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ABSTRACT
With rapid population growth and the high in"uence of climate change on agricultural productiv-
ity, providing enough food is the main challenge in the 21st century. Irrigation, as a hydrological 
arti#cial process, has an indispensable role in achieving that goal. However, high pressure and 
demand on water resources could lead to serious problems in water consumption. Knowing 
information about the spatial distribution of irrigation parcels is essential to many aspects of 
Earth system science and global change research. To extract this knowledge for the main agricul-
tural region in Serbia located in the moderate continental area, we utilized optical satellite 
Sentinel-2 data and collected ground truth data needed to train the machine learning model. 
Both satellite imagery and ground truth data were collected for the three most irrigated crops, 
maize, soybean, and sugar beet during 3 years (2020–2022) characterized by di$erent weather 
conditions. This data was then used for training the Random Forest-based models, separately for 
each crop type, di$erentiating irrigated and rainfed crops on the parcel level. Finally, the models 
were run for the whole territory of Vojvodina generating 10 m resolution maps of irrigated three 
crops of interest. With overall accuracy for crops per year (2020: 0.76; 2021: 0.78; 2022: 0.84) results 
showed that this method could be successfully used for detecting the irrigation of three crops of 
interest. This was con#rmed by validation with the national dataset from Public Water 
Management Company “Vode Vojvodine” which revealed that classi#cation maps had an accuracy 
of 76%. These maps further allow us to understand the spatial dynamics of the most important 
irrigated crops and can serve for the improvement of sustainable agricultural water management.
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1. Introduction

The lack of water resources and growing demand for 
agricultural production at the global level cause 
increasing attention when it comes to water resource 
management. Due to global warming, 80% of the 
world’s population faces water scarcity (Bruinsma and 
Bruinsma 2017). In order to adequately face emerging 
situations, it is important to develop adaptation strate-
gies to answer one of the major questions of the 21st 
century – how to meet the freshwater needs of all 
users, including domestic purposes, industrial, and 
maybe most important, agricultural purposes. The 
major problem is more frequent serious hazards, 
among which droughts have been recognized as one 
of the most severe threats to agricultural production. 
An increase in global mean temperature and uneven 

distribution of precipitation is expected to decrease 
freshwater availability and seriously a$ect already 
water-scarce regions in the world (Kummu et al. 2016; 
Rockström et al. 2012). With these conditions, more 
and more agricultural areas will su$er from freshwater 
scarcity during the most important period for plant 
growth. Considering that, more attention should be 
given to planning optimal irrigation water usage.

Providing better conditions for growth and higher 
average crop yields, irrigation plays a key role when it 
comes to meeting the world’s food needs. As 
reported by FAO, 80% of food needs will be satis#ed 
by production from irrigated agriculture until the end 
of the year 2025. This implies that irrigation is one of 
the main measures of agricultural productivity 
improvement (Schaldach et al. 2012).
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With a high share in Gross Domestic Product (GDP) 
which was 6.29% in 2021 according to World Bank, 
agriculture is very important in Serbia’s economy. The 
main agriculture area is Vojvodina which is covered 
with 80% of arable land and irrigation is a crucial 
aspect of agriculture in this area (Ninkov et al. 2017). 
With a long channel network of the Hydro system 
Danube-Tisza-Danube (HS DTD), Vojvodina has great 
potential for irrigation, with the possibility of irrigat-
ing around 936,000 hectares, which is more than 50% 
of total agricultural land (Public Water Management 
Company 2022). However, even with the high poten-
tial, only 3% of the cultivated area is under irrigation 
(Bezdan et al. 2019). As it is projected that agricultural 
droughts will be double as likely at 1.5°C of global 
warming in Serbia, while soil moisture will decrease 
by up to 25% in the annual mean total column soil 
moisture at 4°C of global warming (IPCC 2022), it is 
expected that it could highly a$ect the agricultural 
economy. Irrigation will be the main solution to over-
come these problems, boost production and increase 
crop yields, raising irrigation management to the 
higher level.

Knowing the information about the spatial distri-
bution of irrigated parcels is the #rst challenge on the 
way to improve both agricultural and water manage-
ment. Current o%cial records of the Statistical O%ce 
of the Republic of Serbia do not include all modern 
irrigation systems built by both large private land-
owners and small private producers (“Statistical 
O%ce of the Republic of Serbia,” n.d). On the regional 
scale, some information about irrigation distribution 
exists but often they are not publicly available nor 
georeferenced which limits their further usage.

The technology of remote sensing (RS) and 
machine learning (ML) can provide bene#cial informa-
tion related to irrigation practice that can be applied 
to water management planning (Ozdogan et al. 2010). 
In the research (El Hajj et al. 2017), soil moisture in 
agricultural area were estimated from synergize of 
Seninel-2 and Seninel-1 satellite and it could be useful 
information for irrigation planning. Ozdogan and 
Gutman 2008 proposed a methodology based on 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) ancillary sources of gridded climate and agri-
cultural data for detecting irrigated areas in the US. 
Results from this research can help in understanding 
the e$ect of irrigation on the worldwide water and 

energy cycle, climate, as well as agricultural produc-
tivity. Also, global irrigation maps generated in sev-
eral research (Thenkabail et al. 2009; Zohaib, Kim, and 
Choi 2019) could help in understanding climate 
e$ects regarding changes in the extent of irrigated 
areas and thus creating a better and sustainable water 
management plan in countries. However, obtaining 
data about the spatial distribution of irrigated parcels 
is di%cult. Di$erent irrigation practices and techni-
ques such as "ood, drip, or spray irrigation, as well 
as the spatial-temporal scheduling of irrigation, make 
monitoring of this land type quite complicated 
(Bégué et al. 2018). The di%culty of distinguishing 
irrigated areas varies in di$erent climatic zones. As 
a highly endangered climate zone, a lot of research 
was done for semi-arid regions (Ambika, Wardlow, 
and Mishra 2016). For instance (Gao et al. 2018), 
used time series of Sentinel-1 Synthetic Aperture 
Radar (SAR) data for mapping irrigated crops, irrigated 
trees and non-irrigated #elds over agricultural site in 
Urgell, Catalunya (Spain). They achieved overall accu-
racy which is 81%, but indicate that in more humid 
region soil moisture contribution will be less and thus 
model will be less robust. In the research (Bousbih 
et al. 2018), Sentinel-2 and Sentinel-1 data were used 
to map soil water content as an additional factor for 
annual irrigation mapping over cereal crops, while 
(Jalilvand et al. 2019) used soil moisture satellite 
data to estimate irrigation water usage at the catch-
ment scale. However, both mentioned research 
require additional datasets including in-situ 
measurement.

