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Abstract

The fuzzy lattice reasoning (FLR) classifier is presented for inducing descriptive, decision-making
knowledge (rules) in a mathematical lattice data domain including space RN. Tunable generalization
is possible based on non-linear (sigmoid) positive valuation functions; moreover, the FLR classifier
can deal with missing data. Learning is carried out both incrementally and fast by computing dis-
junctions of join-lattice interval conjunctions, where a join-lattice interval conjunction corresponds
to a hyperbox in RN. Our testbed in this work concerns the problem of estimating ambient ozone
concentration from both meteorological and air-pollutant measurements. The results compare favor-
ably with results obtained by C4.5 decision trees, fuzzy-ART as well as back-propagation neural
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networks. Novelties and advantages of classifier FLR are detailed extensively and in comparison
with related work from the literature.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Fuzzy lattice reasoning (FLR); Classification; Machine learning; Missing values; Ambient ozone
estimation

1. Introduction

Induction of rules from the training data towards classification has been popular due as
well to the descriptive, decision-making knowledge represented by rules [94,95]. In order to
be further useful a rule should also be able to generalize accurately.

Fuzzy inference systems (FISs) is a technology developed for granular rule induction
and generalization based on fuzzy logic [41,44,75,78,87,88]. Note that since a data cluster
can be interpreted as a (fuzzy) granule, data clustering [39,43,116] may be closely related to
fuzzy rule induction. Neural implementations have provided conventional FISs a capacity
for parallel implementation [44,73,86].

A novel analysis and design of FISs was proposed lately based on lattice theory [48,49].
In addition, previous work has introduced a series of fuzzy neural networks, namely fuzzy

lattice neural (FLN) networks for clustering and classification in disparate data domains
based on lattice theory. In particular, the r-FLN, r-FLNMAP, dr-FLN, and FLNtf neu-
ral networks have demonstrated their effectiveness in disparate data classification applica-
tions involving numbers, (fuzzy) sets, symbols, linear operators, hyperspheres, Boolean
propositions, events in a probability space, waveforms, and graphs [52,53,55,63,89,91].
This work presents the fuzzy lattice reasoning (FLR) classifier for inducing rules based
on hyperboxes in the non-complete lattice RN. Lattice theory equips the FLR classifier
with sound tools whose effectiveness is demonstrated comparatively in several computa-
tional experiments below.

The computation of hyperboxes in the Euclidean space RN has been a popular method
for inducing rules towards classification [3,27,70,99,102,103,110,114]. A hyperbox may be
assigned a class label thus corresponding to the following rule: If a point p is inside hyper-
box h (let the latter be labeled by c) then p is in class c. For points outside all hyperboxes,
as well as for points inside overlapping hyperboxes, various conventions have been pro-
posed empirically. Advantages of hyperbox-based rule induction include fast computation
as well as straightforward interpretation. Disadvantages often include (1) a shortage of
tools for introducing tunable non-linearities, (2) restriction in the unit hypercube [0,1]N,
and (3) a shortage of tools for sound decision-making outside a hyperbox. The FLR clas-
sifier here retains the abovementioned advantages, moreover it mends the aforementioned
disadvantages based on lattice theory as explained below.

Classifier FLR deals with rules all along. In particular, during training, the FLR clas-
sifier conditionally adapts a hyperbox-shaped core region of fuzzy sets according to a prin-
ciple of minimal elongation of the hyperbox diagonal based on a series of training data
pairs (ai,ci), i = 1, . . . ,n, where ci is the class label of datum ai; note that a training data
pair (ai,ci) is interpreted here as rule ‘if ai then ci’, symbolically ai! ci. During testing,
the FLR classifies of a hitherto unknown rule antecedent a0 based on the rules induced
previously during training.
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The FLR classifier stems from neural-fuzzy classifier r-FLNMAP [52], the latter is
enhanced here in two novel ways. First, the r-FLNMAP is inherently restricted in com-
plete lattices, whereas the FLR is applicable in both complete and non-complete lattices
including the unit-hypercube [0, 1]N and the Euclidean space RN, respectively. Second,
the r-FLNMAP typically assumes solely a linear positive valuation function, whereas
the FLR here assumes tunable non-linear- (sigmoid, etc.) as well as linear-positive valua-
tion functions. Additional advantages of classifier FLR include a capacity for incremental
learning, the potential for tunable generalization beyond a hyperbox, a capacity for gran-
ular computing, a capacity to deal with missing data, and applicability beyond RN to a
general lattice data domain. Another novelty of this work is that the FLR classifier is
applied here in a real-world classification problem for ambient ozone estimation and com-
parative experimental results are reported extensively.

