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A B S T R A C T   

Crop yield forecasting at national level relies on predictors aggregated from smaller spatial units to larger ones 
according to harvested crop areas. Such crop areas come from land cover maps or reported statistics, both of 
which can have errors and uncertainties. Sub-national or regional crop yield forecasting minimizes the propa-
gation of these errors to some extent. In addition, regional forecasts provide added value and insights to 
stakeholders on regional differences within a country, which would otherwise compensate each other at national 
level. We propose a crop yield forecasting approach for multiple spatial levels based on regional crop yield 
forecasts from machine learning. Machine learning, with its data-driven approach, can leverage larger data sizes 
and capture nonlinear relationships between predictors and yield at regional level. We designed a generic ma-
chine learning workflow to demonstrate the benefits of regional crop yield forecasting in Europe. To evaluate the 
quality and usefulness of regional forecasts, we predicted crop yields for 35 case studies, including nine countries 
that are major producers of six crops (soft wheat, spring barley, sunflower, grain maize, sugar beets and po-
tatoes). Machine learning models at regional level had lower normalized root mean squared errors (NRMSE) and 
uncertainty than a linear trend model, with Wilcoxon p-values of 3e-7 and 2e-7 for 60 days before harvest and 
end of season respectively. Similarly, regional machine learning forecasts aggregated to national level had lower 
NRMSEs than forecasts from an operational system in 18 out of 35 cases 60 days before harvest, with a Wilcoxon 
p-value of 0.95 indicating similar performance. Our models have room for improvement, especially during 
extreme years. Nevertheless, regional crop yield forecasts from machine learning and aggregated national 
forecasts provide a consistent forecasting method across spatial levels and insights from regional differences to 
support important policy decisions.   

1. Introduction 

Crop yields vary across space because of differences in soil, climatic 
conditions and agro-management practices. Crop yield forecasts at 
different spatial levels benefit various stakeholders, including farmers 
and policymakers. Such forecasts provide added value when they are 
available at smaller units or higher spatial resolutions. Reliable forecasts 
at higher spatial resolution help explain yield variability at coarser 
levels and also provide information to adapt agricultural policies to 

more specific areas (García-León et al., 2020). 
Most large-scale crop yield forecasting systems worldwide, such as 

the MARS Crop Yield Forecasting System (MCYFS) of the European 
Commission’s Joint Research Centre (MARSWiki, 2021), the National 
Agricultural Statistics Service (NASS) of the United States Department of 
Agriculture (USDA-NASS, 2012), and Statistics Canada (Statistics Can-
ada, 2021), use different methods to forecast crop yields at various 
spatial levels. While NASS estimates crop yield at Agricultural Statistics 
Districts (ASD) and aggregates them to state level, Statistics Canada and 
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MCYFS aggregate input data from small spatial units to build forecasting 
models at ecological or provincial level and national level respectively. 
Within MCYFS, predictors such as crop model outputs, weather vari-
ables and remote sensing indicators are aggregated from one spatial 
level to the next based on crop areas derived from land cover maps and 
crop area statistics. Land cover maps for most crops (except rice) are not 
crop-specific (Bartholome and Belward, 2005; Buttner et al., 2004) and 
crop area statistics are collected using a diverse set of country-specific 
methods. Therefore, aggregation of inputs to national level accumu-
lates uncertainties and errors associated with crop masks as well as data 
collection and interpolation methods (Cerrani and López Lozano, 2017). 
Forecasting crop yields at regional level can minimize some of the ag-
gregation errors. Using data from Canada, Chipanshi et al. (2015) 
showed that predicting yields at smaller spatial units and aggregating 
them to larger ones produced better results than aggregating predictors 
and building models at larger units. 

Crop yield forecasting at smaller spatial units has its share of chal-
lenges. As we go to smaller units, we find that data quality deteriorates. 
Regional yield statistics are not curated as well as the national statistics, 
and data collection protocols and data quality vary from one country to 
another (López-Lozano et al., 2015). For systems that predict at national 
level, such as MCYFS, regional yield forecasting introduces challenges of 
scaling the analyst-driven methodology to hundreds of regions. Despite 
the challenges, the benefits of operationalizing regional yield fore-
casting could outweigh the costs. As spatial differences and uncertainties 
cancel out at national level (Porwollik et al., 2017), national forecasts 
may capture temporal yield variability well. However, they do not 
provide information about spatial variability. In particular, unfavorable 
crop conditions in some regions may be compensated by favorable 
conditions in other regions (Seguini et al., 2019). Regional forecasts 
provide useful information at the same level as well as at larger spatial 
units. Yield variability at the provincial or national level can be 
explained in terms of patterns in constituent regions. Similarly, pre-
dictors at regional levels suffer less from aggregation errors and may 
correlate better with yield values, producing more reliable prediction 
models (see Bussay et al., 2015). Another side effect of regional crop 
yield forecasting would be an increased understanding of data quality 
and the motivation to improve data collection and curation protocols. 
Furthermore, forecasting crop yields at regional level and subsequently 
aggregating regional forecasts to larger spatial units provides consis-
tency in the forecasting method at all spatial levels involved. 

