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A B S T R A C T

Context: Process-based crop models are widely used to simulate the crop growth process. However, these models 
face limitations due to the simplified process representation and challenges in parameter estimation. Machine 
learning methods, as an emerging paradigm, have shown potential in circumventing these limitations, but they 
are criticized for their black-box nature that does not necessarily encompass known crop growth mechanisms, 
and their demand for big data that may be not available in most agricultural applications.
Objective: This research aims to propose a deep learning architecture that can leverage agronomic knowledge and 
sparse observational data for crop multivariable simulation, thereby establishing a novel paradigm for crop 
growth modeling.
Methods: We propose a Deep learning Crop Growth Model (DeepCGM) with a mass-conserving architecture that 
adheres to the principles of crop growth. Two additional knowledge-guided constraints regarding crop physi
ology and model convergence are designed to train the model with sparse datasets. An observational dataset from 
a two-year rice experiment of 105 plots is used to evaluate the DeepCGM against a process-based crop model 
(ORYZA2000) and two classical deep learning models, also employing augmentation methods. To demonstrate 
the validity and generalizability of the proposed model, we also conducted a replication case study of a three- 
year rice experiment totaling 122 plots.
Results: The DeepCGM architecture produces physically plausible crop growth curves for all simulated variables, 
while the classical machine learning models may make unreasonable predictions that violate the law of mass 
conservation. Furthermore, DeepCGM simulates more accurately the observed growth process when compared 
with the traditional process-based model, with overall accuracy (weighted normalized mean square error) across 
all variables improves by 8.3 % (2019) and 16.9 % (2018).
Conclusions: Knowledge-guided deep learning can integrate the principal mechanisms of crop growth process 
with deep learning. It addresses the issue of data scarcity, and thereby facilitating data-driven crop growth 
modelling with multivariable sparse datasets.
Implications: OR SIGNIFICANCE: This study highlights the potential of knowledge-guided deep learning to 
overcome structural error due to the simplification in conventional crop models and reduce the data re
quirements of data-driven models. The capacity to autonomously identify multivariable dynamic patterns in crop 
growth from sparse data suggests a new generation of crop growth models.

1. Introduction

Process-based (PB) crop models conceptualize the interactions be
tween crops and the environment in the form of theoretical and 
empirical formula, and simulate processes involving multivariable 
temporal dynamics. They have extensively been used to estimate crop 

growth and optimize crop management (Ewert et al., 2015; Jones et al., 
2017; Keating et al., 2003). Studies over the past decades have devel
oped crop models such as WOFOST (De Wit et al., 2019; Van Diepen 
et al., 1989), SWAP (Van Dam et al., 1997), APSIM (Holzworth et al., 
2014; Keating et al., 2003) and ORYZA (Bouman, 2001) based on 
different process conceptualizations. Despite their extensive use, crop 
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models are limited by the given presentation of the underlying processes 
and the challenge of estimating parameters (Wallach et al., 2021). PB 
models could be improved by refining the process description or model 
structure (Donatelli et al., 2017; Li et al., 2017; Rosenzweig et al., 2013). 
However, such adjustments are labor-intensive and may increase the 
model complexity (Yin et al., 2021).

Machine learning methods, due to their non-dependence on mech
anistic processes and the absence of parameters defined based on as
sumptions, have the potential to circumvent the issues encountered by 
mechanistic models (Droutsas et al., 2022). As a data-driven method, its 
capability for feature extraction and capturing nonlinear dynamics 
(Kashinath et al., 2021) endows it with the power of unraveling complex 
patterns of crop growth from data. However, the application of purely 
data-driven methods for crop growth simulation is limited by data 
scarcity (Droutsas et al., 2022) and the black-box nature. These limita
tions can lead to overfitting problems, which are comparable to the 
challenges of parameter estimation in crop models, and may also result 
in conflicts with fundamental physical principles. The main challenges 
of data scarcity include: 1) data sparsity caused by the inability to 
conduct continuous monitoring (Pylianidis et al., 2022) or missing ob
servations on partial variables of interest, and 2) the limited represen
tativeness of datasets due to the inability to collect data covering all 
possible Genetics × Environment ×Management combinations. A 
straightforward solution is to augment sparse data by generating syn
thetic labels through statistical interpolation (Moon et al., 2023), or 
using crop growth models to produce synthetic data under varied inputs, 
providing a more diverse and complete training dataset (Han et al., 
2023; Jia et al., 2019; Pylianidis et al., 2024; Read et al., 2019). These 
strategies can increase data size and diversity, but may introduce new 
sources of error. For example, synthetic data generated from crop 
growth models is inherently prone to model structural errors 
(Kallenberg et al., 2023).

Although the aforementioned methods primarily enhance the 
applicability of machine learning in crop modeling by enriching training 
data, they do not reduce the black-box nature to fundamentally improve 
ML models. In contrast, conventional crop growth models can be 
effectively calibrated with small datasets and gradually refined. This 
efficiency is attributed to the detailed representation of sub-processes 
(Brisson et al., 2003; Pasley et al., 2023) and the incorporation of 
extensive prior knowledge, which simplifies the model structure while 
adhering to fundamental physical laws, such as the Law of Mass Con
servation. Given this context, integrating domain knowledge into ML 
models offers a promising solution. Embedding established principles 
not only reduces the model’s black-box nature but also mitigates over
fitting by adding knowledge-based constraints, making it a superior 
approach to data augmentation.

Knowledge-guided machine learning (KGML) represents a new 
paradigm that integrates machine learning with domain knowledge. 
This approach has been applied across various disciplines, investigating 
how domain knowledge can be incorporated into machine learning 
models, to ensure better regularization and generalization. Some 
comprehensive reviews of KGML are available (Karpatne et al., 2017; 
Von Rueden et al., 2021; Willard et al., 2022). According to (Willard 
et al., 2022), KGML can be implemented through various methods: 1) 
Knowledge-guided loss function to instruct consistency with physical 
laws (Read et al., 2019; Wang et al., 2023); 2) Knowledge-guided 
initialization, using PB model simulations for ML model pre-training 
(Jia et al., 2019; Liu et al., 2022; Read et al., 2019); 3) 
Knowledge-guided structure, designing model structure based on 
real-world variable relationships and interactions; 4) Residual modeling 
to address model structural errors through ML (Zhang et al., 2019); and 
5) Other hybrid approaches that couple PB and machine learning 
models. A notable application of KGML is demonstrated by Read et al. 
(2019), where a neural network, pre-trained on a synthetic dataset 
generated by a physical model, accurately predicted lake water tem
peratures under various conditions. In the agricultural area, Liu et al. 

(2022) developed a KGML model to estimate N2O emissions. They 
showed that the KGML model consistently outperformed both PB models 
and traditional ML models in predicting N2O fluxes, particularly in 
capturing complex temporal dynamics and emission peaks. This suggests 
that KGML models have the potential to surpass PB models in simulating 
time series states.

In agricultural studies, the predominant approach of coupling 
knowledge and data-driven methods primarily can be divided into 
mechanism-centric approach and data-centric approach. Mechanism- 
centric approach usually leverage data-driven algorithms to 1) opti
mize or estimate parameters of crop model (Guo et al., 2019; Kawakita 
et al., 2024), 2) estimate variables that can be used as crop model input 
(Droutsas et al., 2022; Fan et al., 2015). The mechanism-centric 
approach leverages crop model as a hard downstream structure to 
constrain the output of data-driven model. It improves usability and 
accuracy, but the capability of hybrid models is still limited by crop 
models. Data-centric approaches often utilize crop models as feature 
engineering tools to extract features from raw data (Everingham et al., 
2016; Feng et al., 2020; Kaneko et al., 2022; Paudel et al., 2021) or as the 
basis to calculate the residual error (Fan et al., 2015; Paudel et al., 
2021). This approach integrates the outputs of crop models as the input 
features of data-driven models, allowing data-driven models to indi
rectly leverage the crop model knowledge embedded in the features. 
Although these features provide some constraints from crop growth 
mechanisms on top of the raw data, they cannot guarantee that 
data-driven models obey all the mechanisms that have been discovered. 
The estimated crop state thus may violate crop growth principles. 
Moreover, the original goal of crop models is to describe the detailed 
crop growth process (Hornberger and Spear, 1981) and enhances the 
interpretability of ML models, while most feature engineering-based 
hybrid models focus on final yield prediction and neglect the interme
diate process of crop growth.

In addition to hybrid modelling, some studies investigate to use data- 
driven models to simulate crop or plant growth process. For example, 
Liu et al. (2024) trained a LSTM model to predict the dynamic of green 
chromatic coordinate of forest and grassland. Moon et al. (2023) built a 
transformer-based model for tomato growth simulation. Although these 
studies proved that machine learning has the ability to simulate crop 
growth, their black-box nature may challenge trust in the models and 
lead to results that do not align with physical intuition (Pearl, 2019). PB 
models are interpretable and can be improved because they describe 
intermediate crop physiological processes and the interaction, while 
conventional deep learning (DL) models often suffer from opacity in 
their end-to-end processes. Although explainable AI technologies could 
partially explain these black-box models (Moon et al., 2023; Paudel 
et al., 2023), the way forward is to design models that are inherently 
interpretable (Rudin, 2019). Some recent research has similar insight 
that incorporating more fundamental or domain knowledge can 
improve data-driven crop model robustness (Han et al., 2023; Moon 
et al., 2023).

