporal evolution of pollutant levels at one location.
Reliable data management and fusion is critical for the effective
analysis of these data.

Devices used in these types of measurements are not integrated

into  one  data-logging  system.  Instead,  each  device  has  its  own
output file, some of which need to be post-processed using propri-
etary software, where, e.g., a calibration is applied. The format of
these data is expectedly heterogeneous (headers, date/time stamps,
measurement units); furthermore, depending on the device and the
aerosol sampled, researchers may apply an additional correction
factor. Other integrated data (non-real-time data such as multi-day
passive nicotine samplers) that only provide a single average for
their  sampling period need to also be included. These data will
be  compared  to  World  Health  Organization’s  (WHO) 24-hr  air
quality guidelines as well as to other ETS studies.

This  case  study provides  one example  of  the  complexity  of  air
pollution exposure science monitoring data. For other studies, with
different  study  designs,  such  data  can  be  collected  in  patently
different ways and over much longer time periods. A methodology
that can flexibly accommodate data is  increasingly important as
data generation explodes with technological developments.

B. Deployment

CEDAR components  were  designed  to  function  not  only  for
the purposes of this specific project, but be generally applicable
for  a  wider  scope  of  work.  To  demonstrate  this  case  study  we
created templates for  reading and annotating the different  kinds
of  sensors  involved  in  this  study.  The  input  template  is  read
first  by  CEDAR,  and  regular  expressions  are  formed  based  on
it. Comparing each line of the data file with a regular expression
isolates the variable values, which can then be treated as regular
strings.  At  the  same  time,  the  metadata  auxiliary  file  specifies
the  semantics  of  these  variables,  which  can  be  converted  and
processed accordingly in CEDAR. Time and date information in
the measurement section is tagged as such in the yaml file along
with its format, and is combined to form the time stamp for all
elements of that measurement. Measurements are all recomposed
into their respective time series, marking missing values as such
with a tag, and incorporating the header variables at the top level
of each time series.

Simple  operation  to  be  applied  without  any  further  user  action
can easily been incorporated in a filter file.  These filters should
be one-to-one relationships,  i.e. simple checks for each element
of  a  time  series,  and  are  especially  useful  for  selective  initial
tagging. Example uses include annotation of out-of-limits values
and warning labels that would contribute to easier understanding
of the data. These filters are only read during the input stage, and
actually applied after all data has been imported into the database.
They  are  therefore  treated  as  user  queries  and  executed  auto-
matically.  The  database  component  is  fairly  straightforward,  as
MongoDB document structure can be fully replicated with Python
dictionaries, which can be accepted without further processing.

The remaining components are simpler to approach in a backwards
fashion, starting with the graphical user interface. A complex user
request is broken down by the user into its elementary parts. This
not only aids readability, but is also directly translatable into object
terms. Each part is given a by the user, and can be referred
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to  by other  parts  of  the query.  For example,  consider  a  sample
query as: “For every hour check if the average concentration of
substance  A exceeds value X,  and the average particle  size  of
substance A was less than Y, then return the two quantities”. This
can be broken down as follows:

This  query  would  ultimately  yield  two  partial  time  series  as
its  result,  with  time  stamps  accompanying  the  value  averages
fulfilling the given conditions.  The timestamp storing technique
described earlier is a good way to improve the efficiency of time
frame lookups, which is a conceivably common operation for time
series.

The graphical over-the-web user interface is presented to the user
incrementally,  depending  on  their  choices.  A label,  for  which
a  field  is  always  present  in  each  input  panel,  is  given  to  each
quantity, so that the users can refer to them in other sections of
the same query. Once a label has been filled in, a dropdown list
prompts  the  user  to  select  the  physical  quantity  of  the  subject
time series.  The list  is  retrieved from the database.  A filter and
required tags,  as  well  as  unit  conversions,  can then be selected
for  that  physical  quantity,  with  valid  options  presented  again
in  a  list.  Parameters  to  each  filter  are  also  defined  here,  as
well as time constraints or granularity for the time series, when
applicable. Finally, the user has to confirm the output time series
and condition as well as the preferred output format in the output
panel.

A query  can  be  broken  down  into  as  many  sections  as  neces-
sary.  Each  of  them  conveys  a  simple  transformation,  and  they
collectively build a request of arbitrary complexity. The graphical
user interface is presented incrementally to the user depending on

their previous choices, and facilitates the definition of each query
section by presenting all  available options at  each step,  as well
as prohibiting entry of non-applicable filters and transformations
(e.g.,  requesting  an  average  of  a  status  code  time series  would
not  be allowed).  This  process involves communication with the
database at  various stages,  but  provides the user  with a  simple,
robust, and easy to use query builder. Results can also be imported
back into  the  database,  as  suggested  by the  “store  in  database”
field for future reference.