Machine learning, with its data-driven approach, could benefit from 
the increased data size at regional level. Similarly, machine learning 
algorithms can model nonlinear relationships between multiple data 
sources and yields at regional level. Machine learning methods have 
been used to predict crop yield at sub-national levels outside of Europe 
(Han et al., 2020; Cai et al., 2019; Crane-Droesch, 2018; You et al., 
2017). In Europe, most of the studies on regional yield forecasting 
(Pagani et al., 2019; Ceglar et al., 2016; Gouache et al., 2015; 
López-Lozano et al., 2015; Bussay et al., 2015) do not use machine 
learning. Paudel et al. (2021) have previously shown the promise of 
regional crop yield forecasting using machine learning for five crops in 
Germany, France and the Netherlands. Machine learning can also 
address scaling issues associated with regional crop yield forecasting. In 
systems such as MCYFS, analysts build a large number of statistical 
models at national level and select models based on expertise and 
contextual information (Van der Velde and Nisini, 2019). At regional 
level, analyst-driven crop yield forecasting would require a lot more 
time and effort. Machine learning methods can use regional data to build 
one model per country and automate many steps, such as feature se-
lection and hyperparameter optimization. A generic and scalable ma-
chine learning workflow could be complementary to the analyst-driven 
crop yield forecasting: enable analysts to leverage the data-driven 
approach in most cases and apply the expertise-based approach to 
cases where machine learning does not provide reliable predictions. 

In this paper, we propose a crop yield forecasting approach for 

multiple spatial levels based on regional forecasts from machine 
learning. Our objective is to build models at regional level and evaluate 
their quality and usefulness in capturing spatial and temporal yield 
variability across regions as well as larger spatial divisions. We extended 
the machine learning workflow introduced by Paudel et al. (2021) and 
predicted crop yields at the NUTS level (Eurostat, 2016b) where yield 
and crop area statistics are available. The data for evaluation came from 
MCYFS and Eurostat, and included nine European countries that are 
major producers of six crops (soft wheat, spring barley, sunflower, grain 
maize, sugar beets, potatoes). Prediction skill of machine learning 
models was compared with a linear trend model at regional level and 
past MCYFS forecasts at national level. The uncertainty of regional 
forecasts was estimated for cases where regional differences would 
cancel out at national level. Similarly, regional forecasts for an average 
harvest and two extreme harvests were analyzed to demonstrate how 
well they capture the spatial yield variability. Our approach introduces a 
consistent and reproducible method to forecast crop yield at multiple 
spatial levels. 

The rest of the paper is structured as follows. Section 2 describes the 
data and methods, Section 3 presents the results, Section 4 discusses our 
findings and outlines areas for future work and Section 5 summarizes our 
conclusions. Appendix A and Appendix B provide details and supporting 
evidence not included in Section 2 (Materials and Methods) and Section 3 
(Results) and Section 4 (Discussion). 

2. Material and methods 

As stated in Section 1 above, our objective is to evaluate the predic-
tion skill and usefulness of crop yield forecasts from machine learning at 
regional level as well as larger spatial levels. Using 35 case studies (i.e. 
crop and country combinations) from Europe, machine learning models 
were built to produce crop yield forecasts at regional and national levels. 
To assess prediction skill, regional forecasts were compared with trend 
forecasts and national forecasts with MCYFS forecasts. To gauge use-
fulness, we looked at the uncertainty of machine learning forecasts and 
how well they captured spatial and temporal yield variability early in 
the season. Selected case studies included combinations of nine coun-
tries (Bulgaria (BG), Germany (DE), Spain (ES), France (FR), Hungary 
(HU), Italy (IT), the Netherlands (NL), Poland (PL), Romania (RO)) and 
six crops (soft wheat, spring barley, sunflower, grain maize, sugar beets, 
potatoes) (Fig. 1; Table A.1). 

2.1. Theoretical framework 

Machine learning models to forecast crop yields were built using 
regional data and compared with a linear trend model to gauge basic 
prediction skill (Fig. 2). We use a trend model to evaluate prediction skill 
because there are no official regional forecasts in Europe. The machine 
learning workflow was run using a configuration that controlled options, 
such as crop, country, forecast dekad (10-day period relative to harvest), 
crop calendar and prediction algorithms. Models trained using the 
workflow configuration of this paper were also compared with those 
from our previous work (Paudel et al., 2021; Section 2.2) to assess the 
impact of workflow updates. In addition, we evaluated the uncertainty 
of machine learning forecasts for cases that showed cancellation effects 
of regional differences. Such cases illustrate how national averages may 
look good without providing information about regional differences. 
Furthermore, we looked at the ability of machine learning models to 
capture spatial variability of crop yields for an average harvest and two 
extreme harvests. These cases highlighted the strengths and limitations 
of our machine learning models. The details of each evaluation step are 
provided in Section 2.5. 

Regional machine learning forecasts were aggregated to the national 
level using crop area weights and compared with MCYFS forecasts to 
assess their added value. Although machine learning forecasts could be 
produced for intermediate spatial levels, that step was skipped because 
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these levels do not have official forecasts. The European Commission’s 
Joint Research Centre (JRC) uses MCYFS to provide regular yield fore-
casts at national level. We wanted to find out whether machine learning 
and MCYFS performed similarly in the selected case studies or 

complemented each other. At national level, another focus was how well 
machine learning and MCYFS forecasts captured the temporal (or year- 
to-year) yield variability. 

Crop yield forecasts were made early in the season and at harvest to 

Fig. 1. (a) Selected countries and their NUTS regions. (b) Selected case studies. Case studies included nine major crop-growing countries of Europe for soft 
wheat, spring barley, sunflower, grain maize, sugar beets and potatoes. 

Fig. 2. Framework to evaluate the quality of machine learning forecasts. Regional data was used to build a linear trend model and two sets of machine learning 
models. Regional machine learning forecasts were first compared with linear trend model forecasts and later aggregated to national level to compare with MCYFS 
national forecasts. MCYFS forecasts were provided by the European Commission’s Joint Research Centre (JRC). 
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understand whether our forecasts provided useful information to sup-
port policy decisions. The workflow supports forecasts at dekadal (10- 
day) intervals. An experiment executed the workflow with the chosen 
configuration (i.e. crop, country and forecast dekad) and produced 
regional and national forecasts. For each crop and country (see Fig. 1b), 
experiments were run to make early season forecasts at 120, 90, 60 and 
30 days before harvest and end of season forecasts at harvest. In this 
paper, we primarily report forecasts 60 days before harvest because 
results from other experiments do not significantly alter our observa-
tions or conclusions. All experiments were run with the baseline 
configuration (Section 2.2) and the optimized configuration (Section 
2.3). Machine learning models were built per crop and country, i.e. data 
for all regions within a country (for the selected crop) were pooled to 
build a model for that country. The model predicted crop yields for all 
regions and years included. 