To embed crop growth mechanisms into machine learning models, 
thereby guiding the models to learn correct-by-design crop growth 
mechanisms from multivariate sparse data, we propose a knowledge- 
guided machine learning model, Deep learning Crop Growth Model 
(DeepCGM). This model incorporates knowledge-based constraints in its 
structural design, loss function design, and input weight optimization. 
We compared DeepCGM with the PB crop growth model ORYZA2000 
and two classical DL models (LSTM and mass-conserving LSTM) in a 
two-year experiment where multivariate sparse observational data were 
available. We additionally investigate the effect of knowledge-guided 
structure and constraints on mitigating the model dependence on 
large datasets; and provides an open-access case study and dataset that 
can serve as a benchmark for future deep learning-based crop growth 
modelling studies.
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2. Data and methodology

This section first introduces the dataset collected from a two-year 
experiment. We then concisely summarize three existing methods: a 
purely knowledge-based model (ORYZA2000); a purely data-driven 
model (Long Short-Term Memory model, LSTM, and a mass- 
conserving variant of LSTM (Mass-Conserving LSTM, MC-LSTM). Sub
sequently, we present the DeepCGM model and introduce three key loss 
functions and constraints. As illustrated in Fig. 1, the DeepCGM model 
was trained using a dataset comprising time-series inputs and sparse 
observations, with constraints derived from plant physiology and gen
eral knowledge. The trained model is capable of simulating daily crop 
states during the testing or application phase. Its performance was 
evaluated by comparing it with the other three models. The code and 
dataset will be available at GitHub.

2.1. Dataset

A two-year late-season rice experiment was conducted in Binyang 
County (23◦5′52″~23◦7′23″ N, 108◦57′7″~108◦58′34″ E), Guangxi, 
China (Fig. 1). Meteorological data, including solar radiation, air tem
perature, relative humidity, atmospheric pressure, and precipitation, 
were obtained from NASA POWER (https://power.larc.nasa.gov/). The 
study included 65 observed paddy plots in 2018 and 40 plots in 2019. 
Management records, detailing seeding, transplanting, fertilization, and 
irrigation dates and amounts were acquired through the survey. The soil 
conditions across all plots were assumed to be homogeneous, as they 
were not measured during the experiment. Observational data on crop 
states, including phenology (DVS, development stage, -), leaf (WLV, kg/ 
ha), stem (WST, kg/ha), storage organ (WSO, kg/ha) biomasses, and 
above-ground biomass (WAGT, kg/ha), were collected through 
destructive sampling (the definitions of these variables refer to Appen
dix A). A total of 10 and 12 observation rounds were conducted in 2018 
and 2019, respectively. Due to the large number of samples in 2018, 
organ segmentation for rice leaves, stems, and storage organs was per
formed at selected times and plots, further contributing to data sparsity. 
The number of observations for each variable is presented in Figs. S1–2, 
which shows the lack of organ biomass observations during the early 
growth stages in 2018. More details on the dataset can be found in 
Supplementary S1. To assess whether generating daily time-series la
bels can help address the challenge of training model with sparse data, 
we applied an augmentation procedure to the sparse dataset. The details 
of this augmentation strategy are provided in Supplementary S1.

2.2. ORYZA2000, LSTM and MC-LSTM models

The ORYZA2000 model (REF) was employed as a PB model in this 
study. It intricately describes rice growth, capturing the complex in
teractions among numerous intermediate variables and environmental 
factors. The model calculates the gross daily growth rate using the 
following equation (Bouman, 2001): 

Gp = (Ad ×
30
44

− Rm + Rt)

/

Q# (1) 

where Ad is the daily rate of gross CO2 assimilation, Rm is the mainte
nance respiration costs, Rt is the amount of available stem reserves for 
growth, and Q is the assimilate requirement for biomass production.

This model function fundamentally represents carbohydrate assimi
lation through photosynthesis, with a portion consumed by maintenance 
respiration (Rm). The remaining carbohydrates contribute to biomass 
synthesis, during which a fraction is used for growth respiration (Q). The 
residual biomass is then allocated to various organs based on specific 
partitioning coefficients.

The LSTM model was served as the baseline for the purely data- 
driven approach due to its superiority in handling time-series data. 
LSTM enforces causal ordering in time series by imposing structural 
constraints, ensuring that each iterative step is influenced only by the 
state of the previous day and any newly introduced information. This 
sequential processing structure shares similarities with conventional 
process-based crop models for time-series forecasting. A key distinction 
arises in the way LSTM handles information: the processes of adding, 
forgetting, and outputting information are autonomously learned by the 
model without direct control.

MC-LSTM, a variant of the standard LSTM, is specifically designed to 
enforce mass conservation within a given system during computation. 
This is achieved by integrating the law of mass conservation directly into 
the model’s architecture. The structure of MC-LSTM enables controlled 
processes for information input, storage, and removal. Previous research 
on MC-LSTM has primarily focused on hydrological simulations (Bertels 
and Willems, 2023; Frame et al., 2023, 2022; Hoedt et al., 2021). In this 
study, we explore the application of MC-LSTM in crop growth simulation 
for comparative analysis.

The inputs and outputs of the LSTM and MC-LSTM models are the 
same as those of the DeepCGM model. After initialization, the ML model 
produces daily crop states (PAI, WLV, WST, WSO, WAGT, YIELD) based 
on daily input data, including temperature, radiation, nitrogen and DVS. 
Since sowing dates vary across plots, all data are aligned based on days 

Fig. 1. Framework for training the DeepCGM model and assessing the performance.
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after sowing (DAS).

2.3. DeepCGM model

The DeepCGM model is designed to offer inherent interpretability 
and similar capabilities as PB crop models. To achieve these objectives, 
two essential principles are required: 1) using model states with physical 
meaning rather hidden states, and 2) constructing and coupling modules 
to simulate intermediate crop physiological processes rather than 
employing an end-to-end approach. Inspired by MC-LSTM (Hoedt et al., 
2021), we employed a mass-conserving vector to store model states and 
assigned physical meaning to the states (e.g., biomass), allowing the 
hidden states to directly correspond to the crop states. We further 
aligned mass-conserving gates, which regulate the model states dy
namic, with the physiological processes of crops (e.g., respiratory con
sumption). This conceptualization enhances both the comprehension 
and manipulation of the model states and functions, enabling the 
incorporation of domain-specific knowledge in crop. For instance, it 

allows the model structure to be designed based on plant physiological 
processes. The key distinction between DeepCGM and PB models lies in 
their construction requirements. DeepCGM requires only a predefined 
structure and can automatically learn details from observations, 
whereas PB models rely on meticulously designed modules and formulas 
to explicitly describe intermediate processes, such as the allocation, 
storage, and consumption of assimilated carbon throughout the growth 
season.

In the soil-plant-atmosphere continuum, most existing crop growth 
models consider water, nitrogen, and carbon as the primary conserved 
variables. To streamline the model, this initial version of DeepCGM fo
cuses exclusively on carbon cycle, while disregarding water and nitro
gen cycles. The nitrogen process is simplified by incorporating the 
cumulative nitrogen application time series as an input. The water 
process is not involved because the experimental area received sufficient 
precipitation during the study season, ensuring that growth variability 
was not influenced by water availability. As shown in Fig. 3, a concep
tual model of DeepCGM was designed based on the ORYZA2000 model 

Fig. 2. The location and total applied nitrogen of plots in 2018 and 2019. The experiment plots (the zoom-in area in both years) were managed by us, the other plots 
were managed by local farmers.
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architecture. The dynamics of carbon state were generalized into five 
interconnected processes: light interception and carbon assimilation, 
maintenance respiration, partitioning, growth respiration, and redistri
bution. Following the this conceptual framework (Fig. 3a), we devel
oped DeepCGM, incorporating a mass-conserving vector to store the 
carbon state. Additionally, five mass-conserving gates regulate carbon 
flow among the interconnected processes (Fig. 3b). Appendix A lists the 
involved variables, including the input variables (driving factors), 
output variables (simulated crop state), intermediate variables, and gate 
variables (controlling units). The calculations in the model are divided 
into two stages, data preprocessing and iterative loop. During the pre
processing stage, raw data are transformed into auxiliary inputs (Auxt) 
and mass-conserving input (Cpotential), which are organized as follows: 

DVSt = ORYZA2000DVS(Tt
min,T

t
max)# (2) 

Auxt =
[
DVSt ,Rt ,Tt

min,T
t
max,N

t
cum,

]
# (3) 

Ct
potential = Radt⋅ORYZA2000photosynthesis(Tt

min,T
t
max)# (4) 

where variable definitions can be found in Appendix A; 
ORYZA2000DVS is the phenology module of ORYZA2000; 
ORYZA2000photosynthesis is the photosynthesis module of ORYZA2000.

