International Environmental Modelling and Software Society (IEMSs)

7th Intl. Congress on Env. Modelling and Software, San Diego, CA, USA,
Daniel P Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.)
http://www.iemss.org/society/index.php/iemss-2014-proceedings

Towards a low-cost, full-service air quality data archival
system

Argyris Samourkasidis , and loannis N. Athanasiadis

Democritus University of Thrace
Xanthi, Greece
(argysamo@gmail.com, ioannis@athanasiadis.info)
http://eco.logismi.co

Abstract: We present our explorations towards a low-cost solution for creating an autonomous environmen-
tal data archival system. AIRCHIVE is a software platform for providing open access to sensor data with
different ways, that account for machine interoperability. It is built with Raspberry Pi, a low-cost, pocket-size
computer, and Air Pi a low-cost amateur sensory kit for air quality monitoring. Raspberry Pi with AirPi allowed
us to easily capture raw sensor data and store them in a local database, and with AiIRCHIVE we deployed “on
sensor” a web server that provides with a set of services for data preprocessing and dissemination, including
an implementation of OGC/SOS services and the OAI/PMH harvesting protocol.

Keywords: Environmental Data Archive; Sensor Observations; Sharing and Reuse; Semantic Web; Low-
cost sensors; Open Archives; SOS; Metadata Harvesting

1 INTRODUCTION

Sensor networks provide with evidence not only to support science, but also for continuous surveillance,
on-line decision making and citizen-centered services. At the same time, small-sized computers offer more
capabilities. In sensor networks, the information is enhanced through a layered approach, that involves four
steps: capture, storage, decision-making, and distribution [Athanasiadis and Mitkas, 2004]. The majority
of environmental sensor networks consist of several sensor nodes that capture data from the environment,
and a base station which gathers sensor data together (capture phase). Subsequently, data from different
base stations are transferred to a centralized sensor network server (storage phase), so that data are further
processed (i.e. through decision-making) and eventually become available over the World Wide Web or other
means (distribution phase) [Harta and Martinez, 2006].

In this paper, we introduce AIRCHIVE, a system that provides the functionality of all four sensor layers
in one credit-card sized “box”, and comes with a respectively low cost. All sensor network functionality
(sensor nodes, base station, and sensor network server) are implemented as services in AiIRCHIVE for
data capture, storage, decision-making (i.e. validation), and dissemination over the web. Furthermore,
AIRCHIVE minimises communication costs, and employs standards for publishing environmental data. We
adopted Sensor Observation Service (SOS), an Open Geospatial Consortium (OGC) standard to achieve
interoperability [OGC, 2007], and built upon the Protocol for Metadata Harvesting (PMH), an Open Archives
Initiative (OAIl) standard for harvesting resource metadata over the web [OAI, 2002].

This work, contributes towards the vision of the Semantic Sensor Web, by adding semantic annotations
to sensor data, which could be complemented with ontologies for interoperability, analysis, and reasoning
over heterogeneous multimodal sensor data in order to provide enhanced meaning for sensor observations
[Sheth et al., 2008]. Similar efforts of the geospatial sensor web community, where heterogeneous sources
are made available as services [Chen et al., 2014]. Also, adds to the vision of Semantic Modelling, where

Page 1192

A. Samourkasidis and I.N. Athanasiadis / Towards a low-cost, full-service air quality data archival system

shared environmental resources are shared in ways that make model meanings explicit and meaningful, and
automatic associations possible. Semantic annotation of environmental datasets and models is a prerequisite
in order to explore the potential benefits of semantically explicit environmental modelling [Villa et al., 2009].

2 BACKGROUND AND RELATED WORK

2.1 Environmental sensor integration

Environmental sensor integration and management is an important component of environmental modelling.
It was early noted that environmental monitoring is required to protect the public and the environment from
toxic contaminants and pathogens that can be released into a variety of media. Thus accurate, inexpensive,
long-term monitoring of environmental contaminants is needed using sensors that can be operated on site
or in situ [Ho et al., 2005]. Undoubtedly, easy access to sensory information is of great added value and for
a variety of users. Though, only recently, Mason et al [2014] presented with a centralised tool for managing,
archiving, and serving point-in-time data in ecological research laboratories, that employes a service oriented
architecture.