2.2. Machine learning baseline 

The machine learning baseline (Paudel et al., 2021) is a generic, 
modular and reusable workflow that combines agronomic principles of 
crop modeling with machine learning. The input data consist of crop 
model simulation outputs, weather observations, remote sensing in-
dicators and soil water holding capacity. Regional yield statistics from 
the national statistics portals (e.g. NL-CBS, 2020) serve as the ground 
truth or labels for training and evaluating machine learning models. The 
crop calendar is inferred from crop model-simulated development stages 
(Table A.2) and used to design features that capture the impact of 
various indicators during different stages of crop development. The in-
dicators selected for feature design are shown in Table A.3. On the 
machine learning side, the baseline uses grid search to find the optimal 
hyperparameters from a small set of values for four algorithms (see 
Section 2.5). 

2.3. Improvements to the machine learning workflow 

We updated the machine learning baseline from Paudel et al. (2021) 
by adding improvements to data preprocessing, feature design and 
machine learning steps. Here we briefly describe the improvements. 
Additional details about each improvement are included in Appendix A. 

In preprocessing and feature design, we made four changes. First, we 
added data cleaning to preprocessing by identifying sequences of 
duplicate or missing yield values. An entire region was removed if it had 
long sequences (length >= 5) or multiple short sequences (length 2–4). 
In the case of one short sequence, only the data points were removed. 
Second, we used a dynamic crop calendar that varied by region and year. 
In contrast, the machine learning baseline used the same crop calendar 
for the whole country. Third, we designed features for extreme condi-
tions to be less sparse. In the machine learning baseline, those features 
counted the number of days or dekads with values crossing certain 
thresholds and had many data points with zero values. We replaced 
them with the standard scores or z-scores based on the long-term 
average and standard deviation for the selected crop calendar period 
(see Table A.4). Z-score features were less sparse and also captured the 
magnitude of the extremes. Fourth, we added data to capture spatial 
differences in elevation, slope, field size, crop area and irrigated crop 
area (Table 1; Table A.5). In the baseline and the improved workflow, 
the yield trend is captured from yield values of five previous years to 
account for factors such as technological improvements. 

On the machine learning side, we added three improvements. First, 
highly correlated features (correlation > 0.9) were dropped. We also 
removed feature selection methods based on mutual information (a 
univariate method) and unioning of features selected by other methods. 
Second, we added a robust hyperparameter search based on Bayesian 
optimization (Brochu et al., 2010; Shahriari et al., 2015). Bayesian 
optimization selects a new set of hyperparameter values by fitting an 
acquisition function to the results of hyperparameter settings tried 

before. Third, we made some changes to training, validation and test 
splits. We still started with a 70%− 30% training and test split, but made 
a small change to the time-based 5-fold sliding validation used for 
feature selection and hyperparameter optimization. In the baseline, the 
training folds moved forward by one year when the validation fold 
moved. In the updated workflow, the training folds always started with 
the minimum training year to utilize all available training data (Fig. 3). 
For example, NL data was available from 1999 to 2018. The training 
data was from 1999 to 2011 and the test data from 2012 to 2018. During 
5-fold sliding validation, the first iteration used 1999–2006 for training 
and 2007 for validation, the second iteration used 1999–2007 for 
training and 2008 for validation, the third iteration used 1999–2008 for 
training and 2009 for validation, and so on. During evaluation on the 
test set (the 30% in Fig. 3), we refitted a model for every test year using 
data up to the previous year, thus utilizing additional data available for 
training. For example, a model for soft wheat (NL) was trained with data 
up to 2011 and evaluated on the test year 2012 as is. For 2013, the 
model was refitted with data up to 2012. Similarly for 2014, the model 
was refitted using data up to 2013 and so on (Fig. 4). This approach is 
comparable to how operational systems such as MCYFS work. 

We designed improvements to the machine learning baseline with 
emphasis on reusability and scalability of the approach to a large-scale 
system, such as MCYFS. In this paper, experiments for all case studies 
were run by combining the improvements described above. We call this 
the optimized configuration as opposed to the baseline configuration 
from Paudel et al. (2021). Our design includes configuration options to 
select a different combination based on expertise or validation set 
performance. 

Table 1 
Data sources summary.  

Data Indicators, Source 

WOFOST crop model 
outputs 

Water-limited dry weight biomass (kg ha− 1), water-limited 
dry weight storage organs (kg ha− 1), water-limited leaf area 
divided by surface area (m2 m− 2), development stage 
(0–200), root-zone soil moisture as % of water holding 
capacity, sum of water limited transpiration (cm). Source: 
MCYFS. See Lecerf et al. (2019). 

Meteo Maximum, minimum, average daily air temperature (℃), 
sum of daily precipitation (PREC) (mm), sum of daily 
evapotranspiration of short vegetation (ET0) (Penman- 
Monteith, Allen et al., 1998) (mm)), sum of daily global 
incoming shortwave radiation (KJ m− 2 d− 1), climate water 
balance = (PREC - ET0). Source: MCYFS. See Lecerf et al. 
(2019). 

Remote Sensing Fraction of Absorbed Photosynthetically Active Radiation 
(Smoothed) (FAPAR). 
Source: MCYFS. See Copernicus GLS (2020). 