We point out that the term fuzzy lattice reasoning (FLR) has been introduced elsewhere
[54] in a classification problem towards automation of a surgical drilling operation. Preli-
minary work including some of the experimental results presented here in the unit-hyper-
cube, was reported in [4]. This work presents, in addition, (1) a theoretical substantiation
of novel mathematical tools with emphasis in the non-complete lattice RN, (2) an effective
employment of tunable non-linearities, and (3) a large number of new experimental results.

The layout of this paper is as follows. Section 2 presents mathematical lattice notions
and tools. Section 3 shows the practical relevance of mathematical tools. The FLR classi-
fier is described in Section 4. Section 5 describes the physical problem of ambient ozone
estimation. Section 6 demonstrates comparatively experimental results including useful
discussions. Connections with related work from the literature are presented in Section
7. Section 8 summarizes the contribution of this work including directions for future
research. Finally, the Appendix includes useful definitions followed by proofs of
propositions.

2. Mathematical lattice notions and tools

This section summarizes useful mathematical lattice notions and results [8,17,47,48,
51,90].

2.1. General lattices

Based on the notion partially ordered set (poset), whose definition is shown in the
Appendix, a lattice is defined as a poset any two of whose elements have both a greatest
lower bound (or meet), denoted by x ^ y, and a least upper bound (or join), denoted by
x _ y. A lattice L is called complete when each of its subsets has both a least upper bound
and a greatest lower bound in L. A non-void complete lattice has a least and a greatest

element denoted, respectively, by O and I. Note that if x,y are elements of a lattice then
x and y are either comparable (i.e. either x 6 y or y 6 x) or they are incomparable (i.e. nei-
ther x 6 y nor y 6 x, symbolically xky). A lattice without incomparable elements is called
totally-ordered (lattice). An example of a totally-ordered lattice is the set R of real
numbers.

Let L = L1 · � � � · LN be the Cartesian product of N lattices L1, . . . ,LN, namely constituent
lattices. A lattice inclusion relation can be defined in L as (x1, . . . ,xN) 6 (y1, . . . ,yN) if and
only if x1 6 y1, . . . ,xN 6 yN. The meet in L = L1 · � � � · LN is given by (x1, . . . ,xN) ^
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(y1, . . . ,yN) = (x1 ^ y1, . . . ,xN ^ yN), moreover the join in L is given by (x1, . . . ,xN) _
(y1, . . . ,yN) = (x1 _ y1, . . . ,xN _ yN). The dual of a lattice L is another lattice denoted by
Lo, which has, by definition, the same underlying set nevertheless its partial ordering rela-
tion (6o) is the converse of L, i.e. a 6o b in Lo if and only if b 6 a in L.

In this work a fuzzy set is denoted by (X,l), where X is the universe of discourse and l
is a fuzzy membership function l : X! [0,1]. The notion fuzzy lattice, next, was motivated
for extending the crisp lattice ordering relation ‘6’ to all pairs (x,y) in L · L including
incomparable lattice elements.

Definition 1. A fuzzy lattice is a pair hL,li, where L is a crisp lattice and (L · L,l) is a
fuzzy set with membership function l : L · L! [0,1] such that l(x,y) = 1 if and only if
x 6 y.