In this work, we aim to offer services for accessing sensory information, by providing a low cost solution that
may run on sensor. We adopted SOS and O&M terminology, according to which an observation is an act
of observing a property or phenomenon, with the goal of producing an estimate of the value of the property
and it has a result, which is an estimated value of an observed property. A procedure is used in making
an observation and the result value is generated by a method, an algorithm, an instrument, a sensor, or a
system. As an example, considering the procedure of observing temperature with an analog thermometer,
the result may be 18°C.

2.2 Raspberry Pi

The Raspberry Pi is a credit-card sized computer, equipped with a 700 MHz ARM processor, that weights
45 g. The Raspberry Pi ‘Model B’ has 512 MB of RAM, and Ethernet controller for wired internet and two
USB ports. Instead of a hard disk it uses an SD card. Itis also equipped with 26 GPIO pins (General Purpose
Input Output) for connecting various low-level peripherals, and several manufacturers have released interface
boards that are connected via the GPIO pins.

Raspberry Pi operates with Debian and Arch Linux ARM distributions, and programming tools are available
for Python, which is the main programming language. It also supports several other popular programming
languages, including Java and C/C++ [Upton and Halfacree, 2013]. It costs about 50 USD.

2.3 AirPi kit

The AirPiis an interface board for Raspberry Pi, that connects over GPIO pins and is equipped with amateur,
low cost sensors of basic air quality and weather information. AirPi captures carbon monoxide, nitrogen
dioxide, temperature, humidity, air pressure. It is accompanied with software libraries in Python for program-
ming sensors and uploading sensor data to the internet. Similar two Raspberry Pi, the AirPi follows the open
hardware philosophy, and it can be further extended with other sensors, including a GPS module [Dayan and
Hartley, 2013]. It costs roughly 90 USD including the sensors.

3 SYSTEM SPECIFICATION

Our goal with this work was to demonstrate that a sensor node can become an active archiver of its own
recordings. Instead of being just a capturing device that pushes data on the web, we demonstrate that
current low-cost hardware is powerful enough to provide archival services “on sensor”. Thus, we assembled
together a Raspberry Pi computer with the AirPi kit for sensing air quality and weather data, and developed
a software system called AiRCHIVE which is effectively a web server running on Raspberry Pi and provides

Page 1193

A. Samourkasidis and I.N. Athanasiadis / Towards a low-cost, full-service air quality data archival system

with added-value services for making available sensor observations at real time, while it also operates as a
permanent data storage of sensor data.

In order to demonstrate interoperability, we adopted the Sensor Observation Service (SOS) standard [OGC,
2007]. SOS defines a Web service interface which allows querying observations, sensor metadata, as well
as representations of observed features in heterogeneous sensor systems.

3.1 User types and key requirements

User types. We identify three different types of users in AiRCHIVE.

e First is the system owner, who has full access both locally and from internet via SSH. As a system
administrator is able to update system software, or restart the device.

e Second comes the web user, who has access to the system through a public webpage. The web-user
submits queries to the system, using the Graphical User Interface (GUI), which responds with a visual
representation of observed properties. He may be interested in current (real time) measurements, or
historical ones.

e Third are the software agents that may contact the system as data harvesters. They interact with
AiRCHIVE using different vocabularies and protocols to submit requests. One may follow the SOS
protocol for sensory measurements, while another could use the OAI-PMH. They interact with the
system with RESTful web-services over the http protocol.

Key requirements. A/RCHIVE works as a self-contained station for sensory data dissemination and
archival that serves both real time access and long term storage of sensory data. We demonstrate the sys-
tem with a low cost sensor node made by assembling the AirPi kit with Raspberry Pi. AiIRCHIVE collects air
quality measurements and stores them as observed properties in a time-stamped database. Subsequently,
it makes them available over the web. At the same time, it has the capacity to perform Quality Assurance
and Quality Control operations on the data collected. While in this work we dont discuss the quality assur-
ance process in detail, we envision a hybrid expert system similar to those we have developed in the past
[Athanasiadis et al., 2010; Athanasiadis and Mitkas, 2004]. While such automated systems almost always
involve some kind of interaction with experts, this is considered an external process to the current system.

Any web user may access AIRCHIVE'’s sensory data and perform queries. Web users may interactively
explore data, and render them as graphs in their web browser, or download the corresponding datasets as
files (i.e. in Comma Separated Value (CSV) format).

AiRCHIVE offers query services for harvesters that adopt either SOS or PMH standards. Implemented as

RESTful services SOS queries return responses in O&M format. Queries in OAI/PMH may respond with one
or more metadata profiles.