In the iterative loop, each step transitions carbon from its state on the 
previous day to its state on the next day. The main components of each 
iteration are described as follows (the formulas for the six steps refer to 
Appendix B): 

1) Gate Calculation: At the beginning of each iteration, the model cal
culates gate variable values (It , MRt , Pt , GRt, Rt) based on the gate 
input (Xt). The gate input consists of the previous day’s carbon (Ct− 1) 
and the current day’s auxiliary data (Auxt).

2) Light interception and carbon assimilation：Due to the limited leaf 
area and chlorophyll content, only a portion of radiation can be 
intercepted and assimilated as carbon by the crop. Therefore, the 

Fig. 3. Schematic of the main components in DeepCGM. (a) the conceptual model. (b) the computational model. The definition of variables can refer to Appendix A. 
The meanings of other symbols in (b) are as explained in the legend. A more detailed diagram is available in Appendix C.
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interception-assimilation gate is used to estimate the proportion of 
radiation that is intercepted and assimilated as carbon. The day’s 
carbon input (Ct

in) is determined as the residual carbon after the 
potential carbon (the maximum amount of carbon that can be syn
thesized given the current photosynthetic efficiency and available 
radiation) passes through the interception-assimilation gate (It).

3) Maintenance respiration costs: The intercepted carbon is first utilized 
for respiratory consumption (Ct

M), which is determined by mainte
nance respiration gate (MRt) and carbon state from the previous day 
(Ct− 1);

4) Carbon partitioning: After accounting for maintenance respiration, 
the remaining carbon (Ct

in − Ct
M) is allocated for synthesis of different 

plant tissues through the carbon partitioning gate (Pt), resulting in 
partitioned carbon (Ct

patition).
5) Growth respiration costs: A portion (GRt) of the partitioned carbon 

allocated for tissue synthesis is consumed by growth respiration, 
while the remaining amount (Ct

grow) is incorporated into the carbon 
vector as net growth.

6) Redistribution: The carbon stored in the carbon vector (Ct− 1 + Ct
grow) 

is redistributed among vector elements, as controlled by the redis
tribution gate (RtThis facilitates carbon redistribution across 
different plant components. The redistributed carbon vector (Ct) 
represents the final output of this step, from which the crop states can 
be derived.

Fig. 4. The training process of DeepCGM model using designed fitting loss, convergence loss and input mask.
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2.4. Fitting loss and Knowledge-guided constraints

During the training process, model parameters are optimized using 
gradient backpropagation. In this study, we employed three constraints 
to guide the model training:

The first constraint is the fitting loss (Lossfitting, Fig. 4), which is a 
standard supervised loss rather than a knowledge-guided constraint. It 
enables the model to learn the mapping between input and output data 
of training data, but it cannot incorporate the prior knowledge that 
aligns with the crop physiological processes. Additionally, to ensure that 
different variables are weighted similarly during model training, we 
applied variable-specific normalizing factors and weights (Table 1). The 
final fitting loss is a weighted, normalized mean square error, which is 
defined as follows: 

Lossfitting =
∑K

k=1

∑Nk
n=1

(
ypre

k,n − yobs
k,n

)2

Nk
× wk# (5) 

where K is the number of variables (K=6 in this study), and 
k = 1,2,3,4,5,6 correspond to the six estimated variables: PAI, WLV, 
WST, WSO, WAGT, YIELD). The weight for each variable is denoted by 
wk, which is empirically assigned balance their of different state vari
ables within the loss function. Nk is the number of observations for 
variable K, while ypre

k,n and yobs
k,n are the model’s simulated and the 

observed values, respectively.
The second constraint is a knowledge-guided loss, termed ’conver

gence loss’ (Lossconvergence, illustrated in Fig. 4). This loss aims to mitigate 
overfitting caused by data sparsity. Due to their strong nonlinear fitting 
capabilities, DL models can adopt distorted curves to fit sparse data, 
often leading to unrealistic results that contradict real-world processes. 
In other words, DL model may overfit the observed data points in 
training dataset, failing to achieve convergence during daily iterations. 
To address this issue, an unsupervised loss is needed constrain the DL 
models, ensuring the model is regulated even on dates without obser
vations. The concept of convergence loss is inspired by the iterative 
calculation methods used in numerical models, such as soil water 
simulation in the Hydrus-1D model (Simunek et al., 2005). In 
Hydrus-1D, dynamic changes in soil water across different layers require 
multiple iterations to approximate real conditions. Convergence is 
reached when the differences between successive iterations fall below a 
specified threshold. Similarly, in DeepCGM, the redistribution process is 
executed twice during training. By minimizing the discrepancy between 
the results of these two iterations, the model approaches a convergent 
state, improving its stability and accuracy under sparse observational 
data conditions. The convergence loss is defined as: 

Lossconvergence =
∑T

t=1

∑N
i=1

(
Cpre

i,t − Cpré
i,t

)2

N
×

1
T

# (6) 

where T is the length of input series (number of days to simulate); N is 
the size of the carbon vector (N = 3 n); Cpre

i,t and Cpreʹ
i,t represent the car

bon vector state after the first and second redistribution, respectively.
The third constraint is a knowledge-guided constraint, termed the 

’input mask’ (Fig. 4). It is used to filter out irrelevant variables from 
input for specific subprocesses, thereby making it easier to capture data 
characteristics and mapping relationships compared to purely ML 
model. A predefined vector, set based on prior agronomic knowledge, 
determines the mask. In this study, the input mask was applied only to 
the biomass redistribution process. Building on insights from 
ORYZA2000, certain variables such as radiation, temperature, and cu
mulative fertilizer application do not directly influence carbon redis
tribution. Instead, their impact on crop growth is indirectly mediated 
through other mechanisms, such as water stress and nitrogen stress 
(Bouman et al., 2001a). Consequently, as shown in Fig. 4, the input mask 
assigns a weight of zero to Rad, Tmax, Tmin and Ncum in the redistribution 
gate, while maintaining a weight of one for the other relevant variables.

The training schematic in Fig. 4 demonstrates that the MC-LSTM and 
DeepCGM models can simultaneously incorporate all three constraints. 
In contrast, the ORYZA2000 and LSTM models, due to their structural 
limitations, can only utilize the fitting loss for their calibrating/training.

2.5. Model configuration and case setup

The ORYZA2000 model was calibrated separately using data from 
2018 and 2019. For each year, all raw sparse observations, management 
records, and weather data from all plots were used for calibration in one 
year and for testing in the other. The calibration procedure consists of 
two steps: first, three phenology-related parameters were adjusted using 
phenology observations; then, sixteen biomass-related parameters were 
calibrated based on PAI, organ biomass, and yield observations. Loss_
fitting was used as the objective function to balance the weights of 
different variables during the calibration of biomass-related parameters. 
Calibration was conducted using Particle Swarm Optimization (Kennedy 
and Eberhart, 1995), as implemented in the Pymoo package (Blank and 
Deb, 2020). The default and calibrated parameters are provided in 
Supplementary S2 and S3. The performance of the calibrated 
ORYZA2000 in both the calibration and testing years is presented in 
Appendix D.

The ADAM (Kingma and Ba, 2017) optimizer was used for parameter 
optimization in the deep learning models. The learning rates were set to 
0.005 for LSTM, and 0.1 for both MC-LSTM and DeepCGM. The hidden 
state size of LSTM model was 64. The carbon vector size of MC-LSTM 
and DeepCGM were 24 (8*3). All models were trained for 700 epochs, 
and the model that performed best on the training set was selected for 
testing (early stopping). No learning rate decay was applied during 
model training. The loss function for both MC-LSTM and DeepCGM was 
defined as: 

Loss = Lossfitting + Lossconvergence ∗ alpha# (7) 

where alpha was set to 100,000. This study employs fitting loss (function 
5) as the evaluation metric for overall accuracy, and additionally uses 
RMSE to assess the accuracy of each state: 

RMSEk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nk

n=1

(
ypre

k,n − yobs
k,n

)2

Nk

√
√
√
√

# (8) 

where k = 1,2,3,4,5,6 correspond to the six state variables (PAI, WLV, 
WST, WSO, WAGT, YIELD). Nk is the number of observations for each 
variable in the test dataset. Due to the limited number of observations in 
our dataset relative to the number of parameters in deep learning 
models, the training process was extremely sensitive to initial random 
seeds. To facilitate comparison in the radar chart, RMSE was further 
converted into a normalized index (NI). 

Table 1 
The normalization parameters and weights in fitting loss.