We remark that a fuzzy lattice is different from a L-fuzzy set; the latter is a mathemat-
ical generalization of a fuzzy set which maps a universe of discourse to a mathematical
lattice [30,61,62,64,111]. Furthermore, we point out that a fuzzy lattice is different from
a type 2 fuzzy set; the latter maps a universe of discourse to the collection of either con-
ventional fuzzy sets or of intervals, for dealing with ambiguity in practical applications
[58,71]. A requirement for a fuzzy lattice hL,li is that L should be a crisp lattice. However,
fuzzy relation l also holds, to a fuzzy degree, between incomparable lattice elements.
Note that the motivation for Definition 1 is similar to the motivation of other authors
for introducing a ‘fuzzy lattice’ [13,79]. An instrument for fuzzifying a crisp lattice is
defined next.

Definition 2. An inclusion measure r in a complete lattice L is a real function
r : L · L! [0, 1] such that for u,w,x,y 2 L the following conditions are satisfied:

(C0) r(x,O) = 0, x 5 O

(C1) r(x,x) = 1, "x 2 L
(C2) u 6 w) r(x,u) 6 r(x,w) – The Consistency Property

(C3) x ^ y < x) r(x,y) < 1.

For non-complete lattices condition C0 is dropped. Note that in every lattice L we have
the equivalence x ^ y < x () y < x _ y [8]; therefore condition C3 can be replaced by the
following equivalent condition: (C3 0) y < x _ y) r(x,y) < 1.

Inclusion measure r(x,y) is similar to several other ones introduced in the literature
between (fuzzy) sets [11,15,26,62,86,104,105,118]. Nevertheless, Definition 2 is more
general since it applies to any kind of lattice, not only to a lattice of (fuzzy) sets. More
specifically, r(x,y) can be interpreted as the fuzzy degree to which x is less than y; therefore
notations r(x,y) and r(x 6 y) will be used interchangeably. Note that similar in spirit to
an inclusion measure function r(x,y) is a zeta function f(x,y) in a poset [66]. The advan-
tage of Definition 2 is that an inclusion measure r in a crisp lattice L guarantees that hL,ri
is a fuzzy lattice as shown in the following proposition.

Proposition 3. If r : L · L! [0,1] is an inclusion measure on lattice L, then hL,ri is a fuzzy

lattice.

The proof of Proposition 3 is shown in the Appendix.
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A valuation is defined as a real function v : L! R which satisfies v(x _ y) = v(x) +
v(y) � v(x ^ y), x,y 2 L. A valuation is called positive if and only if x < y) v(x) < v(y)
[8]. Based on a positive valuation, two different inclusion measure functions can be intro-
duced as follows.

Proposition 4. If L is a (complete) lattice and v : L! R is a positive valuation (with v(O) = 0)

then (1) kðx; uÞ ¼ vðuÞ
vðx_uÞ, and (2) sðx; uÞ ¼ vðx^uÞ

vðxÞ are inclusion measures.

The proof of Proposition 4 is shown in the Appendix.
We remark that both inclusion measures k(x,u) and s(x,u) have been introduced in [45].

Note that inclusion measure s(x,u) as well as k(x,u) can be interpreted as a degree of ‘sub-
sethood’ of x in u [26]. Consider a subset (powerset) lattice, where the partial order is the
subset relation. Then, inclusion measure s(x,u) above, for a suitably selected positive
valuation function v, can be used for defining a degree of inclusion of a subset x to a subset
u. However, there is a serious drawback in the practical employment of s(x,u). More
specifically for x ^ u = ; there follows s(x,u) = 0, hence a sensible decision is not possible.
Nevertheless it is always k(x,u) 5 0 for x,u 5 ;, hence a sensible decision is always
possible. The latter is an advantage for inclusion measure k(x,u). Therefore, in the sequel,
our interest mainly focuses on inclusion measure k(x,u).