3.2 Abstract architectural design

AIRCHIVE is composed of five main components each providing different services, shown in Figure 1.

First comes the data capture component that actually collects sensed measurements from the sensory
device. In our case, it interfaces AirPi sensors via the GPIO to Raspberry Pi, and contributes the result. This
component is custom to hardware and sensor requirements, however the general behaviour remains the
same: at regular time intervals it acquires the result from the sensor and makes it available to the system.

The result of the property observed by the sensor is subsequently stored in the Database component, along
with a time stamp. The database component is also able to respond to queries.

Page 1194

A. Samourkasidis and I.N. Athanasiadis / Towards a low-cost, full-service air quality data archival system

A data validation component (optional) may intervene between data capture and database components.
Its role is to apply some quality assurance/quality control process and identify hardware or sensor errors.
Additionally, it could associate the measurement with a quality flag, by applying rules, or more empirical
procedures (statistical, data driven, etc) [Athanasiadis et al., 2010]. Such a component is essential for
ensuring data reliability and user confidence.

The data processing component is an intermediate layer between the relational database and the web
server. It transforms arguments (submitted by users/harvesters with their queries) into appropriate database
queries. It also works in the vice-versa manner, as it transforms database outputs into the format requested

by the user.

Last, but not least, the Web Server serves three different user types. It provides the GUI for the human
web user to submit queries for observed properties, and visualise graphs. As a Sensor Service server,
interacts with harvesters submitting their queries in the SOS standard. As an PMH/OAI server disseminates
preprocessed data on the Semantic Web, after a PMH harvester submits its query.

————————— T S8

fen)
w |
b

update
shutdown!

response |

harvester

Figure 1. Abstract architecture

4 DETAILED DESIGN AND IMPLEMENTATION
4.1 System components

AIRCHIVE system components were implemented as services using Python. In the current status of imple-
mentation, we have not deployed the data validation component yet.

Data capture and Database components. AirPi comes with a Python module, which enables (using i2c
and SPI buses) to read the sensors’ results, print them on the system console, and upload them on a
webserver. Based on this module, we developed a Python module, that stores sensor data in an time-
stamped SQLite database. We also set the frequency that measurements are taken to be every five minutes.

The SQLite database stores primary data in a single table of six columns: Timestamp, Carbon Monoxide,
Nitrogen Dioxide, Temperature, Relative Humidity, and Noise.

Data processing service. This service is the business logic layer that intervenes between database and
web service. It is a Python module (implemented by us), which takes all arguments that a harvester agent

Page 1195

A. Samourkasidis and I.N. Athanasiadis / Towards a low-cost, full-service air quality data archival system

submits within its HTTP GET request, or a human user from GUI. Subsequently, these arguments are trans-
formed into an SQL command, and are submitted directly to the database, using the SQLite Python library.
This module also renders database outputs appropriately in the format requested by the harvester. When the
harvester does not specify a response format, it applies the default formatting for every observed property.
Data preprocessing service default response is in JSON format, which is the requirement of the the web
service GUI.

Web service. The web service transforms AIRCHIVE to a Sensor Observation Service server and an OAI
repository at the same time. It also provides graphical representations of the results for user requests. Web
service handles SOS or PMH harvesters’ arguments that are submitted through their queries.

In order to provide static and dynamic content, as web services in AiIRCHIVE, we used Flask [Grinberg,
2014], a microframework for Python, that supports both for RESTful services and a template engine. Flask
renders HTML templates using user arguments. We have developed the appropriate templates, so that
AIiRCHIVE is able to respond to SOS or OAI requests with observations that are stored in the database.
Also, we developed templates for rendering the webpages of the system that enable user interaction. We
also employed FLOT [Laursen and Schnur, 2007], a JavaScript plotting library for jQuery, for creating data
graphs on the fly.

5 INSTALLATION AND OPERATION

5.1 Installation

The AIRCHIVE implementation of both data capture and web services operate as Linux daemons, which
start to operate after system boots. For minimising energy consumption while ensuring reliable result mea-
surement, we decided to set the system to capture data every five minutes. The data capture service is
triggered twelve times per hour. This is a design choice made based on the needs of the current system,
while we have tested its operation with much smaller sampling frequencies. The data processing service is
called when a user or a harvester submits a request to the web service, and responds with the corresponding
result. Since Raspberry Pi runs on Linux distribution, the system owner may connect to it via Secure SHell
(ssh) and update it, get a backup of the database or shut it down for energy or security reasons.