PAI WLV WST WSO WAGT YIELD

​ m2/ 
m2

kg/ha kg/ha kg/ha kg/ha kg/ha

Maximum value of 
observation

7.51 3830 9553 9710 17770 9226

Scaling factor used for 
normalization

8 20000 20000 20000 20000 20000

Maximum normalized 
value of observation

0.94 0.19 0.48 0.49 0.89 0.46

Weights in fitting loss 1 5 2 2 1 2
Maximum 

normalized value 
of observation 
£Weights in fitting 
loss

0.94 0.96 0.96 0.97 0.89 0.92
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NIk,j = 1 −
RMSEk,j

RMSEk,max
# (9) 

where k = 1,2,3,4,5,6 correspond to the six state variables (PAI, WLV, 
WST, WSO, WAGT, and YIELD); j denoted the model id; RMSEk,max 
represents the maximum RMSE for variable k across all models. To 
mitigate the effects of random initialization, each training and testing 
iteration was conducted 25 times using random seeds ranging from 0 to 
24. The final evaluation metrics were derived from the statistical ag
gregation of these 25 repetitions.

Several computational experiments were designed to assess the 
contribution of data availability, model design, and knowledge con
straints in simulating crop growth using DeepCGM. For data availability, 
a two-year dataset was divided so that one year was used for training 
and the other for testing, with the option to swap the training and testing 
sets to assess model performance across different years. Additionally, we 
incorporated cases using augmented and partial-removed datasets to 
investigate the impact of data availability. For models and constraints, a 
PB model (ORYZA2000) and three data-driven models (LSTM, MC-LSTM 
and DeepCGM) were trained or calibrated using various strategies to 
investigate the effects of different losses and constraints. Table 2 pre
sents seventeen designed cases and their corresponding computational 

experiments: 

(E1, Cases 1–3 and 4) Different model trained/calibrated with fitting 
loss were compared to assess the effect of model structure.
(E2, Cases 7–10) DeepCGM was trained using various strategies to 
evaluate the effects of the input mask and convergence loss.
(E3, Cases 2, 7, 10, 13 and 16–17) Conventional research employs 
augmented data to address the issue of sparse observations. In these 
cases, models trained with augmented data were compared against 
those trained with sparse data to assess the effect of constraints and 
the contribution of data augmentation in improving model 
performance.
(E4, Cases 2 and 10–12) Given that real-world datasets often lack full 
coverage of the growing season, early-season observations (first 50 
days in 2019) were removed to simulate temporally uneven data. 
Comparing models trained on complete and partially removed 
datasets enabled an investigation of the effects of data gaps.
(E5, Cases 1–10 and 13–17) All models trained on sparse dataset and 
augmented were compared to determine the optimal performance 
achievable from our dataset.

Table 2 
Model, training strategy and dataset for different cases.
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3. Results

The results section is divided into two main parts. The first part ex
amines model training strategies, highlighting the performance of 
different cases during training. The second part focuses on model per
formance, presenting the simulation results of DeepCGM on the test set 
and comparing its accuracy with other models. To demonstrate the 
generalization capacity of the proposed approach we offer a replication 
study in Supplementary S4.

3.1. Training model with different structures, strategies, and datasets

3.1.1. Model performance with different structures
The simulations depicted in Fig. 5 (a1-f3), which compare the results 

from ORYZA2000 (case 1), LSTM (case 2), MC-LSTM (case 3), and 
DeepCGM (case 7) trained with fitting loss, demonstrate the effect of 
model structure (E1). Specifically, the result curves generated by the 
calibrated ORYZA2000 model closely aligned with observed data and 
effectively captured the actual crop growth process. For example, the 
WAGT initially exhibited slow growth, followed by a gradual accelera
tion, and eventually slowed down, stabilizing without further growth 
(Fig. 5 e1). This pattern closely resembles a logistic growth curve, which 
is commonly used to describe crop growth dynamics (Yin, 2003). Given 
the absence of continuous real-world growth observations, the 
ORYZA2000 simulations, which reflect typical rice growth patterns, 
serve as a valuable reference for comparison with other models.

Compared to ORYZA2000, the LSTM model occasionally approxi
mates the observed labels well but produces growth curves that deviate 
from typical crop growth patterns (Fig. 5 a1-f1). For WLV, WST, WSO, 
and PAI (Fig. 5 a1-d1), these deviations were characterized by: (1) 
noticeable fluctuations in the early development stages across all vari
ables; (2) reduced fluctuations in the middle and later development 
stages, with simulation results inconsistent with observation or 
ORYZA2000 outcomes. The primary cause of these early-stage fluctua
tions was the absence of training data during the early development 
stages. In the middle and later stages, the intrinsic long-term memory 
capabilities of the LSTM model contributed to more stable simulations 
(Fig. 5 a1-d1). However, minor fluctuations persisted, likely due to the 
sparsity and noise in the training data, which prevented the model from 
learning universal growth patterns and led to inaccuracies during data- 
scarce periods. For WAGT, simulations in early development stage were 
more accurate (Fig. 5 e1), possibly due to more early development stage 
WAGT observations in the training set (Figs. S1–2). Regarding the 
YIELD, the LSTM model’s predictions completely contradicted the trend 
reflected by ORYZA2000 during the early development stage (Fig. 5 f1). 
This issue arose because yield observations were available only twice 
throughout the entire growth period—once at planting (initial value) 
and once at harvest (final value). As a result, the LSTM model struggled 
to effectively reproduce the temporal evolution of YIELD.

The simulation results of MC-LSTM and DeepCGM, as shown in Fig. 5
(a2-f2) and (a3-f3), exhibited better consistency with ORYZA2000 
compared to the LSTM model particularly for WAGT (Fig. 5 e2 and e3). 
Notably, both MC-LSTM and DeepCGM showed less fluctuation in early- 
stage simulations than LSTM. Furthermore, the WAGT simulated by 
DeepCGM demonstrated a slower initial growth followed by a gradual 
acceleration, aligning more closely with ORYZA2000 and real crop 
growth patterns. This improvement can be attributed to the structure of 
DeepCGM, which was designed based on ORYZA2000, ensuring better 
alignment with known physiological processes. However, for organ 
biomass (WLV, WST, and WSO) and their derived states (PAI and 
YIELD), while the trends were similar to ORYZA2000, both models still 
exhibited significant fluctuations (Fig. 5 a2-d2 and f2). This issue arises 
from the mass-conserving structure, which ensures the temporal sta
bility of total biomass by regulating growth and consumption but does 
not impose restrictions on redistribution among individual organs. As a 
result, fluctuations occur in the biomass of individual organs. Despite 

fluctuations in YIELD, its simulated values in the early and middle 
development stages for both MC-LSTM and DeepCGM remained close to 
zero, which is consistent with real crop growth. This behavior can be 
attributed to the model structure, which was designed based on biomass- 
related variable relationships (as formulas A12 to A17). These re
lationships enable DeepCGM to infer YIELD from WSO rather than 
simply fitting to sparse YIELD observations.

Consequently, the following summaries were drawn E1 cases: (1) 
ORYZA2000 demonstrated the closest match to observations among all 
models, indicating that relying solely on a mass conservation structure is 
insufficient for a data-driven model to outperform conventional crop 
models; (2) WAGT simulated by MC-LSTM and DeepCGM aligned more 
closely with real crop growth processes compared to the LSTM model, 
demonstrating that the mass conservation principle enables models to 
capture aspects of crop growth; (3) WAGT simulated by DeepCGM was 
superior to that of MC-LSTM, suggesting that structures designed based 
on plant physiological knowledge can improve model performance; (4) 
YIELD simulations from MC-LSTM and DeepCGM better reflected real 
crop growth patterns, indicating that relationship structure constraints 
can help guide model learning from sparse observations.

3.1.2. DeepCGM model trained with different strategies
To further reduce fluctuations in the temporal simulation results of 

organs biomass, we introduced input mask and convergence loss to 
constrain calculations within the redistribution process, as illustrated in 
the E2 cases. The application of input mask (Fig. 5 a4-f4) and conver
gence loss (Fig. 5 a5-f5) significantly reduced fluctuations. This 
improvement can be attributed to: (1) input mask selectively filtering 
out variables irrelevant to the redistribution process; (2) convergence 
loss establishing convergence criteria, effectively preventing under- 
allocation and over-allocation during, which caused severe fluctua
tions (Fig. 5 a1-f1). Since input mask and convergence loss regulate the 
redistribution from different perspectives, their combined application 
resulted in an additive effect, further smoothing all simulation curves 
(Fig. 5 a6-f6) and aligning them closely with the growth trends simu
lated by ORYZA2000. Moreover, as shown in Fig. 5 a5-f5, the fluctuation 
was less pronounced compared to Fig. 5 a4-f4, suggesting that conver
gence loss might be more effective than input mask in reducing fluctu
ations. In conclusion, the E2 results demonstrated that by constraining 
the redistribution process, convergence loss and input mask effectively 
improved the simulation performance of organ biomass.