Another useful tool implied by a positive valuation function in a general lattice L is a
metric d : L · L! R defined as d(x,y) = v(x _ y) � v(x ^ y) – for the definition of a metric

see in the Appendix.
Given (1) a product lattice L = L1 · � � � · LN, and (2) both a positive valuation

vi : Li! R, i = 1, . . . ,N and an isomorphic function hi : L@i ! Li in every constituent lattice
Li, i = 1, . . . ,N – for the definition of an isomorphism see in the Appendix – then: (1) a posi-
tive valuation function v : L! R is given by v(x1, . . . ,xN) = v1(x1) + � � � + vN(xN), (2) an
isomorphic function h : Lo! L is given by h(x1, . . . ,xN) = (h1(x1), . . . ,hN(xN)), and (3)
countably infinite Minkowski metrics dp in L are given by

dpðx; yÞ ¼ dpððx1; . . . ; xNÞ; ðy1; . . . ; yNÞÞ ¼ ½ðd1ðx1; y1ÞÞ
p þ � � � þ ðdN ðxN ; yN ÞÞ

p�1=p

where p = 1,2, . . . and di(xi,yi) = vi(xi _ yi) � vi(xi ^ yi), xi,yi 2 Li, i = 1, . . . ,N. Note that,
conventionally, a Minkowski metric dp requires parameter p to be a natural (integer) num-
ber [42]. However, parameter p above can be a real number resulting in uncountably infi-
nite Minkowski metrics dp in L.

In the remaining of this work interest focuses on Cartesian products L = L1 · � � � · LN of
N ‘totally-ordered’ lattices Li, i = 1, . . . ,N. Note that the aforementioned Cartesian prod-
uct lattice L is not totally-ordered.

2.2. Extensions to lattices of intervals

Let Li be a totally-ordered lattice. It is known that the set s(Li) = {[a,b] : a,b 2 Li} of
generalized intervals is a mathematical lattice [46–48,50,92] with lattice-meet and lattice-

join given, respectively, by [a,b] ^ [c,d] = [a _ c,b ^ d] and [a,b] _ [c,d] = [a ^ c,b _ d].
Moreover, the corresponding lattice order relation [a,b] 6 [c,d] in s(Li) is equivalent to
‘c 6 a’.AND.‘b 6 d’. The following proposition introduces a positive valuation in a lattice
of generalized intervals.
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Proposition 5. Let Li be a totally-ordered lattice, let v : Li! R be a positive valuation, and

let h : L@i ! Li be an isomorphic function in Li. Then a positive valuation function v : s(Li)!
R is given by v([a, b]) = v(h(a)) + v(b).

The proof of Proposition 5 is shown in the Appendix.
A metric in a product lattice L = L1 · � � � · LN can quantify the size of a lattice interval

in s(L) as follows.

Definition 6. Consider a product lattice L = L1 · � � � · LN. Let vi : Li! R be a positive
valuation function in the constituent lattice Li, i = 1, . . . ,N. Then the diagonal of an
interval [a,b] 2 s(L), with a 6 b, is defined as a non-negative real function diagp : sðLÞ !
Rþ0 given by diagp([a,b]) = dp(a,b), p = 1,2 . . .

The following proposition establishes that diagp([a,b]) equals the largest distance for
two points x and y in the interval [a,b].

Proposition 7. For p = 1,2, . . . we have diagp([a,b]) = maxx,y2[a,b]dp (x,y).

The proof of Proposition 7 is shown in the Appendix.

3. Practical relevance

Two specific lattices of practical interest will be considered next including, first, the
complete lattice unit-hypercube IN, where I = [0,1] and, second, the non-complete lattice
RN – note that the treatment of space RN is a novelty here. An interval in either IN or
RN, corresponds to a N-dimensional hyperbox, or hyperbox for short. It is known that
the set of hyperboxes in IN(RN) is a complete (non-complete) lattice [90]. We point out that
dealing with hyperboxes has been popular in machine learning as well as in neural com-
puting [3,19,27,99,102,103,110,114] without, however, taking advantage of the lattice-
ordering relation of hyperboxes. An important advantage of considering the latter relation
is the capacity to introduce tunable non-linearities towards improving performance as
shown below.