According to satellite data usage, di$erent papers 
relied on using optical and thermal sensors (AVHRR, 
SPOT-1, MODIS, Landsat, Sentinel-2) for di$erentia-
tion of irrigated and rainfed parcels on local, regional, 
and global scales. For instance, researches such as 
(Biggs et al. 2006; Shahriar Pervez, Budde, and 
Rowland 2014) used MODIS data to calculate the 
Normalized Di$erence Vegetation Index (NDVI) to 
map irrigated areas in southern India and 
Afghanistan. Landsat images are useful for long his-
torical irrigation mapping such as in (Sharma et al.  
2018) where the historical evolution of irrigation crop-
land was generated for the period of 27 years. 
Similarly, Deines et al. 2019 used Landsat images for 
three decades to calculate di$erent vegetation 
indices and to map annual irrigation across US High 
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Plains. Some of them used radar data (ASCAT, 
SMOS, Sentinel-1) for estimating soil moisture as 
important in irrigation practice (El Hajj et al. 2017; 
Kumar et al. 2015; Zappa et al. 2021). However, 
spatial, spectral, and temporal resolution are pro-
blematic when it comes to consistent and constant 
irrigation monitoring. Lately, with the high spatial, 
spectral, and temporal resolution, Sentinel-2 is 
gaining increasing importance in overcoming 
these limitations. High-resolution Sentinel-2 optical 
images give an advantage in spectral transforma-
tions that can di$erentiate spectral response 
between irrigated and non-irrigated #elds. 
Consequently, vegetation indices provide a direct 
bene#t as input features in the classi#cation algo-
rithm (Ozdogan et al. 2010).

A number of recent studies used multi-temporal 
Sentinel-2 data for mapping irrigation crops around 
the world. Tang et al. 2021 used Sentinel-2 data for 
mapping center pivot irrigation systems in the south-
ern Amazon. Vogels et al. 2019 used Geographic 
Object-Based Image Analysis (GEOBIA) and time series 
of Sentinel-2 imagery to map spatio-temporal pat-
terns of irrigated agriculture in the Horn of Africa, 
while Pageot et al. 2020 used a synergy of Sentinel- 
2, Sentinel-1, and rainfall data to classify irrigated 
crops in the watershed in southwestern France.

Although the situation is not like in some strongly 
a$ected regions, moderate continental areas are 
more and more a$ected by severe climate changes 
where a warmer and drier climate, with frequent 
extreme events, can be expected (Mihailović et al.  
2015). The climate scenarios like this increasingly 
warn us that we should act preventively. Monitoring 
of irrigated agricultural parcels is quite complicated in 
regions with moderate continental climate conditions 
where it is expected substantial overlap in spectral 
signatures between irrigated and rainfed parcels. For 
example, irrigated soybean at certain growth stages 
may overlap with a rapidly growing hybrid of non- 
irrigated maize or natural wetlands. To overcome this 
limitation spatial distribution of the crop type is 
necessary for more precise mapping. However, there 
is still not so many studies that have been done 
this way.

Utilizing earth observation data, ground truth data, 
and a machine learning model, this research pro-
posed a methodology for classifying irrigated and 

rainfed crops at parcel level in moderate continental 
climate. Many studies have been published classifying 
irrigated agriculture as one layer of land use cover 
(Biggs et al. 2006; Deines et al. 2019; Gumma et al.  
2011; Magidi et al. 2021; Thenkabail et al. 2009). The 
novelty of this research comes from classifying irri-
gated and rainfed parcels within the same crop types, 
using the already known spatial distribution of the 
crops helping to overcome the problem of overlap-
ping di$erent irrigated crops but also land use classes 
(Zhang, Dong, and Ge 2022). Thus, the three most 
irrigated summer crops in Vojvodina: maize, soybean, 
and sugar beet were chosen, and ground truth data 
were collected. To distinguish irrigated from rainfed 
parcels, multispectral bands from Sentinel-2 were 
used to calculate relevant vegetation indices and 
observe phenological changes in vegetation. Both 
ground truth data and satellite imagery covered 3 
years (2020, 2021, and 2022) characterized by di$er-
ent weather conditions. Further, this data was used 
for training the Random Forest models, separately for 
each crop type, and then the models were run for the 
whole territory of Vojvodina. The #nal products are 10  
m resolution maps of irrigated crops of interest in 
Vojvodina.

2. Research area and data

2.1. Research area

The study area is the main agricultural region in the 
Republic of Serbia – Vojvodina (Figure 1). It is located 
in the northern part of the country (44°37“−46°11” N, 
18°51“−21°33” E) encompassing the con"uence area 
of the Danube, Sava, and Tisza rivers covering 21,506  
km2. Due to the geographical position in the southern 
part of the Pannonian Basin, the impact of western air 
currents, and the greater impact of Eurasian continen-
tal climate conditions, this area has characteristics of 
a moderately continental climate. Winters are cold 
and summers are hot and humid (the warmest 
month is July with T = 21–23°C) with irregular distri-
bution of rainfall and a huge range of extreme tem-
peratures which caused di$erent values of aridity 
types (Gavrilov et al. 2019; Hrnjak et al. 2014; 
Malinovic-Milicevic et al. 2018). The average annual 
precipitation is approximately 600 mm (Gavrilov et al.  
2015, 2016).
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According to the Statistical O%ce of the Republic 
of Serbia, Vojvodina is covered with 1.69 million ha 
of arable land (Ninkov et al. 2017). As the relief is 
predominantly "at with low altitude, covered with 
the most suitable lands for irrigation – Chernozem 
and Eutric Cambisol, agricultural productivity is pos-
sible on 80% of the Vojvodina territory (Gavrilov et al.  
2018; Pavlović et al. 2021). The main cultivated crops 
in the area are maize with 35% of the production of 
total arable land and wheat with 20% after which 
goes soybean and sugar beet with a total production 
of over 90% (Pavlović et al. 2021). Considering that, 
the research is focused on the most important irri-
gated crops in Vojvodina: maize, soybean, and sugar 
beet (Table 1), while other crops were not taken into 
account because data are missing, or it does not 