3.1.3. Training deep learning models on augmented dataset
To compare with traditional methods for handling data sparsity, we 

trained LSTM and DeepCGM models using both augmented dataset and a 
raw sparse dataset. Compared to models trained on sparse data, those 
trained on the augmented dataset produced results that were more 
closely aligned with the ORYZA2000 model (e.g., Fig. 6 a4), specifically: 
(1) the early-stage growth rates of all variables showed better alignment 
(e.g., Fig. 6 a4) compared to case 10 (Fig. 6 a2); (2) the simulated PAI, 
WLV, WST, WSO, and YIELD were noticeably smoother (Figs. S1–4 a4- 
f4, a5-f5) compared to those in case 2 and case 7 (Figs. S1–4 a1-f1, 
a2-f2).

The abovementioned improvement can be attributed to data 
augmentation, which fills in the gaps in sparse data. However, using 
ORYZA2000 for augmentation introduces its inherent structural errors 
into the augmented data, leading to similar errors in models trained on 
this data. For example, WLV simulated by ORYZA2000 always remained 
constant in the later stages, whereas the deep learning models trained on 
this augmented data also exhibited similar constant trends, deviating 
from the observed data, where WLV gradually declined (Fig. 6 a3 and 
a4). Additionally, using augmented data does not guarantee adherence 
to physiological processes, as the fitting loss merely directs the model to 
fit observations rather than ensuring it follows physiological constraints. 
For example, in the LSTM model trained on augmented data, YIELD 
exhibited minor fluctuations during the early and mid-growth stages 
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Fig. 5. Crop growth simulation results ORYZA2000, LSTM, MC-LSTM, and DeepCGM. Each model was trained or calibrated on the 2018 data using a random seed of 
0, and the displayed results were the testing outcomes for a randomly selected plot from 2019.
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Fig. 6. Crop growth simulated by LSTM and DeepCGM on sparse and augmented dataset (all the models were trained/calibrated on data from 2018 with random 
seed of 0). This figure only displays WLV and YIELD, and detailed results refer to Figs. S1–4.

Fig. 7. Result examples of model trained on the 2018 dataset, 2019 dataset, and the 2019 dataset with partial observation removed. Each model was trained with the 
random seed of 1, and the displayed results are the testing outcomes for a random selected plot from both test datasets. This figure only displays WSO and WAGT, and 
detailed results refer to Figs. S1–5.
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(Fig. 6 b3), even though YIELD should consistently remain zero at that 
stage, as rice filling had not yet begun. After incorporating input mask 
and convergence loss, fluctuations in the simulated YIELD were elimi
nated, regardless of the use of augmented data (Fig. 6 b2 and b4). 
Therefore, the E3 results indicate that while data augmentation helps 
compensate for sparse data by providing additional labels, it also in
troduces structural errors into the model. Furthermore, relying solely on 
data without integrating fundamental constraints cannot ensure that the 
model adheres to physiological processes.

3.1.4. Training model with partial observation removed dataset
This section presents the results from E4, highlighting the impact of 

missing observational data on model performance. We trained LSTM 

and DeepCGM models using three datasets: the 2018 dataset, the 2019 
dataset, and the 2019 dataset with early-stage observations removed. 
For the LSTM model, early-stage rice growth simulations in Result 2 
(Fig. 7 a2 and b2) showed significantly less fluctuation than in Result 1 
(Fig. 7 a1 and b1), which can be attributed to more early observations in 
the 2019 dataset (Figs. S1–2). Therefore, removing early-stage obser
vations from the 2019 training set resulted in worse early-stage simu
lations in Result 3 (Fig. 7 a3 and b3), producing fluctuations similar to 
those observed in Result 1. For the DeepCGM model, simulations 
remained smooth and accurate across all results, without the fluctua
tions observed in LSTM simulations (e.g., Fig. 7 a2 and b2). Although 
removing early-stage observations led to a slightly higher biomass 
growth rate compared to both observed data and ORYZA2000-predicted 

Fig. 8. Fitting loss of training and test set of the LSTM and DeepCGM models trained with different strategies and dataset over the training process (random seed = 0, 
and the results from other seeds refer to Figs. S1–6).
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rates, the deterioration was negligible compared to the LSTM model 
(Fig. 7 b3 and Figs. S1–5 a3-c3).

These results demonstrate that a lack of training data indeed 
weakens the model’s simulation ability. However, compared to the 
unconstrained LSTM model, the performance decline of DeepCGM was 
less pronounced, even after some observations were removed. This 
suggests that the constraints applied in DeepCGM, including structure, 
input mask, and convergence loss, help mitigate the negative impact of 
data scarcity and partially compensate for performance deterioration.

3.1.5. Robustness during training process
This section presents the loss curves of training and test set losses 

over epochs, with the aim of discussing the impact of train strategies 
(E3) and comparing the robustness of different models to random 
initialization.

When the models were trained on sparse datasets with fitting loss, 
the LSTM model exhibited poor stability, with significant fluctuations in 
its loss curve (Fig. 8a), whereas the DeepCGM model showed a more 
stable curve (Fig. 8c). Similar patterns were observed in the loss curves 
generated from other random seeds (Figs. S1–6 a and c). Additionally, 
the decreasing loss on the training set, alongside the increasing loss on 
the test set indicated overfitting (Fig. 8a and c). The introduction of 
knowledge-guided constraints significantly reduced overfitting 
(Fig. 8e), and smoothed the loss curve, demonstrating the effectiveness 
of these constraints in improving model training and mitigating over
fitting. When the models were trained on augmented datasets, all 
training processes became more stable (Fig. 8b, d, and f): (1) fitting loss 
on the training set did not continuously decrease; (2) fitting loss on the 
test set showed less fluctuations. Moreover, the loss curves of all models 
trained on augmented datasets were similar (Fig. 8b, d, and f), indicating 
that when observations are abundant, model training relies more on the 
dataset rather than the model architecture or structure. Among all the 
results in Fig. 8b, d, f and e, the test set loss of DeepCGM trained on a 
sparse dataset with all constraints (Fig. 8e) was lower than that of other 
models. This demonstrates that although augmentation methods can 
improve training stability, it does not necessarily enhance model per
formance, as augmentation may introduce structural errors into the 
data.

Figs. S1–6 presents the fitting losses from models trained using 25 
different random seeds. For models trained on sparse datasets using only 
fitting loss, both LSTM (Figs. S1–6 a) and DeepCGM (Figs. S1–6c) 
exhibited substantial variability across the 25 training processes, indi
cating that parameter initialization had a significant impact on model 
performance. In contrast, DeepCGM trained with all constraints showed 
minimal variation across 25 training runs. For models trained on 
augmented datasets (Figs. S1–6 b, d, and f), each had slight differences 
among their 25 loss curves. These results suggest that both knowledge- 
guided constraints and data augmentation can effectively reduce the 
impact of parameter initialization on the training process, leading to 
more stable model performance.

3.2. Model performance comparison

3.2.1. Simulating crop growth under different nitrogen levels using 
DeepCGM

The temporal simulation of DeepCGM for three selected plots with 
varying fertilization levels were compared with those of ORYZA2000 
(Fig. 9 and Figs. S1–7). Although the ORYZA2000 model successfully 
captured the overall growth trends for most variables, noticeable dis
crepancies remained between its simulations and the observations. For 
example, the simulated WLV remained constant during the middle and 
later growth stages, whereas the observed values showed a declining 
trend (Fig. 9 c1-c3). Similarly, WST experienced a substantial decline in 
the later growth stages, while the ORYZA2000 simulations showed only 
a slight decrease (Fig. 9 d1-d3). These deviations may be attributed to 
potential structural errors in the ORYZA2000 model.

For DeepCGM, the overall trend of the simulated variables was 
reasonable and well aligned with both ORYZA2000 and observations. In 
some cases, DeepCGM even outperformed ORYZA2000, as demon
strated by the following: (1) In zero and moderate fertilization cases, the 
peak PAI occurred at similar dates in both models (Fig. 9 b1 and b2, and 
Figs. S1–7 b4 and b5). In high fertilization cases, the peak PAI simulated 
by DeepCGM occurred later than in ORYZA2000, aligning closer to the 
observations (Fig. 9 b3 and Figs. S1–7 b6); (2) WLV decreased in the 
middle and later stages (e.g., Fig. 9 c1-c3, although c1 increased again 
after decreasing), while ORYZA2000 maintained a constant WLV, 
deviating from observations; (3) WST decreased in the later stages, with 
a more pronounced decline at higher fertilization levels (e.g., Fig. 9 d1- 
d3 and Figs. S1–7 d4-d5). This was an improvement over ORYZA2000, 
as the WST decline in ORYZA2000 did not vary with fertilization levels, 
whereas observations showed a greater decline in WST under higher 
fertilization (e.g., Fig. 9 d1-d3). However, in some cases, DeepCGM 
deviated from actual crop processes and performed worse than 
ORYZA2000: (1) PAI, WLV, WST, and WAGT showed higher growth 
rates than both ORYZA2000 and observations, particularly in the 2018- 
training-2019-testing case (Fig. 9 b1-f3); (2) In 2018, WLV in the low- 
fertilization plot showed an unexpected increase in the later stages 
(Fig. 9 c1); (3) In 2018, YIELD under moderate and high fertilization 
showed a decline in the later stages (Fig. 9 g2 and g3), which should not 
occur in reality.