Any strictly increasing real function vi, with vi(0) = 0, in a constituent lattice Li,
i = 1, . . . ,N is an eligible positive valuation. Moreover, any strictly decreasing function
hi in a constituent lattice Li, i = 1, . . . ,N is an eligible isomorphic function. Below, we select
functions vi and hi such that equation v([a, b]) = 1 + diag1([a,b]) is satisfied in order to
build on the basic equations used by the r-FLN(MAP) model [52].

On the one hand, regarding the unit hypercube IN, two convenient functions vi and
hi are, respectively, vi(x) = x and hi(x) = 1 � x. It is known from [52] that the latter func-
tions vi and hi satisfy equality v([a,b]) = 1 + diag1([a,b]) in a constituent complete lattice
I = [0, 1]. On the other hand, regarding the Euclidean space RN, this work introduces
the following functions: viðxÞ ¼ 1

1þe�kðx�x0Þ, and hi(x) = 2x0 � x. Fig. 1 shows plots of both

aforementioned functions vi and hi for selected parameter values. It can be easily shown
that v([x,x]) = v(h(x)) + v(x) = 1. Hence,

vð½a; b�Þ ¼ vðhðaÞÞ þ vðbÞ ¼ ½1� vðaÞ� þ vðbÞ ¼ 1þ ½vðbÞ � vðaÞ� ¼ 1þ diag1ð½a; b�Þ:

Under the above assumptions, the Consistency Property C2 is demonstrated in Fig. 2,
where
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x ¼ ½0:1; 0:2� � ½0:3; 0:4�; u ¼ ½0:4; 0:7� � ½0:2; 0:5�; and

w ¼ ½0:4; 0:8� � ½0:2; 0:7�:

An inclusion measure k(Æ, Æ) of two boxes in Fig. 2 is computed as follows:

kðx6 uÞ¼ vðuÞ
vðx_uÞ¼

vð½0:4;0:7�� ½0:2;0:5�Þ
vð½0:1;0:7�� ½0:2;0:5�Þ ¼

v1ðh1ð0:4ÞÞþ v1ð0:7Þþ v2ðh2ð0:2ÞÞþ v2ð0:5Þ
v1ðh1ð0:1ÞÞþ v1ð0:7Þþ v2ðh2ð0:2ÞÞþ v2ð0:5Þ

kðx6wÞ¼ vðwÞ
vðx_wÞ¼

vð½0:4;0:8�� ½0:2;0:7�Þ
vð½0:1;0:8�� ½0:2;0:7�Þ¼

v1ðh1ð0:4ÞÞþ v1ð0:8Þþ v2ðh2ð0:2ÞÞþ v2ð0:7Þ
v1ðh1ð0:1ÞÞþ v1ð0:8Þþ v2ðh2ð0:2ÞÞþ v2ð0:7Þ

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.4

-0.3

-0.2

-0.1

0

0.1
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0.9
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1.1

Fig. 1. A sigmoid positive valuation vi(x) = 1/(1 + exp(�k(x � x0))) and a linear isomorphic function
hi(x) = 2x0 � x, where k = 6 and x0 = 0.4, on the totally-ordered constituent lattice R of real numbers.

x

w

u

0

1

0.8

0.6

0.4

0.2

10.80.60.40.2

Fig. 2. Using the inclusion measure kðx 6 uÞ ¼ vðuÞ
vðx_uÞ for any choice of both a positive valuation v(Æ) and an

isomorphic function h(Æ) in a constituent lattice [0,1] it follows k(x,u) 6 k(x,w) according to the Consistency