require the additional arti#cial application of water 
in this region. The primary sources of irrigation water 
in Vojvodina are surface water from the Danube and 
Tisza rivers and groundwater. Maize requires irriga-
tion in phases of germination and emergence, the 
vegetative stage, tasseling and silking, and grain #ll. 
When it comes to water requirements for soybean, 
the critical stages are when the #rst "owers open, 
during the formation of pods and grains and during 
the pouring of grains. For sugar beet, a critical phase 
occurs during intense root growth, after which the 
water requirements decrease sharply. However, the 
exact date when the irrigation needs to be applied 
highly depends on the sowing date, growing pro-
gress, and climate and soil conditions (Stričević  
2007).

Figure 1. Study area of Vojvodina region with Sentinel-2 footprint and digital elevation model at 30 m pixel resolution.

Table 1. Growing calendar for crops of interest: the green squares illustrate the theoretical period when the crop is sown, and the 
brown squares illustrate the period when the crop is harvested.

Growing calendar                                                                                  

Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.

Maize
Soybean
Sugar beet
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2.2. Data

2.2.1. Ground truth data
The reference data for training ML models for three 
crops of interest – maize, soybean, and sugar beet 
were collected for three seasons − 2020 when the 
above-average precipitation amount during the irri-
gation season was recorded, and 2021 and 2022 with 
dry and extremely dry conditions (“WWW n.d.). 
Collecting ground truth data had several steps. 
Firstly, in order to save time and collect data as e%-
ciently as possible on a large territory such as 
Vojvodina, visual detection on Google satellite was 
done. This was the way to observe where large parcels 
are located with the assumption that irrigation exists. 
It also was good in a way that we could plan to collect 
data evenly in all parts of the region. The second part 
was the collection of data where during the #eld 
campaigns in May and June, the team of researchers 
collected georeferenced information across the 
Vojvodina region. For that purpose, a mobile applica-
tion that works on the principle of georeferenced 
picture capturing was used. The picture was captured 
on the #eld where we also noted information about 
crop type and whether that parcel is irrigated or not. If 
the irrigation equipment was installed or working 
during the visit parcels were labeled as irrigated. 
Also, non-irrigated parcels were labeled to allow the 
building of a machine-learning model. And #nally, the 
third part implied the import of georeferenced pic-
tures into QGIS software and drawing all parcels con-
taining already mentioned information. After that, 
datasets were established for each year and each 
crop type separately containing 258 parcels in 2020, 
439 in 2021, and 579 in 2022 (Table 2). These datasets 
will be used for extracting information from satellite 
data and building a machine-learning model.

2.2.2. Sentinel-2 data
Optical images for the study area were downloaded 
from Copernicus Open Access Hub. The constellations 

of two polar-orbiting Sentinel-2 satellites, S2A and 
S2B were used. As the atmospherically corrected 
(Bottom of Atmosphere) images were required, we 
used Level-2A (Atmospherically corrected Surface 
Re"ectance) Sentinel-2 product composed of 110  
km × 110 km tiles in the UTM/WGS84 projection. For 
some dates, only Level-1C (Top-of-atmosphere re"ec-
tances – TOA) products were available. To produce 
Sentinel-2 Level-2A, atmospheric, terrain, and cirrus 
correction of TOA data was performed using Sen2Cor 
software (released by European Space Agency-ESA). 
As Vojvodina region is embedded in eight Sentinel-2 
tiles (TCS, TCR, TCQ, TDS, TDR, TDQ, TER, TEQ) 
(Figure 1) cloud-free images were downloaded for 7 
acquisition date in 2020, 10 dates in 2021, and 6 dates 
in 2022 during the irrigation season (April – 
September). The spatial resolution of the images 
used in this research is 10 m per pixel. Eight out of 
thirteen bands of Sentinel-2 images will be used for 
the calculation of 11 vegetation indices that will be 
input features for training ML models.

2.2.3. Crop classification – mask generation
As this research aimed to classify irrigated and rainfed 
parcels within the same crop types, it was necessary 
to create separable binary masks and then train sepa-
rate models for each crop type. For that purpose, 
information about the spatial distribution of maize, 
soybean, and sugar beet in a certain year was needed 
for the creation of masks. Considering that, the crop 
classi#cation maps for all 3 years were used (Figure 2).

These crop maps were created using a supervised 
Random Forest classi#cation algorithm (Table 3) 
based on a time series of satellite data as well as 
ground truth data collected during #eld campaigns. 
The maps were generated for the #ve most important 
crops in Vojvodina: maize, soybean, sugar beet, sun-
"ower, and wheat (Crnojevic et al. 2014; Lugonja et al.  
2019). After that, generated maps were used to create 
masks for three crops of interest, while other crops 
were excluded from the research.

Table 2. Distribution of ground truth data by the class label for 3 years.