Furthermore, it was observed that the crop growth simulated by 
DeepCGM exhibited a positive correlation with the amount of fertiliza
tion. Specifically, higher fertilizer levels led to increased biomass pro
duction (e.g., Fig. 9 f1-f3), which aligns with real crop growth patterns. 
However, compared to ORYZA2000, DeepCGM demonstrated lower 
sensitivity to fertilization. For example, the variation in WAGT in 
response to fertilization changes was less pronounced in DeepCGM 
(Fig. 9 f1-f3). In summary, the DeepCGM model effectively simulated 
crop growth patterns, producing results that were comparable to or even 
better than those of the knowledge-based ORYZA2000 model.

Due to the impact of random initialization, the results across 25 
random seeds showed some variability. To assess model performance 
more consistently, we divided the growth period into four intervals and 
calculated the average RMSE along with the corresponding standard 
deviation. During the emergence to panicle initiation stage, the RMSE of 
DeepCGM was higher than that of ORYZA2000 (Fig. 10). In the subse
quent development stages, DeepCGM outperformed ORYZA2000 in 
terms of PAI, WLV, WST, and WSO, though it was slightly inferior for 
WAGT (Fig. 10). This discrepancy may be because the WAGT process is 
simpler compared to other variables. As a result, ORYZA2000 is suffi
cient to capture WAGT dynamics but struggles with more complex 
processes related to other biomass components. Additionally, in 
DeepCGM, the need to balance components within Lossfitting may have 
led to improved accuracy in other variables at the cost of slight deteri
oration after flowering. For YIELD, since observations were only avail
able after the maturity stage, the results presented correspond to harvest 
YIELD. Notably, the YIELD RMSE for DeepCGM was significantly lower 
than that of ORYZA2000 (Fig. 10). In summary, these results suggest 
that DeepCGM outperformed ORYZA2000 during most of the growth 
period. However, the larger simulation errors in the early development 
stages may be due to the lack of early-stage observations for training. 
Introducing additional knowledge constraints during the early growth 
stages may further enhance DeepCGM’s performance.

3.2.2. Accuracy of different models
The overall accuracy of models and their simulation capabilities for 

six variables were evaluated using fitting loss (Fig. 11) and normalized 
index (Fig. 12) to identify the best-performing model (E5). The source 
data for both figures were from Appendix F. The performance of 
ORYZA2000 in these figures represents the optimal performance 
achievable by conventional crop models, serving as a benchmark for 
comparison.
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Fig. 9. Crop growth processes simulated by DeepCGM (random seed = 1) and ORYZA2000 for plots with varying fertilization levels.
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As demonstrated on Fig. 11 a, when models were trained on sparse 
datasets using only fitting loss, their performance was consistently lower 
than that of the ORYZA2000 model. This suggests that deep learning 
models trained on small datasets, without additional constraints, could 
not outperform PB models. However, the accuracy of both MC-LSTM and 
DeepCGM improved significantly after incorporating input mask or 
convergence loss, with DeepCGM trained with convergence loss 

achieving superior performance over ORYZA2000 (Fig. 11 a). When 
both input mask and convergence loss were applied simultaneously, MC- 
LSTM and DeepCGM outperformed ORYZA2000 in both years, with 
DeepCGM demonstrating slightly better performance than MC-LSTM 
(Fig. 11 a). Compared to ORYZA2000, the overall accuracy of 
DeepCGM improves by 8.3 % (2019) and 16.9 % (2018). These results 
indicated that both input mask and convergence loss were beneficial for 

Fig. 10. The average RMSE and the corresponding standard deviation of DeepCGM and RMSE of ORYZA2000 at different growth stages.

Fig. 11. Overall accuracy of different models trained with different strategies on sparse and augmented datasets. The model corresponding to the red x-axis label 
demotes the optimal model of this study.
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the model, with convergence loss being more effective. Results also 
demonstrated the structural superiority of DeepCGM over MC-LSTM. 
Furthermore, these results suggest the potential to outperform conven
tional PB crop models when training machine learning models with 
knowledge-guided constraints on sparse data.

When the models trained on augmented data, the overall accuracy of 
all models matched or outperformed that of the ORYZA2000 (Fig. 11 b). 
This improvement occurred because the training data were augmented 
based on ORYZA2000 simulations, allowing the models to simulta
neously align with both the prior knowledge embedded in ORYZA2000 
and the actual processes observed in the data. However, the pattern of 
the augmented data was influenced by ORYZA2000, which restricted 
the model’s ability to fully learn from observations. This limitation 
resulted in lower accuracy compared to the knowledge-guided 
DeepCGM model. These results suggest that data augmentation re
mains an effective strategy for training models on small datasets, but it is 
less effective than the knowledge-guided approach proposed in this 
study.

The accuracy of six state variables is presented in Fig. 12. For the 
DeepCGM model trained with input mask and convergence loss, signif
icant improvements over ORYZA2000 were observed in PAI, WLV, WSO, 
and YIELD, while the WAGT simulation accuracy for all models was 
lower than that of ORYZA2000. Additionally, the number of state var
iables in each model that outperformed ORYZA2000 was counted. As 
shown in Appendix F, among the twelve RMSE values (six variables ×
two years), eight variables in Cases 6, 10, and 16 demonstrated superior 
performance compared to ORYZA2000. Among these, Case 10 had the 
highest number (three) of best-performing variables. This confirms that, 
for simulating individual state variables, the knowledge-guided 
DeepCGM model remains the most effective. Appendix E provides 
scatter plots comparing the best model simulations with observed 
values, allowing for a visual comparison with the ORYZA2000 model’s 
scatter plots in Appendix D.

Based on the overall performance metrics and individual state vari
able accuracy, DeepCGM with convergence loss and input mask should 
be considered the best model (E5). It achieved the lowest fitting loss and 
successfully simulated the greatest number of state variables with ac
curacy surpassing that of ORYZA2000.

3.3. Replication study

To demonstrate the validity and generalizability of the proposed 
model, we also conducted a replication case study of a three-year rice 
experiment totaling 122 plots (more details refer to Supplementary S4). 
The results demonstrated that DeepCGM can achieve better accuracy in 
most variables than classical ML models and ORYZA2000 model. The 
results also showed that DeepCGM is capable to infer the unobserved 
processes under the knowledge constraints.

4. Discussion

4.1. The complementarity of constraints and data

Training a deep learning model on a limited dataset is a significant 
challenge. Owing to the scarcity of training data, the learned complex 
relationships might actually arise from sampling noise (Srivastava et al., 
2014). Various regularization techniques and constraints have proven 
effective in mitigating data scarcity issues in fields such as image 
recognition and natural language processing (Sari et al., 2019; Srivas
tava et al., 2014; Vidaurre et al., 2013). In natural science research, the 
distinct causal relationships and adherence to physical principles in 
these fields allow for the incorporation of domain-specific constraints 
(Han et al., 2023; Jia et al., 2019; Liu et al., 2022). However, applying 
constraints to a model should be based on a well-founded rationale 
rather than being arbitrary (Liu et al., 2022). In this study, the sparse 
observational dataset failed to provide effective constraints across the 
entire growth period, leading to poor model performance during time 
intervals without observations. Therefore, the knowledge of crop growth 
process was employed to constrain the model in terms of structure 
design, input selection, and loss function design. The utilization of 
constraints to mitigate data sparsity issue is primarily considered from 
the following perspectives:

First, given that crop growth is a temporal sequence, adjacent time 
steps are interdependent and mutually constraining. Therefore, it is 
essential to impose constraints on the temporal dimension to ensure that 
the biomass of each organ does not increase or decrease unreasonably (e. 
g., Fig. 5 b1-e1). The mass conservation structure of MC-LSTM effec
tively fulfills this requirement. Furthermore, considering crop 

Fig. 12. The normalized index of different models trained by different strategies on sparse dataset. More detailed results of cases in E5 refer to Appendix F.
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physiological processes, we designed the DeepCGM structure to better 
align with crop biomass dynamics. Progressing from LSTM to MC-LSTM, 
and further to DeepCGM, the model exhibits an incremental integration 
of temporal dependencies within its structural design. As a result, its 
ability to capture real-world processes improves as more domain 
knowledge is integrated, particularly when trained on sparse data (Fig. 5
a1-f1, a2-f2 and a3-f3).

Second, the performance of the simple DeepCGM architecture 
remained inferior compared to ORYZA2000. Analyzing the simulated 
results revealed that while the existing structural constraints effectively 
ensured a smooth temporal simulation of total above-ground biomass, 
the biomass redistribution process required additional constraints for 
improved accuracy. To address this, we introduced convergence loss to 
enhance model stability. Additionally, an input mask was applied to the 
redistribution gate, guided by crop physiological knowledge. This 
approach excluded inputs unrelated to redistribution, reducing noise 
interference and further improving the model’s performance.