Property u 6 w) k(x 6 u) 6 k(x 6 w).
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First, in the unit hypercube IN, functions vi(x) = x and hi(x) = 1 � x, i = 1,2 imply

kðx 6 uÞ ¼ ð1� 0:4Þ þ 0:7þ ð1� 0:2Þ þ 0:5

ð1� 0:1Þ þ 0:7þ ð1� 0:2Þ þ 0:5
ffi 0:89; and

kðx 6 wÞ ¼ ð1� 0:4Þ þ 0:8þ ð1� 0:2Þ þ 0:7

ð1� 0:1Þ þ 0:8þ ð1� 0:2Þ þ 0:7
ffi 0:90

Second, in the space RN, functions vi(x) = 1/(1 + exp(�k(x � x0))) and hi(x) = 2x0 � x

with parameter values k = 6 and x0 = 0.4, i = 1,2 imply

kðx 6 uÞ ¼ 0:5þ 0:8581þ 0:7685þ 0:6457

0:8581þ 0:8581þ 0:7685þ 0:6457
ffi 0:8856; and

kðx 6 wÞ ¼ 0:5þ 0:9168þ 0:7685þ 0:8581

0:8581þ 0:9168þ 0:7685þ 0:8581
ffi 0:8947

That is, as guaranteed by the Consistency Property C2, the degree of inclusion of box x in
box w is larger than the degree of inclusion of x in u because box u is contained in box w.
The above example has demonstrated, in addition, four important points. First, the inclu-
sion measure k(x,u) has a capacity to generalize beyond the interval core of u or w. Sec-
ond, the inclusion measure k(x,u) can involve a non-trivial hyperbox x. Third, a larger
value k(x,w) is computed for a hyperbox (here for hyperbox w), which needs to be ‘dis-
torted’ the least so as to include x; the latter corresponds to Occam razor semantics as
explained below. Fourth, a positive valuation may introduce non-linearities in the data
space.

The following example demonstrates advantages of the metric distance d1(Æ, Æ) compared
with other distance functions from the literature.

Example

In [99] as well as in [114] a distance function dS(x, [a,b]) between a point x and an inter-
val [a,b] is defined as

dSðx; ½a; b�Þ ¼

a� x; x 6 a

0; a 6 x 6 b

x� b; x P b

8>><
>>:

Specific distances between points and boxes are computed in the following with reference
to Fig. 3. It turns out dS(x1,u) = 0 = dS(x2,u), furthermore there follows the L1 distance
dS(x1,x2) = 0.8. Nevertheless, the aforementioned results are counter-intuitive because
they violate the common sense triangle-inequality dS(x1,x2) 6 dS(x1,u) + dS(u,x2).

Here we decided to adhere to Fréchet’s original definition for a metric [42] shown in the
Appendix. Unfortunately not all metrics produce common sense results. For instance, a
known metric (distance) between convex sets is the Hausdorf metric dH(Æ, Æ) [18]. It is known
that the distance dH(Æ, Æ) between two intervals [a,b] and [c,d] on the real line equals
dH([a,b], [c,d]) = max{ja � cj, jb � dj} [32,37]. In the following we compute the L1 distance
between boxes in Fig. 3.
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dHðv;wÞ ¼ dHð½0:2; 0:3�; ½0:7; 0:8�Þ þ dHð½0:6; 0:7�; ½0:2; 0:3�Þ ¼ 0:5þ 0:4 ¼ 0:9

dHðu;wÞ ¼ dHð½0:2; 0:7�; ½0:7; 0:8�Þ þ dHð½0:4; 0:7�; ½0:2; 0:3�Þ ¼ 0:5þ 0:4 ¼ 0:9

However, by inspecting Fig. 3, it is reasonable to expect d(v,w) > d(u,w). In conclusion,
even though the Hausdorf distance dH (Æ, Æ) is a metric, it produces counter-intuitive results.
In the following we show that metric d1(Æ, Æ) produces intuitive results.

