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Abstract. The paper presents a system architecture that employs data mining
techniques for ensuring quality assurance in an environmental monitoring net-
work. We investigate how data mining techniques can be incorporated in the qual-
ity assurance decision making process. As prior expert decisions are available, we
demonstrate that expert knowledge can be effectively extracted and reused for re-
producing human experts decisions on new data. The framework is demonstrated
for the Saudi Aramco air quality monitoring network and yields trustworthy be-
havior on historical data. A variety of data-mining algorithms was evaluated, re-
sulting to an average predictive accuracy of over 80%, while best models reached
90% of correct decisions.

1 Introduction

Sensor network recordings are prone to several types of failures related to noise, po-
larization, calibration, physical obstacles, humidity, communication latency, variability
of meteorological conditions, or other network and sensor faults. The quality assurance
process of environmental monitoring networks is critical for supporting both the scien-
tific work and the dissemination of environmental conditions at operational time. Qual-
ity assurance and quality control procedure (QA/QC) deals with the major uncertainties
that characterize the natural environment. Typically, QA/QC takes place off-line, on
batches of measurements, processed by expert scientists. Experts identify erroneous
measurements and validate sensor recordings, based on statistical indexes, boundary
rules, and more importantly their experience. The process is empirical, thus it can not
be fully automatized, as expert knowledge is hard to capture and depends on location,
season and type of equipment.

The Saudi Aramco Air Quality Monitoring and Meteorology Network (AMMNET)
is no exception to the above situation [1]. Expert scientists are routinely asked to review
the quality of the recorded measurements, and restore missing or erroneous ones. The
target of AMMNET is air quality, where uncertainties are driven by the atmospheric
chemistry and physics, and the stochastic nature of the major air pollutant emission
mechanisms (including those of anthropogenic and natural origins). Concerning pho-
tochemical pollutants (such as ozone) the emission mechanism is dynamic, accompa-
nied by strong non-linearities in the underlying physical and chemical mechanisms, and
therefore it has been always among the major challenges of air quality modeling and
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forecasting. These characteristics make quality control a demanding task that occupies
significant efforts of expert scientists. Automating the QA/QC process for AMMNET or
similar environmental monitoring networks is of extreme importance, as it will relieve
scientists from a tedious and laborious task.

Near-real time decision support and surveillance systems requires the identification
of erroneous measurements while the monitored conditions still occur. Data uncertainty
problems associated with environmental monitoring networks bring forth issues of mea-
surement validation and estimation of missing or erroneous values, which are critical
for taking trustworthy decisions in a timely fashion [2]. This vision also drives towards
the extension of legacy environmental monitoring infrastructure with modular, flexible
software interfaces that provide with inputs to environmental decision support systems
for hazard identification and incident forecasting [3]. This paper investigates how the
quality assurance process can be improved by adopting data mining methods under
both near real time constraints and off-line using historical data from an environmental
monitoring network.

2 Towards a data-driven quality assurance system

Key requirements: A semi-automated quality assurance system needs to be able to
evaluate the quality of the incoming measurements both online, as they are recorded
into the system, and offline, as they are grouped in batches. Semi-automated processing
is an important factor for near-real time dissemination [4], but also for identification of
hazardous events and operational decision making [3].

To achieve this, a quality index is attached to each measurement recording at the
time it arrives. Assume some sensor captures a measurement. Then, the system stores it,
and preprocesses it by attaching a measure of quality for this recording, i.e the quality
index. To compute the quality index the system may use all information available: past
recordings from the same sensor, past and concurrent recordings of other sensors (in the
same or other locations), and their statistics (i.e minimum, maximum or average values
during a given period, e.g. hourly).