Class label

Number of parcels Total area (ha)

2020 2021 2022 2020 2021 2022

Maize irrigated 51 129 157 2238 4653 6404
Maize rainfed 66 109 139 2715 4130 7204
Soybean irrigated 41 49 109 1354 1473 3112
Soybean rainfed 51 51 86 1824 1647 3684
Sugar beet irrigated 18 47 53 717 2005 1829
Sugar beet rainfed 31 54 35 1713 2299 2411
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3. Methods

3.1. Calculation of vegetation indices (VIs)

We selected Sentinel-2 bands at 10 m: the blue (BLUE =  
490 nm), green (GREEN = 560 nm), red (RED = 665 nm), 
and near infra-red (NIR = 842 nm), and at 20 m: red edge 
(RE = 705 nm), narrow nir (NIR2 = 865 nm), the short-wave 
infrared (SWIR1 = 1610 nm and SWIR2 = 2190 nm) bands 

to calculate vegetation indices relevant for distinguishing 
irrigated from rainfed crops (Ozdogan and Gutman 2008; 
Pageot et al. 2020). To reduce all indices to the same 
resolution, the Nearest Neighbour resampling method 
was applied in python to obtain 10 m resolution images. 
Pre-processed images than were used for calculation.

Several indices such as NDVI (Huang et al. 2021), 
NDRE (Zhang et al. 2019), EVI (Huete et al. 2002), and 

Figure 2. Crop classification maps for year 2022 – spatial distribution of five main crop types in Vojvodina: maize, wheat, soybean, 
sugar beet, and sunflower.

Table 3. Model performance for crop classification for maize, soybean, and sugarbeet 
for 3 years.

Crop Recall Precision OA Fscore
2020 maize 0.99 0.96 0.98 0.97

soybean 0.95 0.97 0.99 0.96
sugar beet 0.97 0.98 1.00 0.98

2021 maize 0.97 0.96 0.98 0.96
soybean 0.93 0.95 0.99 0.94
sugar beet 0.99 0.99 1.00 0.99

2022 maize 0.96 0.91 0.96 0.94
soybean 0.82 0.91 0.97 0.86
sugar beet 0.96 0.97 0.99 0.97
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SAVI (Huete 1988) were used as they are sensitive to 
biomass and vegetation density, while NDMI (Masina 
et al. 2020), MSI (Hunt and Rock 1989), and NMDI 
(Wang and Qu 2007) are proposed for monitoring 
soil and vegetation moisture. NDWI (Bhandari, 
Kumar, and Singh 2015), MNDWI (Xu 2005), and 
AWEI (Feyisa et al. 2014) are water indices that have 
wide usage in various applications including 
agriculture.

Time series of vegetation indices were used as 
input features for machine learning models training. 
The list of vegetation indices is shown in Table 4.

3.2. Model training

The next step was to access the machine learning 
process to distinguish between irrigated and rainfed 
parcels. Random Forest (RF) is a well-known ensemble 
learning method that has a long history in achieving 
e%cient classi#cation results in di$erent Earth system 
experiments, including agriculture (Belgiu and Drăguţ  
2016; Cutler et al. 2007; Lebourgeois et al. 2017). In 
combination with remote sensing data, this algorithm 
has been long used for identifying, classifying, and 
mapping various land cover classes (Crnojevic et al.  
2014; Ibrahim et al. 2021; Kulkarni and Lowe 2016; 
Lugonja et al. 2019; Tariq et al. 2022). As the simplest 
to parametrize, with high speed and good perfor-
mances (Belgiu and Drăguţ 2016; Breiman 2001; Pal  
2005; Pelletier et al. 2016; Shi and Horvath 2006) this 
method was used for the pixel-based classi#cation 
process As input features, already calculated time 
series of VIs were used. The number of trees was set 
to 100 and max-features to 

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
number features
p

.
Due to spectral similarity between the three crops 

of interest, separate datasets for each crop type were 

created and classi#cation models for maize, soybean, 
and sugar beet for each year were trained indepen-
dently. For splitting data into training and test sets, 
10-fold cross-validation was used. The data set sam-
ples represent individual pixels and when dividing 
data into training and test sets, the belonging of the 
pixels to certain parcels was considered. All pixels of 
one parcel had to belong to either a training or test 
set to avoid an optimistic estimation of the model 
performance.

3.3. Performance of mapping irrigated areas

As an important part of any classi#cation, the perfor-
mance of each classi#er was evaluated by deriving 
confusion matrices and calculating the Overall 
Accuracy (OA) and F-score. Overall Accuracy presents 
the ratio of the total number of correctly classi#ed 
pixels and the number of reference pixels and it was 
calculated using the formula from (Story and 
Congalton 1986). 

OA à correctly classified pixels
reference pixels

(1) 

To evaluate the performance of each class an 
F-score (Balfe and Smyth 2005) was used. The higher 
the F-score, the more accurate a model is. 

Fscore à 2⇥ precision⇥ recall
precisioná recall

(2) 

where precision is a measure of the correctness of 
a positive prediction and recall is the measure of 
how many true positives get predicted out of all the 
positives in the dataset.

Performance measures were calculated at the pixel 
level, but also further aggregated by majority voting 

Table 4. Optical features description – vegetation indices.
Name Description Formula
NDVI Normalized Difference Vegetation Index NIR�RED

NIRáRED
NDRE Normalized Difference Red Edge NIR�RE

NIRáRE
NDMI Normalized Difference Moisture Index NIR�SWIR1

NIRáSWIR1
NDWI Normalized Difference Water Index GREEN�NIR

GREENáNIR
MNDWI Modified Normalized Difference Water Index GREEN�SWIR1

GREENáSWIR1
AWEInsh Automated Water Extraction Index - no shadow 4 GREEN� SWIR1Ö Ü � 0:25NIRá 2:75SWIR2
AWEIsh Automated Water Extraction Index – shadow BLUE á 2:5GREEN � 1:5 NIRá SWIR1Ö Ü � 0:25SWIR2
EVI Enhanced Vegetation Index 2:5 NIR�REDÖ Ü

NIRá6RED�7:5BLUEá1
SAVI Soil Adjusted Vegetation Index NIR�RED

NIRáREDáL

⇣ ⌘
1á LÖ Ü

MSI Moisture index SWIR1
NIR

NMDI Normalized Multi-Band Drought Index NIR2� SWIR1�SWIR2Ö Ü
NIR2á SWIR1�SWIR2Ö Ü
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on parcel level that allows #ltering some pixel level 
errors.