Crop Areas Absolute crop areas (ha). Fraction of parent region’s crop 
area. Source: Eurostat (Eurostat, 2021a) and MCYFS ( 
EC-JRC, 2021a). 

Irrigated area Irrigated total area and irrigated crop-specific area. Source:  
EC-JRC (2021a). 

Elevation, slope Average and standard deviation. Source: USGS-EROS 
(2021). 

Soil Soil water holding capacity. Source: MCYFS. See Lecerf 
et al., (2019). 

Field Size Average and standard deviation. Source: Lesiv et al (2019). 
Yield Yield at regional (NUTS2 or NUTS3) and national (NUTS0) 

level. 
Regional Source: NL-CBS (2020), FR-Agreste (2020),  
DE-RegionalStatistiks (2020),Eurostat (2021a), EC-JRC 
(2021a). 
National Source:Eurostat (2021a), EC-JRC (2021a). 

MCYFS crop yield 
forecasts 

Date and forecast value. Source: MCYFS. See Van der Velde 
and Nisini (2019). 

Appendix A, Section A.4 provides additional details about the data sources. 
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2.4. Data 

Our data came from MCYFS (see EC-JRC (2021a); MARSWiki (2021); 
Appendix A.1) and Eurostat (Eurostat 2021a,b). We designed features 
from outputs of the WOFOST crop model (van Diepen et al., 1989; Supit 
et al., 1994; De Wit et al., 2019), weather observations, remote sensing 
indicators, soil, elevation, slope, crop area, irrigated crop area and 
average field sizes (see Table 1; Tables A.4, A.5). For labels or 
ground-truth data, we used yield statistics reported by the EU member 
states to Eurostat. Yield data was available at NUTS2 level for BG, NL 
and PL; and at NUTS3 level for DE, ES, FR, HU, IT and RO. Other data 
sources were aligned to the NUTS level of yield statistics to predict crop 
yields at that level. The length of the time series was determined by the 
availability of remote sensing and yield data. For most cases, we had 
data from 1999 to 2018. 

2.5. Evaluation 

We evaluated the quality and usefulness of machine learning fore-
casts using three steps (Table 2). First, we assessed the prediction skill 
and uncertainty of regional forecasts. Regional forecasts were compared 
with those of a per-region linear trend model that used a five-year 
window. Second, we analyzed the regional differences between re-
ported and predicted yields for an average harvest and two extreme 
harvests. Finally, we aggregated regional predictions to the national 
level and compared them with the past MCYFS forecasts. 

We assessed the performance of four machine learning algorithms: 
(i) Ridge Regression (Hoerl and Kennard, 1970), (ii) K-nearest Neigh-
bors (KNN) Regression (Cover and Hart, 1967; Aha et al., 1991), (iii) 
Support Vector Machines Regression (SVR) (Boser et al., 1992; Cortes 
and Vapnik, 1995), and (iv) Gradient Boosted Decision Trees (GBDT) 

Fig. 3. Training, validation and test splits. Data for each region (for the selected crop and country) was split into training and test sets using time-based ordering of 
available years. The training data was further split using 5-fold sliding validation for feature selection and hyperparameter optimization (the lower panel). The 
dashed area is not drawn to scale. 

Fig. 4. Per test year model refitting. After 5-fold sliding validation to find optimal features and hyperparameters, we fitted a model on the entire training set. For 
every test year, we refitted this model on the training years and the previous test years, thus utilizing the additional data available. The dashed areas are not drawn 
to scale. 
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Regression (see Friedman, 2001; Hastie et al., 2009). These algorithms 
represent four ways to learn the relationships between predictors and 
yield. Ridge Regression can capture linear relationships only. The other 
three algorithms can learn nonlinear relationships in different ways. 
KNN makes predictions based on similarities between instances in 
feature space. SVR can model both linear and non-linear relationships. It 
maps nonlinear data to a higher dimensional space using kernel func-
tions to capture complex relationships. GBDT is an ensemble method 
(similar to Random Forests (Breiman, 2001)) that relies on gradient 
boosting (Friedman, 2001) to grow decision trees, and is often more 
accurate than Random Forests (see Hastie et al., 2009). Overall, the four 
algorithms we selected represent four important families of machine 
learning algorithms. 

Model performance was compared using the mean absolute per-
centage error (MAPE), normalized root mean squared error (NRMSE) 
and the coefficient of determination or R2. The normalized RMSE was 
defined to be RMSE divided by the mean yield of the test set. Signifi-
cance of model performance was evaluated using the Wilcoxon signed- 
rank test, which is a standard non-parametric method to compare 
models across different datasets or case studies (Demsar, 2006; Kadra 
et al., 2021). 

2.5.1. Prediction skill and uncertainty of regional forecasts 
To understand the impact of workflow improvements, the test set 

NRMSE and MAPE of the optimized models were compared with the 
baseline. Similarly, to evaluate the prediction skill, NRMSE and MAPE of 
machine learning models were compared with a per-region linear trend 
model. Wilcoxon p-value was used to evaluate the statistical significance 
of NRMSE differences between machine learning models and the trend 
model. Because the test set contained all regions of a country for many 
test years, metrics like NRMSE and MAPE provide a high level estimate 
of uncertainty. To get more information about variance and outliers, we 
created boxplots of the prediction residuals (100% x (predicted yield - 
reported yield)/reported yield) 60 days before harvest. To emphasize 
spatial variability of yields and the interaction of regional differences, 
we identified test years in which trend prediction residuals had a low 
average (<=10%), but high standard deviation (>= 25%). Such in-
stances showed the compensating effect of yield overestimations in some 
regions canceling out yield underestimations in others. For these in-
stances, we counted the number of cases in which the machine learning 
model had a lower coefficient of variation (i.e., standard deviation / 
mean) than the trend model. A lower coefficient of variation would 
imply lower uncertainty and higher reliability. 