The inputs of the system are all raw measurements, as recorded by the sensor net-
work, and the output is the “quality index” of the measurement. This setting was se-
lected to mimic the information that is available to the experts: Experts investigate raw
measurements and they are able to indicate the quality of the recordings. We want our
data-driven decision making model to be able to do so. The amount of information
available to the expert includes the current recording of the target pollutant, but also the
concurrent and historical values of other pollutant concentrations and meteorological
attributes, with their statistics. By visually inspecting all these time-series an expert can
assess the quality of the target pollutant concentration. By presenting past data with the
correct decisions attached to a supervised learner, we can train it, using a classifica-
tion algorithm, to approximate the behavior of the expert. Then, the produced decision
making model can be used for future predictions. In this respect the system is deployed
around a decision model that is triggered by incoming recordings and responds with
their corresponding quality indices (Fig. 1). The decision model functions as a trans-
formation function, that utilizes a set of inputs originating from the sensor network in
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Fig. 1. The proposed abstract architecture
The decision model collects relevant time series data and responds on the quality of the

currently arrived ozone measurement.

order to derive the quality index. It can be the result of a supervised learning process,
i.e an expert system, a decision tree, a rule set or a neural network.

Another key aspect of the system is that it needs two modes of operation: one for
the near-real time case and one for the off-line evaluations. In the first case, the decision
model employs as inputs only concurrent and past measurements, while in the second
case it may also make use of measurements recorded later.
Abstract architecture: We have designed a semi-automated quality assurance system
for AMMNET, although the architecture is not specific to the network structure or the
domain, and it can be deployed for other types of monitoring networks. Figure 1 illus-
trates the abstract architecture of the system that serves as a mediating layer between
a sensor network and any end-user applications (i.e. database, monitoring or warning
systems). The system mediates in order to assign quality indices to the incoming mea-
surements. In Fig. 1 the system responds on the quality of an ozone measurement, on
the basis of past and current measurements of ozone and other pollutants, and assigns a
qualitative quality index (i.e. the ozone quality index is in the range of 0-3 percent).
The quality indices and problem formulation: The quality of a recording of the mon-
itoring network can be measured using the relative error of the raw value with respect
to the correct one, as a quantitative index. In practice, we can consider the correct value
to be the one that is proposed by the quality assurance expert. Let p(t) be the raw value
recorded at time t and p̂(t) the correct value, then the relative difference of the two
values defines the quantitative quality indicator, as:

ep(t) =
∣∣∣∣

p(t)− p̂(t)
p̂(t)

∣∣∣∣×100% (1)

The quantitative quality indicator values can be classified into crisp qualitative
quality bands, which in turn serve as a figure of merit of the raw data quality.



In the envisioned automated system, a set of thresholds {s1 < s2 < · · ·< st} will be
used for defining the quality index for pollutant p as:

QIp(t) =





In range [0,s1) if ep(t)≤ s1

In range [s1,s2) if s1 < ep(t)≤ s2

. . .

In range [st ,+∞) if ep(t) > st

(2)

Each range can be associated with some textual information. For example, ‘credible’
(in range:0–5%), ‘suspicious’(in range: 5–15%), and ‘distorted’ (in range: >15%). The
discretization of the quality index into bands with an associated labels allows for a
qualitative evaluation of raw measurements. This is particularly interesting for an online
system that is able to provide with an automatically computed quality index of the
incoming recordings as they arrive. The selection of the appropriate thresholds for the
Quality Index is a matter of design choice3. More importantly, the use of categories as a
quality index instead of the real error, allows to reformulate the problem from a function
approximation to a classification problem: Instead of approximating the error value, we
aim to design a system that approximates the error range.

3 System deployment: The case of AMMNET

Design choices: Deploying a data-driven decision making system for AMMNET in-
volves three important design choices. First comes the selection of the appropriate
thresholds to define quality bands and indices. The latter serve as the outputs of the de-
cision model. Second is the selection of the appropriate inputs for the decision model.
And finally, the selection of suitable algorithms to implement the decision model.