3.4. Probability maps generation

After training, RF models were applied to the entire 
territory of the Vojvodina using already prepared 
masks for the three crops of interest. Thus, 10 m prob-
ability maps of irrigated maize, soybean, and sugar 
beet in Vojvodina were created. These maps contain 
information about the probability of irrigation for 
each pixel based on decisions from all decision trees 
in the forest.

3.5. Validation

In order to validate the precision of our classi#cation, 
the #nal classi#ed map of irrigated plots in the 
Vojvodina region will be compared with the 
National Statistics data (further validation polygons). 
These data were obtained by the Public Water 
Management Company “Vode Vojvodine” (PWMC 
“Vode Vojvodine”) responsible for managing irriga-
tion systems in Vojvodina. Unfortunately, precise 
yearly monitoring of the irrigation systems installa-
tion, the number of hectares under irrigation, and 
the type of crop which was irrigated in the 
given year are missing. According to the last available 
data from PWMC “Vode Vojvodine,” the total area 
under installed irrigation systems in Vojvodina was 
72,128 ha in 2022. However, some of the irrigation 
systems were not used during the irrigation season 
and thus, PWMC recorded that only 59,447 ha were 
irrigated in year 2022. In order to do validation, only 
systems that were active in 2022 were used. This 
includes the irrigation systems managed by the 
PWMC that utilize both surface water and ground-
water sources. The validation dataset is organized as 
large polygons consisting of several irrigation systems 
(which usually present one agriculture company that 
owns more irrigation systems). These polygons 
(further validation polygons) will be used for compar-
ison between the spatial distribution of classi#ed and 
real irrigation parcels, taking into account the uncer-
tainties in the validation dataset. The validation meth-
odology will contain three steps.

Firstly, calculation of percentage of the crop cover-
age of interest will be done. Having in mind that 
within these validation polygons could occur other 

irrigated crops which are none of the interest in this 
research, #rstly, crop classi#cation for year 2022 was 
used for calculating the percentage of the crop cover-
age of interest – maize, soybean, and sugar beet, 
while other classi#ed crops were excluded (Figure 3).

Secondly, the calculation of irrigation percentages for 
crops of interest will be done using information from 
Figure 3. Generated irrigation maps for 2022 will be 
overlapped with these polygons, and irrigation percen-
tages for crops of interest will be calculated within each 
of them. And #nally, the third step will be additional 
validation for low irrigation percentage detection within 
each polygon which has a high percentage of crop 
coverage.

4. Results

4.1. Precision of irrigated crop detection

In this research, models were trained and validated on 
collected ground truth data over the Vojvodina 
region in 3 years: 2020, 2021, and 2022. Even if classi-
#cations were done on the pixel level, for decision- 
makers it is necessary to know how many parcels are 
irrigated in the Vojvodina region. Considering that, 
confusion matrices (Figure 4) are shown for both 
pixel and parcel levels, but further results will be 
analyzed on the parcel level.

According to the confusion matrices (Figure 4), 
model performances are the best for the 2022 year. 
The highest overall accuracies are achieved for soybean 
and sugar beet (OA = 0.86 for both) with the highest 
detection score (F-score) for irrigated class (F-score =  
0.89 and F-score = 0.87 respectively) (Table 5). Slightly 
lower performances of the model are observed for 2021. 
where the best OA is for soybean (OA = 0.82, F-score =  
0.82). Results showed that for 2020 year model accuracy 
was the lowest. The best OA is for sugar beet (OA = 0.84, 
F-score = 0.78), while the lowest accuracy (OA = 0.69, 
F-score = 0.62) was achieved for maize. Observed by 
class, F-scores are higher for irrigated class in 2021 and 
2022, while the reverse case is noticed for 2020.

Looking according to crop type over the research 
period, the conclusion is that classi#cation worked 
better for soybean (OA 0.75–0.86) and sugar beet 
(OA 0.74–0.86), while slightly lower performances 
were gained for maize (OA 0.69–0.79).

Such results analysis per year indicates that models 
work better during dry years than during years with 
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Figure 3. Distribution of the maize, soybean, and sugar beet within validation polygons from PWMC “Vode Vojvodine” for the year 
2022 presented as % of the crop coverage of interest. Examples 1, 2, and 3 are given for a more detailed insight into how the spatial 
distribution of three crops of interest and other crops that are non of interest looks.

Figure 4. Confusion matrices for each crops per each year; left - pixel level, right - parcel level.
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optimal climate conditions. Also, the classi#cation of 
irrigated #elds during dry years is possible by combin-
ing all three crops and training one model instead of 
three. During the year when more rainfall days are 
recorded, it is harder to distinguish irrigated and 
rainfed #elds without knowledge about crop type. 
Due to that, this research proposed a unique metho-
dology that does not depend on climatic conditions 
and accordingly, results of separate models were 
analyzed.

4.2. Spatial distribution of irrigated croplands

This study generated annual 10-m resolution maps of 
irrigated maize, soybean, and sugar beet in Vojvodina 
for 3 years: 2020 with above-average precipitation 
amount during the irrigation season, and 2021 and 
2022 when drought was recorded. Observing in rela-
tion to the total agriculture area in Vojvodina, irri-
gated area continuously increased from 1.30% 
(20,666 ha) in 2020, 1.98% (31,517 ha) in 2021, to 
3.35% (53,148 ha) in 2022. Analyzing only within the 
area of three crops of interest, it is noticeable that 
maize was the most irrigated crop among crops of 
interest in all 3 years (1.46% in 2020–4.09% in 2022), 
while sugar beet is least under irrigation (0.27% in 
2020–0.93% in 2022). Looking proportionally to the 
area under the same crop type (Table 6), we can 
conclude that sugar beet has increasingly the highest 
percentage of irrigation in all 3 years (5.44%, 12.82%, 
and 23.27%, respectively), but it should be noticed 

that the least area is under this crop type and has 
a trend of decreasing (Novković et al. 2023).