2.5.2. Regional differences in average and extreme years 
To assess how well machine learning forecasts capture spatial vari-

ability, we compared them with reported yields for one average harvest 
and two extreme harvests from the test set. Potatoes (2013), an average 
harvest, was selected based on the previous five-year average (see MARS 
bulletin for 2013 Vol 21 No. 10, EC-JRC (2021b)). Grain maize (2015) 
was selected because of high yield losses in Central Europe (see MARS 
bulletin for 2015 Vol 23 No. 9, EC-JRC (2021b)). Similarly, soft wheat 
(2016) was selected because of well-known yield losses in north-central 
France (see Ben-Ari et al., 2018). For these cases, reported and predicted 
yields were divided into 5 classes (very low (0–20%), low (20–40%), 
medium (40–60%), high (60–80%), very high (80–100%)) covering 
20% intervals between minimum and maximum yields for each country. 
We decided to compare yield classes instead of reported and forecasted 
values because the ranges of yield values varied across countries. 
Per-country yield classes provided similar meaning (very low, low, etc.) 
while still highlighting country-specific differences in yield values. 
Agreement between reported and predicted yield classes was quantified 
using a confusion matrix. In addition, a qualitative evaluation was 
performed on the spatial distribution of mismatches. 

2.5.3. Quality of national forecasts 
We evaluated prediction skill of machine learning and past MCYFS 

forecasts at national level by calculating the NRMSE and MAPE using 
Eurostat national yields as the ground truth. Wilcoxon p-value was used 
to evaluate the statistical significance of NRMSE differences between 
machine learning models and the MCYFS. Regional forecasts were 
aggregated to successive NUTS levels and to national level based on 
modeled crop area weights (Cerrani and López Lozano, 2017). In addi-
tion, we plotted the time series of machine learning forecasts and MCYFS 
forecasts together with reported yields to see how well they capture the 
temporal variability during test years. 

2.6. Implementation 

We used Apache Spark (Zaharia et al., 2016) for data preprocessing 
and feature design, and the scikit-learn python package (Pedregosa 
et al., 2011) for machine learning. Bayesian optimization for hyper-
parameter search was based on the scikit-optimize package (Sciki-
t-optimize Contributors, 2021). Our implementation is available 
through the pypi repository (pypi.org) as cypml pkg. Version 1.0.* 
include the machine learning baseline; version 1.1.* include the im-
provements made to the baseline as modular options that can be turned 
on or off; and version 1.2.* replace grid-search with Bayesian 

Table 2 
Summary of methods to evaluate the regional and national predictions.  

Motivation Method Expected outcomes 

1.1 Evaluate the impact of workflow 
improvements. 
1.2 Assess prediction skill of machine 
learning at regional level. 
1.3 Evaluate the overall uncertainty of 
regional forecasts. 
1.4 Evaluate uncertainty of regional 
forecasts in cases where regional 
differences cancel out. 

1.1 Compare the test set NRMSE, MAPE of the optimized models 
with the baseline. 
1.2 Compare the test set NRMSE, MAPE of machine learning 
models with the trend model. 
1.3 Box plots of prediction residuals for the optimized machine 
learning models and the trend model. 
1.4 Compare the coefficient of variation for cases with low 
average and high standard deviation of trend residuals. 

1.1 Lower errors for optimized models show added value of 
workflow improvements. Higher errors indicate improvements 
did not help and likely led to overfitting. 
1.2 Lower errors for machine learning models compared to 
trend models show prediction skill. 
1.3 Lower variance and smaller number of outliers for 
machine learning prediction residuals indicate low uncertainty. 
1.4 Lower coefficient of variation would indicate lower 
uncertainty. 

Section: 2.5.1 Section: 3.1 
2 Evaluate how well predictions capture 

spatial yield variability for average and 
extreme harvests. 

2 Divide the reported and predicted yields into 5 classes. 
Compare the yield classes in a confusion matrix. Assess the spatial 
distribution of regions with yield class mismatch. 

2 A large percentage of matching yield classes would show 
better prediction results. 

Section: 2.5.2 Section: 3.2 
3.1 Assess the prediction skill of machine 

learning at national level. 
3.2 Assess how well national forecasts 
capture temporal variability. 

3.1 Compare NRMSE and MAPE for machine learning 
predictions with MCYFS forecasts. 
3.2 Compare temporal variation of reported vs predicted yields 
for machine learning and MCYFS. 

3.1 Lower errors for machine learning models compared to 
MCYFS show the improved prediction skill. 
3.2 Similarity between reported and predicted time series 
shows reliability of predictions. 

Section: 2.5.3 Section: 3.3 

Rows 1 and 2 evaluate regional forecasts; Row 3 evaluates the aggregated national forecasts. 
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optimization to find optimal hyperparameters. 

3. Results 

We executed the same workflow for all thirty-five case studies. This 
reusability made regional crop yield forecasting scalable to all major 
crop growing countries of Europe. In the following analysis we primarily 
focus on forecasts 60 days before harvest. In terms of metrics, we report 
normalized RMSE here. MAPE and R2 scores are included in the sup-
plementary results (Appendix A.5, Appendix B). 