To evaluate the feasibility of the approach, we conducted three rounds of experi-
ments: We started with an explorative round, where several alternative system formu-
lations and algorithms were screened, in order to valuate their potential. Secondly, we
performed an extensive evaluation round, where selected algorithms and system con-
figurations have been thoroughly studied in order to conclude to a statistically credible
performance evaluation. Finally, the study concluded with a blind-test round, where
the decision models induced in the previous round were used for newly collected data,
not evaluated yet by experts and the results were presented to experts. The results of
our experiments are summarized below in Section 4.
Data available: In our evaluations we focused on the quality assurance of ozone, and
the goal was to build a data-mining model for the ozone quality index. We used histor-
ical data from three stations of the AMMNET network (namely Rahimah, Riyadh and
Dhahran) covering in the period from January 2005 through June 2007. In each station
data from several gases are monitored (namely: O3, H2S, SO2, NO, NOX , NO2, CO),
along with meteorological attributes (namely: Dew Point, Precipitation, Pressure, Solar
Radiation, Temperature (at 2m and 10m), Wind Speed and Direction). For all measure-
ments both raw and quality assured data were available, at hourly intervals accompa-

3 It can also be defined by legislation, but still a set of arbitrary thresholds
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Fig. 2. Classification accuracy for all 25 training schemes, using 10-cross fold validation.
Both hypotheses have been tested (marked as ‘P’ and ‘P+F’ for ‘past’ and ‘past and future’ data

used as inputs), with two single quality thresholds set at 5% and 10%.

nied with sensory statistics (minimum value, maximum value, standard deviation). In
our experiments, we used as inputs raw values.

4 Results

Explorative round of experiments: The first part of this study concentrated on the
rough evaluation of alternative algorithms and inputs. We investigated a set of four al-
ternative quality indices, 14 model inputs and 12 algorithms (with 161 configurations).
In total, 27’048 evaluations were performed. In each one of them, a decision-model
was trained with data spanning from January 2005 to December 2006, and the induced
decision models were validate against human decision for a period covering January to
June 2007. Results for Ryadh and Dhahran were very promising, for the cases where
one or two quality thresholds were applied: the average performance was above 80%
and the best achieved result were in the range of 95% of correct decisions. In terms
of algorithm selection, most credible results were achieved by C4.5 decision trees [5],
Bayesian Networks [6], Fuzzy Lattice Reasoning [7], and Multi Layer Perceptrons, im-
plemented with WEKA [8].
Extensive evaluation round: In a second set of experiments, we evaluated thoroughly
a set of algorithms in a statistically coherent way, to guard results against data parti-
tioning biases, by applying the 10-fold cross validation method. Both hypotheses were
tested, considering a single quality threshold for ozone set at 5% or at 10%. As in-
puts we considered gas concentrations and meteorological attributes, accompanied by
sensory statistics. We employed C4.5 decision trees with confidence factor pruning (9
configurations) and reduced error pruning (10 configurations), and bayesian networks
with a simple hill climbing search algorithm (6 configurations). The classification accu-
racy for all training configurations are presented in Fig. 4. While the average prediction
accuracy ranges above 85% for Dhahran and Riyadh, it is limited to below 75% for
Rahimah. However, Rahimah’s best results outperform those of the other two stations.
Blind test results: The third round of experiments has evaluated further the best models
trained above in a blind test, inspired from the Turing test: We presented a (previously



unknown to the system) data stream to the decision models, and recorded model de-
cisions. Then, model decisions have been presented to AMMNET experts, in order to
analyze them and compare them with the in-house QA/QC process. Experts’ response
for Rahimah was very positive, while this was not the case for Riyadh.

5 Discussion and future work

This study concluded that data-mining algorithms selected and tuned during our ex-
periments have yielded credible performance, and are capable for inclusion in a semi-
automated system for quality assurance of a sensor network. However, expert involve-
ment is still needed for model training and selection.

Time and space is a very important factor. The length of calibration period needs
further investigation. Similarly holds for the proliferation of the extracted decision mod-
els, with respect to local incidents (i.e instrument calibration, scheduled maintenance,
etc) and seasonal patterns that occur in each station. Influence across stations (spatial
interactions) need further study. Another important issue is the preferred type of fail-
ures. Any automated system will make wrong decisions. The issue here is what type
of wrong decisions we prefer. A stringent system that falsely rejects measurements is
certainly preferred against an ‘easy’ system that falsely accepts wrong measurements.

Finally, semi-automation still remains the goal of a future course of action. An in-
teractive system can be designed and deployed, so that it is capable of allowing experts
to mark interesting cases that need to be considered, and to reject trivial or false pat-
terns discovered. Such an approach will put the foundations for a win-win cycle, where
experts instruct the system and review models extracted from data.
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