According to the map (Figure 5) which present 
merged probability maps of maize, soybean, and 
sugar beet, it is evident that major irrigated areas are 
in Bačka region, while Srem has the smallest number of 
detected parcels. The reason for that could be found in 
the dense channel network within HS DTD, but also in 
arti#cial water objects intended for irrigation located in 
this region. This good irrigation infrastructure enables 
easier water supply to the parcels from large water 
sources such as Tisza and Danube rivers.

On the other side, Banat region has the densest 
channel network where it is possible to irrigate more 
than 400,000 ha of arable land, but the potential for 
irrigation is not used as much as it could be. The same 
situation is with Srem where the potential of 184,000  
ha suitable for irrigation is not used (Public Water 
Management Company 2022).

4.3. Comparison with national statistics

According to the calculated percentage of the crop 
coverage of interest (Figure 3), 61% of validation poly-
gons are covered by more than 50% of crops of inter-
est, while 12% have less than one-quarter of crop 
coverage of interest. For these polygons, it is 
expected to have a low percentage of detected irriga-
tion parcels.

Further, to validate our results, generated irrigation 
maps for 2022 were overlapped with layer crop 

Table 5. Performance of Random Forest models at parcel level for maize, soybean, and sugar beet per each year.
2020 2021 2022

Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed

maize Precision 0.67 0.70 0.80 0.77 0.80 0.76

Recall 0.57 0.79 0.81 0.75 0.78 0.78
F-score 0.62 0.74 0.80 0.76 0.79 0.77

soybean Precision 0.70 0.79 0.80 0.84 0.89 0.82
Recall 0.76 0.75 0.84 0.80 0.85 0.87
F-score 0.73 0.77 0.82 0.82 0.87 0.85

sugar beet Precision 0.78 0.87 0.69 0.80 0.86 0.87
Recall 0.78 0.87 0.81 0.69 0.92 0.77
F-score 0.78 0.87 0.75 0.74 0.89 0.82

Table 6. Percentage of the irrigated area within the total area of examined crops.
2020 2021 2022

Crop area (ha) Irrigated (ha) Irrigated (%) Crop area (ha) Irrigated (ha) Irrigated (%) Crop area (ha) Irrigated (ha) Irrigated (%)

maize 580,972 11,846 2.04 568,990 21,288 3.74 50,8127 29,136 5.73
soybean 192,248 6,617 3.44 198,789 5,869 2.95 17,6898 17,382 9.83
sugar beet 40,521 2,204 5.44 34,002 4,360 12.82 27,950 6,631 23.72
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coverage of interest and irrigation percentages were 
calculated within each of the polygon (Figure 6). The 
calculation showed that among the total of 77 poly-
gons, 29% (22 polygons) have more than 50% of 
irrigated crops detected, 21% (16 polygons) have 
between 25–50% of irrigation, 18% (14 polygons) 
have between 10–25%, and 32% (25 polygons) were 
detected with less than 10% of irrigation.

(1) Analysing Figure 6, it is noticed that a low per-
centage of irrigation is detected in 25 polygons 
among which some of them (17 polygons) have 
a high percentage of crop coverage. In order to 
see what is the reason for such a mistake in 
classi#cation, additional validation was done. For 
those polygons, it was hypothesized that there 
was irrigation in 2020 and 2021, but some other 
crops not included in our study were irrigated in 
the year 2022,

(2) irrigation systems moved to another nearest 
area,

(3) there was irrigation according to PWMC, but it 
was not detected in the classi#cation.

Figure 7 shows some examples of irrigation occurrence 
during all research periods but only within validation 
polygons where at least 25% of crop coverage of interest 
occurred and less than 10% of irrigation was detected in 
2022. It follows that example e con#rms hypothesis (1) 
where irrigation was applied in recent years, but for 
2022, some other crops which are not of interest were 
irrigated. This was the case for four polygons and for 
them, it could be said that classi#cation worked well. 
Examples c, f, and h showed that movement or perma-
nent shutdown of the irrigation system is possible, 
which corresponds to hypothesis (2). Such polygons (3 
of them) were not used in the #nal validation accuracy 
assessment. Finally, examples a, b, d, and g con#rm 
hypothesis (3) where according to PWMC there is irriga-
tion equipment, but according to classi#cation the crops 
of interest were not detected as irrigated. These poly-
gons (10 of them) are considered as wrongly classi#ed.

Figure 5. Probability map of irrigated three crops of interest in Vojvodina region in 2022. Examples 1, 2, and 3 are given as an enlarged 
view of classification results.
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Considering the results from hypothesis (2), the 
number of validation polygons was reduced from 77 
to 74 where the total number of wrongly classi#ed 
polygons is 18. Eventually, results showed that the 
classi#cation for 2022 has an accuracy of 76%. With 
that, it is con#rmed that the method proposed in this 
study could be successfully used for detecting irri-
gated parcels of three crops of interest.

5. Discussion

5.1. Classi!cation accuracy in di"erent climatic 
conditions

This study investigates the capability of Sentinel-2 
images in combination with a machine learning 
method for detecting irrigated parcels in the moderate 
continental climate area. Thus, 3 years characterized by 
contrasted meteorological conditions were used.

In the moderate continental area, the e$ectiveness 
of classifying irrigated and rainfed parcels is challen-
ging due to the high similarity between the spectral 
signature of these two classes (Shahriar Pervez, 
Budde, and Rowland 2014). When the climate condi-
tion during the season is not characterized as dry, the 
plant progress on irrigated and rainfed parcels could 
be similar due to more frequent rain and less irriga-
tion application. This was the case for season 2020 
when the above-average precipitation amount during 
the irrigation season was recorded (Climate Data 
Store, n.d.) and plants had enough water in the critical 
month for growth. In such cases, irrigation is rarely 
applied, and there is no signi#cant di$erence in plant 
growth between irrigated and rainfed parcels. That 
could cause confusion during model training and due 
to that slightly lower performances of the classi#er 
were gained for this year. The model achieved the 
best performance for 2022 where the driest climate 

Figure 6. Irrigation percentage of maize, soybean, and sugar beet within validation polygons from PWMC “Vode Vojvodine” for 
the year 2022 categorized into four classes. Examples 1, 2, and 3 are given for a more detailed insight into how much of the area of 
interest is under irrigation.
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conditions were recorded, and di$erentiation of irri-
gated and rainfed parcels was easier.