5.2 Providing services to harvester agents

Harvesters can submit queries to AIRCHIVE, which responds with formatted data. A harvester is a client
application that issues PMH or SOS requests. Queries are expressed as either HTTP GET or POST methods.
POST has the advantage of imposing no limitations on the length of arguments [OAI, 2002]. As we support
for two types of harvesters we decided to allocate a different base URL for each. All requests consist of a
list of keyword arguments, which take the form of key = value pairs. Arguments may appear in any order
and multiple arguments must be separated by ampersands (&). A common key for both types of harvesters
is verb.

Sensor observation service

Get Observation

Describe sensor

Harvester

Figure 2. Harvester HTTP GET request

O&M response

Get Capabililies

Page 1196

A. Samourkasidis and I.N. Athanasiadis / Towards a low-cost, full-service air quality data archival system

Use case 1: Machine interoperability with SOS.
Base URL for a SOS request is airchive.logismi.co/sos. The SOS core requirements class defines three
operations and the corresponding verbs made available are:

e GetCapabilities is used to access to metadata and detailed information about the available opera-
tions.

e DescribeSensor enables querying of metadata about the sensors and sensor systems that are avail-
able.

e GetObservation is meant for accessing observations (observedProperty key) by selecting a sensor
by a Uniform Resource Name (Procedure key), time duration (eventTime key) and the response format
(responseFormat key).

For example, a typical GetObservation query is:

http://airchive.logismi.co/S0S/7request=GetObservation&offering=Airchive:DUTH:DHT22
&observedProperty=Pressure&eventTime=2014-06-16/

Use case 2: Machine interoperability with PMH.
Considering the Protocol for Metadata Harvesting, we adopted four operations. Available PMH verbs are:

e Identify: This verb is used to retrieve information about our repository. AIRCHIVES' re-
sponse includes: Repository base URL (baseURL), the earliest time that repository has records
(earliestDatestamp) and administrators’ email address (adminEmail).

e ListIdentifiers is used to retrieve available datasets hosted on AiRCHIVE. A typical request is :

http://airchive.logismi.co/oai/?verb=ListIdentifiers

e ListRecords is used to harvest records (measurements) from a specified by harvester, sensor (iden-
tifier). Harvester can use optional arguments in its query, to permit selective harvesting of records
based on time stamp. These optional arguments specify a lower (from) and an upper (until) bound
for timestamp-based selective harvesting. The response format of the requested metadata can be
specified with metadataPrefix key. When response’s length exceeds 100 records, AIRCHIVE sends
a resumptionToken, which is the flow control token returned by a previous ListRecords request that
issued an incomplete list. resumptionToken can be used as an optional argument.

A typical ListRecords request is :

http://airchive.logismi.co/oai/7verb=ListRecords&identifier=oai:Airchive:DUTH:
DHT22&metadataPrefix=oai_dc&from=2014-03-29&until=2014-03-30&resumptionToken=
L20140329R01

e ListMetadataFormats: AIRCHIVE returns a list with the metadata formats that can be disseminated
from our repository. We use an optional argument, identifier, that specifies the unique identifier of
the item for which available metadata formats are being requested. If this argument is omitted, then the
response includes all metadata formats supported by this repository.

5.3 Dissemination over the web

Use case 3 : Human user access via the webpages.

Web users submit queries to AiIRCHIVE using the graphical user interface (GUI). Specifically, a user may
select from a dropdown menu the ObservedProperty she is interested in, set a temporalFilter by specifing
the time-window, and then the requested data are visualised with the help of FLOT framework. Additionally,
those data can be extracted as comma-separated values (CSV) file.

Figure 3 shows the GUI response, when the user selects to visualize Carbon Monoxide concentrations for
the period of the iEMSs conference (June 16-19, 2014).

Page 1197

A. Samourkasidis and I.N. Athanasiadis / Towards a low-cost, full-service air quality data archival system

i, AIRCHIVE m About SensorObservationService OpenArchivelnitiative GraphicalUserinterface

Carbon Monoxide 2014-06-16 00:00 2014-06-19 23:55

W CO{npen]

0800 W00 0000 o0 1600 0000 0800 14600 oo 0800 1600

Figure 3. The GUI visualization. Using the FLOT framework, the user may create a graph to visualize
Carbon Monoxide recordings for the period of the iEMSs conference (June 16-19, 2014).