The introduction of constraints can enforce the simulation results to 
adhere to physical laws, preventing model parameters from producing 
erroneous outputs. This approach helps the model learn crop growth 
patterns more effectively from data. However, the model’s ability to 
learn correct patterns still depends on sufficient data support, as the 
quality of the output is ultimately determined by the quality of the 
input—otherwise, it results in a “garbage in, garbage out” scenario. For 
example, although MC-LSTM, aided by mass conservation and conver
gence loss constraints, successfully reduces fluctuations, it fails to cap
ture the pattern of slow biomass accumulation during the early 
development stage (Fig. 5 a2-f2). If sufficient observational data were 
available, the model could learn this pattern directly from the data, as 
evidenced by models trained with augmented data (Fig. 6). Conversely, 
an abundance of data can significantly enhance model capability, 
particularly in settings such as controlled environments or high- 
throughput phenotyping platforms. However, given the complexity of 
real-world agricultural systems, which are influenced by numerous 
factors, solely relying on data to accurately reproduce crop growth 
processes is impractical. Moreover, even with large datasets, there is no 
guarantee that the model will strictly adhere to physical laws. For 
instance, fluctuations in organ biomass can still occur when training the 
model on augmented datasets (e.g., Fig. 6 a3 and b3). Therefore, the 
optimal strategy involves training models under knowledge-guided 
constraints while leveraging as much data as possible. This approach 
balances data-driven learning with physical realism, leading to more 
robust and accurate crop growth simulations.

4.2. Lessons learned for DeepCGM development

There have been numerous PB crop models, and several review ar
ticles have provided guidance on building and improving conventional 
crop models (Bouman, 2001; Pasley et al., 2023; Yin et al., 2021). 
However, apart from a recently published model based on the attention 
mechanism (Moon et al., 2023) and our previous research (Han et al., 
2023), there are few machine learning-based crop growth models 
available for reference. Through this research, we have gained several 
key insights, particularly by comparing our model with conventional 
crop models and study of Moon et al. (2023).

Firstly, it is advisable to select variables for information memory 
between adjacent time steps in the following priority order: vector 
representations with physical meaning (e.g., the carbon vector in this 
study), variables with physical meaning (e.g., leaf biomass), and hidden 
states. In natural language processing and computer vision, features are 
often abstract and difficult to represent. A common way is to use hidden 
states as representations (Pasley et al., 2023). However, in the 
Soil-Plant-Atmosphere Continuum (SPAC) systems, system states can be 
described using physically meaningful variables, such as biomass or soil 
moisture content, which store the majority of system information. 
Although these physically meaningful variables may not fully capture all 

system details, they offer two major advantages over hidden states:(1) 
These variables help the model discard insignificant or low-value in
formation, allowing it to focus on relevant data (e.g., ignoring the pre
vious day’s radiation level while retaining the biomass value at the end 
of the day); (2) They allow for direct adjustments within the model, such 
as applying redistribution loss in this study. In up-to-date practices, both 
PB model (e.g., ORYZA2000) and the attention-based model (Moon 
et al., 2023) utilize historical crop states as the system memory, rein
forcing the effectiveness of this approach. However, using predefined 
physical variables limits the representational capacity of deep learning 
models and hinders further improvement. Because the number of such 
variables is inherently limited, increasing model capacity requires 
additional effort to define new variables, often necessitating extra as
sumptions. For example, ORYZA2000 uses both stem biomass and stem 
reserve biomass, whereas WOFOST only uses stem biomass (Bouman, 
2001; Van Diepen et al., 1989). This two-variable approach allows 
ORYZA2000 to better model stem dynamics (Bouman, 2001), but it 
requires more experiments and equations to describe stem reserve 
biomass interactions. If these interactions are not properly defined, the 
additional variable may not contribute to model accuracy. A more 
fundamental and comprehensive approach is to use vector representa
tions with physical meaning for information storage. These vectors do 
not correspond to specific crop state variables but can be used to derive 
them. This method retains the advantages of physically meaningful 
variables (e.g. the mass-conserving structure and the input mask) while 
eliminating the need to explicitly define equations, as deep learning 
models can autonomously learn these relationships. However, this 
perspective does not imply eliminating hidden states entirely, as some 
system states cannot yet be described by physical vectors due to an 
incomplete understanding of their mechanisms. For example, spikelet 
sterility due to extreme temperature cannot yet be fully defined 
(Bouman, 2001). Removing hidden states completely would limit the 
model’s ability to learn unknown mechanisms from large datasets. 
Therefore, we recommend empirically evaluating hidden states in sce
narios where data availability is limited.

Secondly, it is beneficial to modularize the model rather than 
amalgamating the computations of all processes. While deep learning 
parameters are often difficult to interpret, model structure can still be 
designed based on crop physiological knowledge. Structural constraints 
serve as an effective regularization technique, significantly enhancing 
model performance. In this study, the knowledge-based design of 
DeepCGM led to the highest accuracy among tested models. Similar 
benefits of structural design have been observed in other studies, such as 
those estimating N2O emissions (Liu et al., 2022). Even deep learning 
models benefit from good modeling practices, as a modular architecture 
enables independent control and management of different subprocesses. 
For example, implementing an input mask allowed precise regulation of 
inputs to the redistribution module. This modular philosophy is also 
widely used in conventional crop models, where separating sub
processes helps minimize uncertainty in each (Pasley et al., 2023).

Lastly, the model should be conceptualized based on existing 
knowledge and given objectives. Before construction, a model should be 
conceptualized by selecting the core architecture (e.g., Recurrent Neural 
Network or Transformer), defining input-output configurations, identi
fying sub-processes and sub-modules, and considering model simplifi
cations based on research objectives. For instance, this study utilized a 
Recurrent Neural Network based architecture to capture the strong 
temporal causality in crop growth. In contrast, Moon et al. (2023) used a 
Transformer model, which ignores the sequential dependency of crop 
growth states. When selecting input variables, only the necessary 
driving variables should be included based on the research objectives, 
rather than incorporating all available variables. For example, the 
objective of this study is to simulate carbon cycle based on mass con
servation, thus excluding the simulation of water and nitrogen cycles. 
Consequently, temperature, radiation, cumulative nitrogen application, 
and DVS (simulated using ORYZA2000) were selected as driving factors, 
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while water-related driving factors (such as precipitation, wind speed, 
and saturated vapor pressure) were excluded. Careful input selection 
also helps reduce redundant inputs, thereby minimizing overfitting 
risks, especially when training on sparse datasets (Moon et al., 2023). 
Thus, comprehensive conceptualization is essential before model con
struction. It aims to balance the research objectives with the available 
resource (data and knowledge), rather than simply choosing the most 
advanced structure or including the largest number of input features.

4.3. Limitations and future study

The development of crop models has evolved from initially consid
ering only potential growth conditions to progressively incorporating 
water limitations, nitrogen limitations, and additional environmental 
factors (Bouman et al., 1996). At the same time, models have transi
tioned from generic frameworks to species- and cultivar-specific models 
(Wang et al., 2019). A similar progression can be applied to deep 
learning-based crop growth models. The current version of DeepCGM is 
designed to address the challenge of training a deep learning model 
using sparse observation dataset. As a result, it focuses on basic biomass 
simulation and does not yet account for water availability, cultivar 
differences, or soil texture. Consequently, the minimum data re
quirements for model training include weather data (radiation, tem
perature), management data(sowing date and nitrogen application 
recording) and crop labels (development stage, biomass and plant area 
index observations). Restricting this work only to biomass observation 
was due to the lack of availability of observational data. However, 
previous research has demonstrated that designing multiple parallel 
branches to handle different conserved variables (e.g., nitrogen and 
water-related variables) is an effective strategy (Bertels and Willems, 
2023). A similar modular architecture could be developed in future 
research to incorporate water and nitrogen cycles. Additionally, LSTM 
models could serve as auxiliary models to simulate and represent 
non-mass-conserving variables, such as phenology, which MC-LSTM 
cannot effectively handle. Limited by its current structure, DeepCGM 
cannot yet be transferred to other locations or cultivars. A promising 
direction is to integrate DeepCGM with a static property recognizer (Tsai 
et al., 2021), to account for soil, cultivar, and species characteristics. 
Building on this, by further combining the soft weight sharing of 
hypernetworks (Ha et al., 2016) with the task-wise fine-tuning strategy 
of LoRA (Hu et al., 2021), it becomes possible to calibrate the model for 
specific cultivars, soils, or even particular subprocesses within the 
model.

The current DeepCGM model is constrained by data limitations, 
leading to inaccuracies during unobserved periods. These include the 
late-stage decline in yield, and the rapid growth of biomass in the early 
stages. Without sufficient observational data, the model struggles to 
identify correct physiological processes, and random factors may 
introduce unrealistic results. This occurs despite the model adhering to 
mass conservation principles. To address this limitation, two strategies 
can be considered: supplementing observational data with crop model 
simulations (without solely relying on them, as discussed in Section 
3.1.3) and introducing additional knowledge-based constraints, such as 
penalizing the loss function for unrealistic late-stage yield declines. 
Despite the incorporating mass-conserving structure, convergence loss, 
and input mask, the utilization of existing knowledge in this study re
mains inadequate. Therefore, integrating a substantial amount of plant 
physiology-based knowledge is necessary. To improve accuracy, greater 
integration of plant physiological knowledge is necessary. Currently, 
knowledge integration in this model relies on manual design, whereas 
crop models already contain a wealth of domain knowledge. Therefore, 
further research is needed to efficiently assimilate knowledge from crop 
models into deep learning frameworks.