3.1. Prediction skill and uncertainty of regional forecasts 

In general, workflow updates improved the performance of machine 
learning. The optimized models had a lower normalized RMSE than the 
baseline in 25 out of 35 cases (~71%) for 60 days before harvest and 22 
out of 35 cases (63%) for end of season (Fig. A.4). The median NRMSEs 
for 60 days early were 17.27% (baseline) and 16.57% (optimized), and 
those for the end of season were 21.67% (baseline) and 15.88% 

(optimized). The corresponding Wilcoxon p-values for 60 days early and 
end of season were 1e-3 and 2e-7 respectively, indicating significant 
performance improvement with the optimized configuration. Both the 
optimized and baseline models showed prediction skill as early as 120 
days before harvest. The optimized machine learning models had a 
lower normalized RMSE than the trend model for all 35 cases 120 days 
before harvest (Table A.6), for all except potatoes (HU) (Fig. 5, 
Table A.6) 60 days before harvest, and for all cases at the end of season 
(Table A.6, Fig. A.4). The median NRMSE for the trend model was 
20.35% and the Wilcoxon p-values were 2e-7 (120 days early), 3e-7 (60 
days early) and 2e-7 (end of season), indicating that the optimized 
machine learning models were significantly better. The boxplots of 
prediction residuals for 60 days before harvest showed that machine 
learning prediction residuals had lower variance and fewer outliers than 
trend residuals (Fig. 6, Fig. A.6). 

For test years in which yield trend residuals had low average (<=

10%) but high standard deviation (> 25%), machine learning had a 
lower CV in 10 out 11 instances (Table 3; Table A.7). The low CV of 
machine learning provided confidence on the quality of regional 

Fig. 5. Normalized RMSE of regional forecasts 60 days before harvest. Regional forecasts from machine learning (baseline and optimized) were compared with 
the trend model. For machine learning models, we show results for the algorithm with the lowest NRMSE. 
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forecasts. In these years, national forecasts would fail to capture the 
regional differences due to compensating and averaging effects of re-
siduals. We observed this compensating effect of regional yield residuals 
for soft wheat in Spain (in addition to 2015, shown in Table 3). Soft 
wheat in Spain had very high residuals at regional level and very low 
errors at national level. The national level MAPE and NRMSE for the 
optimized machine learning model were less than 5% (see Table A.8, 
Figs. A.10, A.11). Similarly, machine learning and MCYFS forecasts at 
national level follow the reported yields quite closely (Fig. 8a). How-
ever, absolute prediction residuals for many regions were high (25–50%, 
orange) and very high (>50%, red) in 2012, 2014, 2015 and 2016 
(Fig. A.8). Such disparity between regional and national level shows the 
limitations of national averages and the added value of regional 
forecasts. 

3.2. Regional differences in average and extreme years 

Confusion matrices for potatoes (2013), grain maize (2015) and soft 
wheat (2016) showed that machine learning forecasts matched well 
with reported yields for an average harvest, but not so well for extreme 
harvests. For potatoes in 2013, considered an average harvest, predicted 
yield classes matched reported yield classes for ~71% of regions and the 
rest were mostly off by one (~28%) (Fig. 7a, Fig. A.9a). For grain maize 
in 2015, when there were significant yield losses in Central Europe, 
machine learning predicted matching yield classes for ~52% of the re-
gions and had many mismatches (off by one: ~41%; off by 2: ~7%) 
(Fig. 7b, Fig. A.9b). There were fewer mismatches in ES, where close to 
80% of grain maize area is irrigated (Eurostat, 2016a). On the other 
hand, FR had many mismatches in the north-east, where irrigation 
percentages are lower (see van der Velde et al., 2010). Finally, for soft 
wheat in 2016, machine learning predicted yield classes matched re-
ported yield classes in ~53% of the cases and again had a large number 
of mismatches (off by one: ~41%; off by 2: ~5%) (Fig. 7c, Fig. A.9c). DE, 
with its small NUTS3 regions, had the maximum number of off-by-one 
mismatches, but FR had a large number of more extreme mismatches 
(off by 2 or more). For FR, most of the mismatches were in the north 
(Fig. 7c). 

3.3. Quality of national forecasts 

Machine learning predictions aggregated to the national level were 
in general comparable to the past MCYFS forecasts. For 120 days before 
harvest, one of the machine learning configurations (baseline or opti-
mized) had a lower normalized RMSE than MCYFS for 25 out of 35 cases 
(Table A.8). The same was true for 22 out of 35 cases 60 days before 
harvest. The median NRMSEs for 60 days early were 8.81% for MCYFS, 
8.54% for the baseline and 8.41% for the optimized models. The Wil-
coxon p-values for the machine learning models 60 days early were 0.64 

Fig. 6. Boxplots of regional yield residuals 60 days before harvest. The trend model (blue) has a higher variance than machine learning (orange). For machine 
learning, we show results for the algorithm with the lowest NRMSE. Fig. A.6 shows boxplots for all other crops. 

Table 3 
Coefficient of variation for regional prediction residuals 60 days before harvest.  

Crop Country Test Year Trend CV (%) Machine learning CV 
(%) 

Soft wheat ES  2015  122.55  2.41 
Spring barley ES  2015  82.46  2.99 
Sunflower ES  2011  9.54  4.55 
Sunflower ES  2015  3.43  9.54 
Grain maize ES  2012  28.49  4.50 
Grain maize IT  2009  5.65  3.28 
Sugar beets HU  2010  14.09  4.26 
Potatoes DE  2016  13.94  6.02 
Potatoes IT  2012  4.59  4.28 
Potatoes IT  2013  22.68  5.31 
Potatoes IT  2014  10.34  5.21 