Each  field  of  this  query  is  transmitted  over  the  net  to  the
server  with  an  HTTP GET request.  The  input-output  translator
produces the queries that retrieve from the database the elementary
quantities,  i.e. concentration  and  size  for  this  particular  case.
Time  series  objects  are  built  from  each,  carrying  all  relevant
information. However, they also contain the query information to
transform them as required. In this case, the object that holds the
concentration time series also includes the average filter, with its
parameters as set by the user, the units, and the store in database
value. A concept for this particular example can be seen on Figure
2.

These objects undergo the transformations now specified by their
internal parameters, and continue through the instructions the input
translator has provided. Semantic information is never discarded.
Finally,  two  objects  are  returned  to  the  translator,  which  now
formats  them and outputs  them in  two channels.  First,  a
file  is  provided  to  the  user  as  the  output  format  suggests,  and
secondly the two time series are stored back into the database. If
they are results  of  simple processing,  they can be stored in the
same document as their original time series. Simple processing is
indicated by common origin of the tags and semantic information
for  all  measurements  in  the  time  series.  Otherwise,  separate
documents are formed, and all relevant tags are carried over.

This  type  of  querying  covers  a  very  wide  range  of  operations.
Users can define custom filters as they wish, adhering to specific
limitations,  to  provide  additional  functions.  A filter  is  provided
as Python code and is  placed in the appropriate folder.  Built-in
filters are present in three relationship variations: one-to-one, one-
to-many, many-to-one.

• A filter expressing a one-to-one relationship is the numerical
transformation filter, which implements simple arithmetic on
the given quantities, e.g. temperature + 273.

• A filter expressing a one-to-many relationship is the interpo-
lation filter, which could be used to increase the granularity
of a time-wise sparse series.

• Finally, a filter expressing a many-to-one relationship is the
averaging  filter,  which  derives  a  single  value  from  many
more.

Currently present filters range in their function from filters offering
simple  numerical  operations  and  logic  checks,  to  filters  that
calculate  minimum and maximum values,  averages,  and  rolling
means.

As far as quality checks are concerned, CEDAR provides some
elementary  functionality.  The  first  stage  of  quality  controlling
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Fig. 2. Screenshot of the GUI

consists  of  basic  comparisons  against  the  higher  and  lower
limits provided along with the metadata for each value. Missing
values  are  explicitly  tagged  as  such,  but  never  removed  from
the database. This also represents CEDAR’s general philosophy:
in  cases  where  new values  are  calculated  to  provide  a  quality-
checked replacement for their old counterparts, those remain in the
database, tagged as such. Information loss and one-way transforms
are thus discouraged.

In this particular study, no measures were developed to account
for  the  time  drifting  of  sensors.  In  some cases  the  sensors  are
automatically  or  manually  re-calibrated,  but  these  processes  are
not  reflected  in  the  datasets  provided  to  CEDAR.  Beyond  that,
overly long sessions of data-logging were avoided in this instance,
so  any  residual  effects  of  time  drifting  are  considered  to  be
negligible. The system —partly owing to the range of its desirable
flexibility— has  no  way  of  countering  false  semantics.  We are
operating under the assumption such issues this can be mitigated
on the end users’ side, by careful metadata input.

VI. Discussion and Future work

CEDAR software  platform  was  motivated  by  AiRCHIVE’s  ini-
tiative  [10],  resulting  to  a  more  mature  implementation  and  a
fresh system design. CEDAR counts as a sensor data management
system,  which  can  take  input  from any  file,  utilizing  a  sophis-
ticated  template  engine.  On  the  other  hand,  AiRCHIVE serves
real-time  data  publisher  incorporated  in  a  sensor  system.  Also,

the  document-based  Mongo  DB,  used  in  CEDAR,  facilitates  a
lot of complex operations on data, unlike AiRCHIVE’s relational
database which lacks of flexibility.

Although still under development, this system’s potential is signifi-
cant. The case study with air quality monitoring data from a smoky
Swiss railway is a solid test to validate the system’s functionality.
We aspire to evaluate it  against different case studies, involving
meteorological and hydrological time series data. We also aim to
develop more variant built-in filters, which users could apply on
data, without developing them. Finally, the backend performance
optimization is of great importance to us, so it would respond to
queries and operate robustly and time- and energy-efficiently.
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