This study demonstrates that KGML models can outperform PB 
models in crop growth simulation. In addition to this, knowledge-guided 
machine learning offers new opportunities for agricultural model 

development. One advantage of KGML is its ability to integrate both data 
and knowledge, surpassing the capabilities of traditional crop models. 
With the ongoing advancements in phenotyping technologies, a data 
explosion is expected (Jin et al., 2020). In contrast, the 
hypothesis-validation approach used in PB models often requires 
lengthy iterations and is susceptible to biases from the developers’ 
personal knowledge backgrounds (Shen et al., 2023). In the face of 
massive data, KGML offers a faster and bias-free alternative for knowl
edge extraction. Another advantage of KGML over purely data-driven 
models is its stronger extrapolation capabilities and improved inter
pretability. While data-driven models can directly extract knowledge 
from data, their findings are often difficult to interpret, despite aligning 
with the objectives of plant physiologists (Yin et al., 2021). On the other 
hand, PB models excel in extrapolation and interpretability but lack 
flexibility. By combining the strengths of both approaches, KGML es
tablishes a balanced framework, positioning itself between data-driven 
and PB models, thereby advancing the development of 
agriculture-related modeling. Additionally, KGML can be easily 
extended to applications such as model coupling and data assimilation. 
Many PB models, including SWAP, WOFOST, and DSSAT, encapsulate 
extensive domain knowledge. However, integrating knowledge across 
these models remains challenging due to differences in programming 
languages, model assumptions, and limited human resources (Midingoyi 
et al., 2021). The KGML approach provides a promising solution by not 
only integrating existing crop models but also deriving new, more ac
curate knowledge from them. Recent studies further confirm that KGML 
can be effectively applied to crop growth modeling and data assimilation 
(Yang et al., 2023), reinforcing its potential for future advancements in 
agricultural sciences.

5. Conclusions

In this study, we propose a Deep learning Crop Growth Model 
(DeepCGM) with a mass-conserving architecture that adheres to the 
mechanism of crop growth. Knowledge-guided constrains were 
employed to train the model with sparse datasets, in the form of input 
mask, and convergence loss. This study makes two major contributions: 
1) The proposal and open-sourcing of a deep learning crop growth model 
along with the corresponding dataset, which can serve as a benchmark 
for future research; 2) The first attempt to incorporate crop growth 
mechanisms into a deep learning model for modeling the multivariate 
crop growth process from a small dataset. By comparing DeepCGM with 
the traditional ORYZA2000 model and classic machine learning models 
on a two-year dataset, DeepCGM showed superior in overall accuracy 
and achieved lower RMSE in the time series simulation of plant area 
index, leaf biomass, stem biomass, grain biomass, and yield. A replica
tion case study was also conducted to demonstrate the validity and 
generalizability of the proposed model. The results demonstrated that 
the proposed mass-conserving structure, convergence loss, and input 
mask significantly contributed to improving accuracy and aligning with 
real growth processes. Additionally, experiments using an augmented 
dataset revealed that, although data augmentation helps mitigate the 
impact of data sparsity, it also introduces structural errors, leading to 
lower accuracy compared to models trained with knowledge-based 
constraints. Tests on datasets with removed observations further 
demonstrated the complementary relationship between constraints and 
data availability. In summary, this study demonstrated that knowledge- 
guided machine learning can overcome structural errors due to the 
simplification in conventional crop models while retaining key crop 
growth mechanisms. The integration of biological mechanisms within 
deep learning frameworks provides valuable insights for modeling 
complex multivariate systems under sparse data conditions.
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Appendix A. Abbreviations

Abbreviations Definition

Model Input 
Variables

Rad Daily Radiation
Tmin Daily minimum temperature
Tmax Daily maximum temperature
Ncum Cumulative fertilization
DVS Development stage (Simulated by ORYZA2000)

Model Output 
and Observation Variables

PAI Plant area index
WLV Leaf biomass
WST Stem biomass
WSO Storage organ biomass
WAGT Above ground biomass
YIELD Yield

Intermediate 
Variables 
of DeepCGM

Aux Auxiliary input, consisting of Model Input Variables
X Input for gates, consisting of Aux and C
C Carbon vector representation
Ci Carbon representation element, i is the index
Cpotential Potential carbon input
Cin Actual carbon input
CMR Maintenance respiration costs
Ct

patition Partitioned carbon
Cgrow Gross daily carbon growth

Gate Variables 
of DeepCGM

I Light interception and carbon assimilation gate, denoting the intercepted and assimilated proportion of penitential carbon
MR Maintenance respiration gate, denoting the proportion of maintenance respiration to the cumulative carbon.
P Partition gate, denoting the proportion of carbon allocated for the growth of different parts.
GR Growth respiration gate, denoting the proportion of carbon retained after growth respiration
R redistribution gate, denoting the allocation ratio of carbon flow among carbon vector components during redistribution

Others CG Convergence loss
DeepCGM Deep learning Crop Growth Model
KGML Knowledge guided machine learning
LSTM Long Short-Term Memory model
MC-LSTM Mass-Conserving LSTM
ML Machine learning
NI Normalized index
PB Process based

Note: Carbon can be converted to biomass using a fixed coefficient in the final mapping step.

Appendix B. : Formulas of DeepCGM

Xt =
[
Ct− 1,Auxt]# (A1) 

It = sigmoid(wIXt + bi)# (A2) 

MRt = sigmoid(wMRXt + bMR)# (A3) 

Pt = softmax(wPXt + bP)# (A4) 
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GRt = sigmoid(wGRXt + bGR)# (A5) 

Rt = softmax(wRXt + bR)# (A6) 

Ct
in = Ct

potenmtial ⊙ It# (A7) 

Ct
M = MRt⋅Ct− 1# (A8) 

Ct
patition = Pt⋅(Ct

in − Ct
M)# (A9) 

Ct
grow = Ct

patition ⊙ GRt# (A10) 

Ct = Rt⋅(Ct− 1 + Ct
grow)# (A11) 

WLVt = kWLV

∑n

i=1
Ct

i# (A12) 

WSTt = kWST

∑2n

i=n+1
Ct

i# (A13) 

WSOt = kWSO

∑3n

i=2n+1
Ct

i# (A14) 

WAGTt = WLVt + WSTt + WSOt# (A15) 

YIELDt =
∑3n

i=2n+1
(wYIELDCt

i)# (A16) 

PAIt =
∑3n

i=1

(
wPAICt

i
)
# (A17) 

The variables and operators in the formulas are defined in Fig. 3 and Appendix A, where W and b represent the trainable model weights and bias 
parameters, respectively. Formula (A1) constructs the gate input; for
mulas (A2) to (A6) correspond to the calculations for various gates as 
described in Step 1. Specifically, the interception-assimilation gate, 
maintenance respiration gate, and growth respiration gate (It、MRt and 
GRt) use the sigmoid function, as their outputs are scalar values between 0 and 1, representing the proportion of intercepted-assimilated and consumed 
carbon. This ensures that the intercepted-assimilated carbon is less than the input carbon and the consumed carbon is less than the stored carbon, thus 
achieving mass conservation. The partitioning gate and redistribution gate (Pt and Rt) use the softmax function, as their outputs are vectors with 
elements that sum to 1, representing the proportions of (re)distributed carbon to each elements, thereby maintaining mass conservation before and 
after (re)distribution. Formula (A7) represents the light interception and carbon assimilation process corresponding to Step 2; formula (A8) represents 
the maintenance respiration process corresponding to Step 3; formula (A9) represents the carbon partitioning process corresponding to Step 4; formula 
(A10) represents the growth respiration process corresponding to Step 5; formula (A11) represents the redistribution process corresponding to Step 6. 
Formulas (A12) to (A17) represent the mapping function that translates the carbon vector representation into the crop state. k denotes the mass 
fraction carbon in biomass of different organ (kg carbon kg− 1 biomass). t denotes the time step. Leaf, stem and storage organ biomass is internally 
represented in a vector representation of size n.

Appendix C. The detail process of DeepCGM. The carbon vector from previous step were concatenated with the auxiliary driven factor as 
input of the all the gates. The calculated gates were then used to control the carbon process, including light interception and carbon 
assimilation (A7), maintenance respiration (A8), partition (A9), growth respiration (A10) and redistribution (A11)
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Appendix D. The scatter plot of observation and simulation by calibrated ORYZA2000
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Appendix E. The scatter plot of observation and simulation by calibrated DeepCGM trained with all constraints (average result)
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Appendix F. The fitting loss and the RMSE of six simulated variables of different cases

Appendix G. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.fcr.2025.109912.
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