For instances where yield trend residuals had a low average but high variance, 
machine learning prediction residuals almost always had a lower coefficient of 
variation, indicating lower uncertainty. 
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and 0.95, indicating no significant differences compared to MCYFS. 
Although their overall performance was similar, machine learning and 
MCYFS had lower NRMSEs for different case studies. For example, ma-
chine learning had significantly lower NRMSEs for soft wheat (ES) (4.15 
vs 10.44), spring barley (ES) (9.83 vs 17.8) and spring barley (PL) (4.73 
vs 11.77). Similarly, MCYFS performed significantly better for sunflower 
(BG) (5.16 vs 16.18) and sunflower (RO) (13.22 vs 24.34). These ex-
amples show potential benefits of combining the expertise-driven 
approach of MCYFS with the data-driven approach of machine 
learning. At the end of season, normalized RMSE for machine learning 
were lower than MCYFS for 13 out of 35 cases (Fig. A.10). The median 

NRMSEs for end of season were 6.74% for MCYFS, 8.18% for the base-
line and 7.49% for the optimized models. The corresponding Wilcoxon 
p-values for machine learning models were 3e-4 and 1e-3, indicating 
that MCYFS had significantly better performance. Evidently, MCYFS 
forecasts improve as the season progresses. This is expected since 
MCYFS analysts update the forecasts using expertise as well as infor-
mation from additional sources such as farmer magazines and news 
reports (López-Lozano and Baruth, 2019). 

Machine learning and MCYFS captured the year-to-year variability of 
national crop yields in some cases (e.g. soft wheat (ES), soft wheat (PL), 
grain maize (HU)), but not others (e.g. soft wheat (DE), spring barley 

Fig. 7. Regional forecasts 60 days before harvest vs reported yields. (a) 2013 - an average harvest for potatoes. (b) 2015 - an extreme harvest for grain maize. (c) 
2016 - an extreme harvest for soft wheat (mainly in the north of FR). The machine learning models and yield classes are per country. Very low: up to 20% above the 
min yield; Low: 20–40%; Medium: 40–60%; High: 60–80%; Very high > 80%. 
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(NL), sunflower (FR), sugar beets (HU) (Fig. 8a,b; Fig. A.12a, b). Ma-
chine learning followed the reported yield better than MCYFS in certain 
cases, such as soft wheat (NL), spring barley (ES) and spring barley (PL). 
Similarly, MCYFS captured the variability better than ML in others, such 
as sunflower (BG), sunflower (RO), grain maize (FR) and potatoes (FR) 
(Fig. 8c,d; Fig. A.12c, d). Overall, we could see the added value of ma-
chine learning in some cases and its limitations in others. 

4. Discussion 

Crop yield forecasts at higher spatial resolutions provide additional 
information about yield variability not present in national forecasts. In 
Europe, official crop yield forecasts are available only at the national 
level (Van der Velde and Nisini, 2019; Lecerf et al., 2019). The MARS 
(Monitoring Agricultural Resources) unit of European Commission’s 
Joint Research Centre publishes agro-meteorological analyses, areas of 
concerns and the outlooks for crop yields in the MARS bulletins (van der 
Velde et al., 2019; Seguini et al., 2019). However, there are no official 
regional forecasts and very few studies have attempted to predict 
regional crop yields in Europe (e.g. Pagani et al., 2019; Bussay et al., 
2015). We attempted to fill this gap by building a generic machine 
learning workflow that scales to different crops and countries, with very 
little extra time and effort. With our workflow, systems such as MCYFS 
could use machine learning for cases where it typically performs well 

and switch to expertise-based methods for others. We found cases (for 
example, soft wheat (ES) and spring barley (PL); see Table A.8) in which 
machine learning performs significantly better than MCYFS early in the 
season. Our results indicate that large-scale regional crop yield fore-
casting is a viable goal and machine learning can help with scaling the 
task as well as producing reliable forecasts at both regional and national 
levels. Overall, access to regional forecasts would provide additional 
information to explain national and provincial yields based on constit-
uent regions and to design targeted agricultural policies. 

In this paper, we improved and optimized the machine learning 
baseline from Paudel et al. (2021), both in terms of scaling and pre-
diction skill. The optimized configuration had better normalized RMSEs 
for 60 days before harvest than the baseline according to the Wilcoxon 
signed rank test. Even then, the median NRMSEs were only marginally 
better (17.27% for baseline vs. 16.57% for optimized). Despite small 
improvements in forecast errors, our workflow updates have practical 
significance. For example, data cleaning is a standard preprocessing 
step; dynamic calendars (i.e. per-region, per year calendars) provide 
more accurate growing season information; and Bayesian optimization 
is more robust than grid-search. In this work, we used the same 
configuration options for all case studies to keep the experiment setup 
simple and generic. We expect case study-specific configuration options 
and optimizations to help when paired with contextual knowledge of, 
for example, how many models to build per country, how to group 

Fig. 8. National forecasts 60 days before harvest compared with reported yields. For machine learning, we selected the algorithm with the lowest NRMSE. (a) 
Both machine learning and MCYFS capture the temporal variability. (b) Both do not capture temporal variability. (c) Machine learning performs better than MCYFS. 
(d) MCYFS outperforms machine learning. 
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regions, and what yield trend window to use for the selected regions. 
The analyst-driven approach used by MCYFS will provide an ideal 
setting for crop and country specific choices and optimizations. Simi-
larly, we did not delve into explaining machine learning predictions 
even though the workflow produces feature importance that can provide 
some explainability. Feature importance and explainability would also 
be useful when selecting and analyzing case study-specific configura-
tions or optimizations. 