When it comes to the percentage of area under 
irrigation systems, the least number of irrigated par-
cels were detected in 2020 (1.3%). Besides the uncer-
tainty of the classi#er, the reason for the low 
percentage of area detection could be that people 
did not irrigate as much as in 2022, when extremely 
dry conditions were recorded and 3.35% of irrigated 
crops were detected. Considering that but also pre-
vious validation, the conclusion is that if irrigation was 
detected at least 1 year of the research period, irriga-
tion equipment exists but it was used according to 
climate conditions and the need for the sowed crop in 
a certain year.

5.2. Challenge in di"erentiating irrigated from 
rainfed parcels

Even if the Vojvodina province is part of the 
Pannonian Basin which is predominantly plain, the 
diversity of the geomorphological units, distribution 
of the river network as well as soil types could a$ect 

classi#cation accuracy. Detecting irrigation on higher 
relief units with porous soil could be challenging 
because water is not retained long enough in the 
root zone and plant growth would not be faster as it 
is expected compared with rainfed crops (Gumma 
and Pavelic 2013; Radulović et al. 2022; Rajaveni, 
Brindha, and Elango 2017).

Uncertainty of the classi#er could also occur in the 
area near a river where water exchanges between 
rivers and alluvial aquifers are signi#cant 
(Sophocleous et al. 1988). Other phenomena occur 
in areas with micro depressions, where groundwater 
table near the topography surface is a common case, 
a$ecting the increase of soil moisture and further 
crop growth. In the Vojvodina region, shallow 
groundwater is continuously widespread, and it can 
induce faster crop growth, feeding plants through the 
root zone (Polomcic et al. 2012). In such conditions, 
some crops could have similar growth progress than 
irrigated crops and it can cause the classi#er to detect 
more parcels as irrigated than it is supposed to be. It is 
important to emphasize that this phenomenon could 
occur also during the dry year when even though 

Figure 7. Examples of the absence of irrigation during three years in polygons with high coverage of crops of interest.
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a meteorological drought appeared, there is a time 
gap until the hydrological drought and the plants still 
have enough water supply (Huang et al. 2017).

According to generated maps and previous knowl-
edge, the assumption is that wrongly classi#ed par-
cels near the Danube riverbed in western Vojvodina 
are consequences of the combination of these phe-
nomena (Figure 8).

Observing each parcel as a set of pixels, highly 
heterogeneous in the spectral signature could occur. 
That happens because of di$erent elevations and 
micro soil characteristics within large parcels, because 
of which the irrigation e$ect is unequal. Plants on 
such parcels could have uneven growth and part of 
the parcel with less progress could be classi#ed as 
non-irrigated even if it is actually irrigated. Figure 9 

Figure 8. Overclassified irrigated parcels near the Danube riverbed (base map source: Google satellite).

Figure 9. Example of unstable classification for irrigation parcel.
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shows an example where the classi#er was uncertain 
about the probability of irrigation due to less plant 
progress. These are borderline cases where the classi-
#er decision depends on the occurrence of the 
already-mentioned conditions on the parcels.

5.3. Trends in irrigation in Vojvodina

The hydrographic network which can be used for 
irrigation in Vojvodina consists of large rivers such as 
the Danube, Tisza, and Sava, smaller watercourses, HS 
DTD with 930 km of channel network, more than 
20,000 km of the detailed channel network, and 
numerous accumulations built for the purpose of irri-
gation. With this wealth of surface water and infra-
structure, as well as abounded groundwater 
reservoirs, Vojvodina has the potential to irrigate 
936,000 ha of agricultural land (Savić et al. 2013). 
Results from this research indicated that the irrigated 
area in Vojvodina continuously increased from 20,666  
ha in 2020 to 53,148 ha in 2022. Compared to the 
statistics for Serbia, it is worth notable that the 
increase in water abstraction is also evident, from 
69,113 thous. m3 in 2020 to 99,355 thous. m3 in 
2022 what is one more proof that irrigation is more 
applicable, both on the national and regional level.

Although it is known that better production and 
higher yield can be achieved by irrigation (Kang, 
Khan, and Ma 2009; Payero et al. 2008; Popova and 
Kercheva 2005), the area under irrigation systems in 
Vojvodina has never achieved the planned capacity 
and that is hereby con#rmed in this research. Besides 
good infrastructure for irrigation, it is necessary to 
encourage the investment of irrigation equipment 
installation through co-#nanced and subsidies as help 
to farmers, companies, and other interested parties. 
Some already installed systems are usually in poor 
condition or outdated and abandoned which is the 
consequence of a lack of money for renovation and 
new investments. This trend leads to a decrease in total 
irrigated agriculture in Vojvodina, instead of increasing 
and maximal capacity usage (Savić et al. 2013).

It is worth noting that irrigated agriculture in this 
region may oscillate from year to year depending on 
factors such as weather patterns, water availability, as 
well as agricultural practices. As more irrigated parcels 
were detected during drought conditions in 2021 and 
2022, than in 2020, one positive note could be that 
farmers follow the principle that irrigation as 

a measure does not have to be used always and at 
any cost, but only when it is really needed according 
to the weather conditions and crop water 
requirement. From that, it is also evident that farmers 
in the Vojvodina region still use irrigation as 
a supplementary measure during extreme drought 
conditions. Our research, for the #rst time, estimated 
the current situation of irrigation in this region pro-
viding useful information that together with water 
potential resources can be utilized for policymakers 
aiming to balance between the necessity to increase 
irrigation capacity and the availability of water 
resources.