6 FUTURE RESEARCH

In this paper we presented a self-contained, low cost implementation of a sensor node that is able to archive
data coming from a sensor network and make them available as services using standards, or over the web
to end-users. Our experiments so far showed that while low cost sensors may not be very reliable and
possibly not suitable for scientific experimentation, mini-computers are absolutely capable of serving those
data over the web and provide with value-added services. While standardisation remains a challenge for
ensuring data interoperability, web access is still relevant. We implemented both services with state-of-the-
art tools, to experience only that the value of such a system is hindered only by network availability and
sensor manufacturing quality.

Currently, we have identified as set of open issues to address in the near future. First is the selection of
the datasets that are made available as resource under OAI/PMH. Currently, we offer monthly reports with
summaries, but his could be easily extended. The dynamic nature of these services reveals the second issue,
that of unique identifiers for sensor recordings and derivative products. Another issue is energy efficiency, as
such nodes may are installed in remote locations and depend on less reliable energy sources. Future work
could focus on optimising software to be less energy demanding. Another issue has to do with the fact that
Raspberry Pi doesn’t have a system clock as this would require a battery to power it. Time synchronises
when Internet is available. This raises the issue on how to time-stamp observed properties, when Internet
connectivity is not available. Finally, the data validation component is something we didn’t work so far, despite
the fact that sensors are prone to errors, and should be annotated with data quality attributes. However this
is mostly a methodological problem and there are not significant challenges from an implementation point of
view. Future work will focus to further extend AiRCHIVE and its functionality, and having the software tested,
we will offer it under an open source license.

The current installation of AIRCHIVE is available online http://airchive.logismi. co.

Page 1198

A. Samourkasidis and I.N. Athanasiadis / Towards a low-cost, full-service air quality data archival system

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013_FP7-REGPOT-2010-1, SP4 Capacities, Coordination and Support Ac-
tions) under grant agreement No 264226 (project title: Space Internetworking Center-SPICE). This presen-
tation reflects only the authors views and the Community is not liable for any use that may be made of the
information contained therein.

REFERENCES

Athanasiadis, |. N. and Mitkas, P. A. (2004). An agent-based intelligent environmental monitoring system.
Management of Environmental Quality, 15(3):238—249.

Athanasiadis, I. N., Rizzoli, A. E., and Beard, D. (2010). Data Mining Methods for Quality Assurance in an
Environmental Monitoring Network. In Diamantaras, K., Duch, W., and lliadis, L., editors, 20th Intl Conf on
Artificial Neural Networks (ICANN 2010), volume 6354 of LNCS, pages 451-456, Thessaloniki, Greece.
Springer Verlag.

Chen, N., Wang, K., Xiao, C., and Gong, J. (2014). A heterogeneous sensor web node meta-model for the
management of a flood monitoring system. Environmental Modelling & Software, 54:222 — 237.

Dayan, A. and Hartley, T. (2013). AirPI Air Quality and Weather Project. Available online: http://airpi.es.

Grinberg, M. (2014). Flask Web Development: Developing Web Applications with Python. O’Reilly Media,
Inc.

Harta, J. K. and Martinez, K. (2006). Environmental Sensor Networks: A revolution in the earth system
science? Earth-Science Reviews, 78:177-191.

Ho, C. K., Robinson, A., Miller, D. R., and Davis, M. J. (2005). Overview of Sensors and Needs for Environ-
mental Monitoring. Sensors, 5:4-37.

Laursen, O. and Schnur, D. (2007). FLOT: Attractive javascript plotting for jquery. Available online: http:
//www.flotcharts.org.

Mason, S. J., Cleveland, S. B., Llovet, P., Izurieta, C., and Poole, G. C. (2014). A centralized tool for managing,
archiving, and serving point-in-time data in ecological research laboratories. Environmental Modelling &
Software, 51:59 — 69.

OAI (2002). Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH). Available online: http:
//openarchives.org.

OGC (2007). Sensor Observation Service, Open Geospatial Consortium Standard. Available online: http:
//www.opengeospatial.org/standards/sos.

Sheth, A., Henson, C., and Sahoo, S. (2008). Semantic Sensor Web. IEEE Internet Computing, 12(4):78-83.
Upton, E. and Halfacree, G. (2013). Raspberry Pi User Guide. John Wiley & Sons.

Villa, F., Athanasiadis, I. N., and Rizzoli, A. E. (2009). Modelling with knowledge: a review of emerging
semantic approaches to environmental modelling. Environmental Modelling and Software, 24(5):577-587.

Page 1199