Our per-country models based on regional data have room for 
improvement in capturing spatial and temporal variability. We pooled 
data from possibly very different regions to have a large enough data 
size for machine learning. Machine learning requires a sufficiently long 
time series to split the data into training, validation and test sets. For 
example, if we were to use 30% of the data for testing and 5-fold sliding 
validation for model selection, we would need at least 15 years of data. 
Due to regional differences in data size and agro-climatic variables, 
there were cases among the 35 crop-country combinations in which 
machine learning struggled to learn meaningful relationships. Com-
parison of predicted and reported yields showed that machine learning 
forecasts captured regional differences for average harvests but not so 
well for extreme harvests. Boxplots of prediction residuals also indicated 
that machine learning forecasts were quite conservative and stayed close 
to the trend or the average (Fig. 6, A.6). We attempted to capture 
weather extremes using z-score features, but they were not always 
effective (for example, Grain Maize (2015); Fig. 7b). Similarly, our input 
data did not account for yield extremes related to diseases, pests or farm 
management practices. Nevertheless, machine learning forecasts 
showed lower uncertainty than trend forecasts and comparable perfor-
mance with MCYFS forecasts early in the season. 

From cases with low agreement between forecasted and reported 
yields, we extracted insights about data quality and potential over-
fitting. Spring barley (FR) and sunflower (FR) had near identical re-
ported yields for many data points (Fig. A.7). Although forecasts errors 
are quite low for these cases, concerns remain about reliability of the 
data. In cases where the baseline outperformed the optimized model (e. 
g. spring barley (ES), sunflower (HU), grain maize (ES)), we found lower 
validation set errors and higher test set errors. Such instances indicate 
overfitting or large differences between validation and test set distri-
butions. Our workflow does include safeguards against overfitting, such 
as 5-fold sliding validation. Because all optimizations rely on validation 
set performance to select the optimal configuration (e.g. hyper-
parameters, configuration options), they can still lead to overfitting. 

We identified five areas that could help improve regional crop yield 
forecasting going forward. First, the reported yield statistics would have 
to be more reliable. Forecasting models work with the assumption that 
reported yield statistics are objective ground-truths that are consistent 
across space and time (Van der Velde and Nisini, 2019). The collection 
and curation protocols for these statistics vary across countries 
(López-Lozano et al., 2015). Standard data collection and curation 
protocols would help improve their quality. Second, machine learning or 
statistical models can only learn relationships between predictors and 
yield that are present in the data. The input data used to create features 
does not capture all factors contributing to yield variability. For 
example, signals from meteorological variables may not always be 
spatially and temporally coherent (Lecerf et al., 2019). In addition, 
remote sensing features were not crop-specific and there were no fea-
tures to account for farm management practices. Data sources that 
capture additional factors contributing to yield variability would be 
useful, especially when they are consistent (from the same or similar 
sources) and complete (matching the time series of other data sources). 
Third, machine learning takes advantage of larger data sizes at regional 
level. However, machine learning models trained on data from widely 
different regions have to learn spatial and temporal yield variability 
simultaneously. Such models will struggle when relationships between 
predictors and yields are different for different regions. We believe 
grouping regions based on agro-climatic similarities would help and 

defer this for future work. Similarly, per region models could be built 
when regional time-series are sufficiently long. Fourth, crop yield pre-
diction at NUTS2 or NUTS3 still has to deal with errors associated with 
aggregation of predictors from smaller spatial units. Reliable crop areas 
and aggregation methods play an important role in reducing such errors. 
High-resolution remote sensing data could provide a more accurate way 
to estimate crop areas in the future. However, it will take some time to 
produce a consistent and long time series of reliable crop areas. Finally, 
we have not delved into outliers detection in this paper. A systematic 
approach to identify outliers and to impute missing or outlier data points 
would improve the data at regional level. Unsupervised machine 
learning methods (e.g. clustering) would prove helpful in outliers 
detection. 

In an ideal setting, we would have measurements, statistics and crop 
yield forecasts from farm level all the way up to national and global 
levels. There are studies that have combined remote sensing data with 
crop modeling and statistical methods to predict farm-level crop yields 
(e.g., Lobell et al., 2015; Zhao et al., 2020; Deines et al., 2021). However, 
there is not enough public data and long time series to build large-scale 
farm or field level models. In this paper, we focused on regional forecasts 
at NUTS2 or NUTS3 level. These regional forecasts were aggregated to 
national level for comparison with MCYFS forecasts. The same approach 
can be used to get forecasts for intermediate NUTS levels (e.g. NUTS2 
and NUTS1 in FR, NUTS1 in NL). Our work will motivate crop yield 
forecasting at higher spatial resolutions and the adoption of a consistent 
forecasting method across multiple spatial levels. 

5. Conclusions 

We highlighted two main limitations of national level crop yield 
forecasts that motivate the need for regional crop yield forecasting. First, 
the aggregation of predictors from small spatial units to larger ones 
accumulates errors associated with crop areas and interpolation 
methods. Second, national level yield forecasts often hide regional dif-
ferences, especially when they cancel out each other. Regional crop 
yield forecasts limit the aggregation errors and provide information 
about spatial variability. At the same time, regional forecasts can be 
aggregated to produce national forecasts. We showed that machine 
learning can take advantage of larger data sizes at regional level and 
provide a scalable way to produce regional forecasts. Based on our 
evaluation, machine learning forecasts had lower uncertainty than a 
trend model. These forecasts aligned quite well with reported yields for 
an average harvest, but less so for extreme harvests. Similarly, machine 
learning forecasts aggregated to national level compared well with past 
MCYFS forecasts, especially early in the season. Machine learning 
models did not perform significantly better than MCYFS at national 
level, but provided insights about uncertainty of regional forecasts and 
spatial variability of yields. Our work motivates the adoption of a 
consistent crop yield forecasting method across multiple spatial levels 
based on regional forecasts. Machine learning could be a tool to help 
make that transition. 

Data and software availability 

Sample data for the Netherlands are available at DOI: https://doi. 
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at: https://github.com/BigDataWUR/MLforCropYieldForecasting. The 
main branch has the baseline implementation and the mlopt branch has 
the optimized implementation. 
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