5.4. Strength, limitations, and future directions

Using only satellite data, this research provides the #rst 
product about the annual spatial distribution of the 
main irrigated crops in Vojvodina giving a possibility 
for further monitoring of irrigation. Sentinel-2 data with 
a 5-day revisit time allows enough precise temporal 
and spectral resolution for monitoring irrigation over 
some regions. Compared with other similar research 
such as (Pageot et al. 2020) where they classi#ed irri-
gated and rainfed crops at the plot scale in southwest 
France, our approach with separate model training for 
each crop type improved classi#cation precision. They 
examined #ve di$erent scenarios with a synergy of 
Senitnel-1, Sentinel-2, and rainfall data, the OA range 
from 0.63 to 0.78 for the dry year and 0.54–0.73 for the 
wet year. Compared with the results in our research, 
OA is better in dry years (2021: 0.78 and 2022: 0.84), 
while for the wet year (2020: 0.76) both researches have 
similar results. Pageot et al., (2020) also proved that 
using low-resolution (8 km) rainfall data may increase 
confusion on the distinction between irrigated and 
rainfall.

It should be noted that even if it is possible to train 
one model for all three crops together (Pageot et al.  
2020; Zhang, Dong, and Ge 2022), this research pro-
posed a unique methodology that does not depend 
on climatic conditions and could successfully distin-
guish irrigated and rainfed parcels. It is also important 
to emphasize that research that does not have a crop 
classi#cation map, still can perform irrigation classi#-
cation, but the e$ectiveness of irrigation mapping will 
be better with knowing crop type and that is also 
emphasized by (Xie and Lark, 2021; Zhang, Dong, 
and Ge 2022).
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The simplicity of the data used, calculating only 
vegetation indices, is important in a way that metho-
dology could be applied not only in this particular 
region but also in some others. Spatial transferability 
between Vojvodina regions (Bačka, Banat, and Srem) 
(Figure 1) characterized by di$erent physical- 
geographical conditions showed that OA in validation 
may drop for 0.08 for maize, 0.18 for soybean, and 
0.31 for sugar beet compared with the performance 
of the models for Vojvodina (Figure 4). These lower 
performances are the consequences of the unba-
lanced datasets as well as geographical characteristics 
that di$er between regions. Also, according to the 
Census of Agriculture Census of Agriculture 2013, 
the spatial distribution of these three crops is not 
equal in each region. For example, maize is spread 
in all three regions and we can see that transferability 
has the highest potential. However, soybean is much 
more characteristic for Bačka, not much for Banat and 
Srem. The same situation is for sugar beet. On the 
other side, applying spatial transferability within the 
same geographical region (a case study of Bačka) 
resulted in a negligible drop in OA for maize and 
soybean (0.03 and 0.05 respectively) while for the 
sugar beet, OA was higher (for 0.12). Due to that, 
spatial transferability is certainly possible in the 
same geographical regions; however, additional data 
sets from the targeted region are desirable in order to 
#ne-tune a prede#ned machine learning model 
(Antonijević et al. 2023; Mirzaeitalarposhti et al.  
2022; Nowakowski et al. 2021). Herewith, for the #rst 
time, this research emphasized the importance of the 
main physical-geographical characteristics of the 
region for achieving and explaining better results 
using the ML approach. There are some limitations 
in the proposed methodology that could be possibly 
overcome in future research. This research su$ered 
from the absence of data such as depth of ground-
water, as well as high-resolution soil data which have 
not been researched enough for this problem. With 
these datasets, additional features could be used for 
training the model and all the above-mentioned phe-
nomena will be addressed, resulting in better accura-
cies of model training and generating more precise 
irrigation maps. However, it should be kept in mind 
that if we strive for high-resolution maps, we should 
have high-resolution data; otherwise, the low- 
resolution data will not contribute to the improve-
ment of the model results (Pageot et al. 2020). The 

other limitation of this method is that this could be 
used for detecting the spatial distribution of parcels at 
the end of the growing season, but to provide infor-
mation about when the parcel is exactly irrigated and 
how many times additional ground truth data and 
analysis would be necessary.

Further research can consider using radar data 
from Sentinel-1, improving temporal resolution 
when cloud coverage does not allow the usage of 
a high frequency of optical data (Bazzi et al. 2019; 
Gao et al. 2018). This also could be useful for adapting 
the model for other regions which have more cloudy 
days and where data acquisition will be problematic. 
Therefore, transfer learning would be easier and more 
e$ective for applying and enabling geographical ana-
lysis of classi#cation work in physical-geographical 
di$erent regions. The developed methodology in 
this research will enable the possibility for further 
research about irrigation as well as planning and 
development of irrigation management in this region.

6. Conclusion

Advanced new technologies by combining remote 
sensing and machine learning signi#cantly contribu-
ted to estimating the spatial distribution of irrigated 
areas. In this study, we utilized Sentinel-2 data, 
ground truth data, and a machine learning approach 
to classify irrigated and rainfed parcels in the moder-
ate continental area. The novelty of this research 
came from classifying at the parcel level within three 
crops of interest: maize, soybean, and sugar beet. 
Ground truth data were collected for 3 years (2020– 
2022) with both optimal and dry climate conditions. 
Final datasets consisting of a time series of 11 vegeta-
tion indices calculated from Sentinel-2 images were 
created for Random Forest classi#cation. Model train-
ing was conducted for each crop type separately. The 
best accuracy was gained for soybean and sugar beet, 
while maize gained the lower accuracy. Observed by 
years, the performances showed that classi#cation 
worked the best in 2022 (OA = 0.84) and 2021 (OA =  
0.78) when extremely dry conditions were recorded, 
while lower performances were gained for the 2020 
(OA = 0.76) year characterized by contrasted meteor-
ological conditions. Validations through the dataset 
from PWMC “Vode Vojvodine” indicated that maps 
generated in this study had high accuracy. With that, 
it is con#rmed that the classi#cation of irrigated and 
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rainfed parcels could be done using Sentinel-2 
images, but improvement with additional data should 
be considered in the future. Generated maps are 
valuable enough for creating a general overview of 
the situation of irrigation in the region allowing mak-
ing the next step in research. The results are expected 
to serve as a good input for decision-makers when it 
comes to the development of sustainable agriculture 
and water management in the region.
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