The metric distance d1(Æ, Æ) between two boxes in Fig. 3 is computed as follows:

d1ðv;uÞ¼ d1ð½0:2;0:3�; ½0:7;0:8�Þþd1ð½0:6;0:7�; ½0:2;0:3�Þ ¼ v1ð½0:2;0:3�_ ½0:7;0:8�Þ

� v1ð½0:2;0:3� ^ ½0:7;0:8�Þþv2ð½0:6;0:7�_ ½0:2;0:3�Þ� v2ð½0:6;0:7�^ ½0:2;0:3�Þ

¼ v1ð½0:2;0:8�Þ� v1ð½0:7;0:3�Þþv2ð½0:2;0:7�Þ�v2ð½0:6;0:3�Þ ¼ v1ðh1ð0:2ÞÞþ v1ð0:8Þ

�v1ðh1ð0:7ÞÞ� v1ð0:3Þþ v2ðh2ð0:2ÞÞþv2ð0:7Þ� v2ðh2ð0:6ÞÞ� v2ð0:3Þ

d1ðu;wÞ¼ d1ð½0:2;0:7�; ½0:7;0:8�Þþd1ð½0:4;0:7�; ½0:2;0:3�Þ ¼ v1ð½0:2;0:7�_ ½0:7;0:8�Þ

�v1ð½0:2;0:7� ^ ½0:7;0:8�Þþ v2ð½0:4;0:7�_ ½0:2;0:3�Þ� v2ð½0:4;0:7� ^ ½0:2;0:3�Þ

¼ v1ð½0:2;0:8�Þ� v1ð½0:7;0:7�Þþv2ð½0:2;0:7�Þ�v2ð½0:4;0:3�Þ ¼ v1ðh1ð0:2ÞÞþ v1ð0:8Þ

�v1ðh1ð0:7ÞÞ� v1ð0:7Þþ v2ðh2ð0:2ÞÞþv2ð0:7Þ� v2ðh2ð0:4ÞÞ� v2ð0:3Þ

First, in the unit hypercube IN, functions vi(x) = x and hi(x) = 1 � x, i = 1,2 imply

d1ðv;wÞ ¼ v1ð0:8Þ þ v1ð0:8Þ � v1ð0:3Þ � v1ð0:3Þ
þ v2ð0:8Þ þ v2ð0:7Þ � v2ð0:4Þ � v2ð0:3Þ ¼ 1:8

d1ðu;wÞ ¼ v1ð0:8Þ þ v1ð0:8Þ � v1ð0:3Þ � v1ð0:7Þ
þ v2ð0:8Þ þ v2ð0:7Þ � v2ð0:6Þ � v2ð0:3Þ ¼ 1:2

Second, in the space RN, functions vi(x) = 1/(1 + exp(�k(x � x0))) and hi(x) = 2x0 � x

with parameter values k = 6 and x0 = 0.4, i = 1,2 imply

x2

x1

w

u
v

0

1

0.8

0.6
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Fig. 3. Various distances have been computed involving boxes v, u, w and points x1, x2. First, for the distance
dS(Æ, Æ) from [114] it follows dS(x1,u) = 0 = dS(x2,u), moreover dS(x1,x2) = 0.8; the latter results are counter-
intuitive because the triangle inequality dS(x1,x2) 6 dS(x1,u) + dS(u,x2) is violated. Second, for the Hausdorf
metric distance dH(Æ, Æ) from [18] it follows dH(v,w) = 0.9 = dH(u,w); by inspecting the above figure, the latter
equality is counter-intuitive. Third, for the distance d1(Æ, Æ) presented in this work for any positive valuation v(Æ)
and/or an isomorphic function h(Æ) in a constituent lattice it holds d1(v,w) > d1(u,w); moreover, the triangle
inequality d1(x1,x2) 6 d1(x1,u) + d1(u,x2) is preserved.
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d1ðv;wÞ ¼ v1ð0:6Þ þ v1ð0:8Þ � v1ð0:1Þ � v1ð0:3Þ þ v2ð0:6Þ

þ v2ð0:7Þ � v2ð0:2Þ � v2ð0:3Þ ffi 2:2299

d1ðu;wÞ ¼ v1ð0:6Þ þ v1ð0:8Þ � v1ð0:1Þ � v1ð0:7Þ þ v2ð0:6Þ

þ v2ð0:7Þ � v2ð0:4Þ � v2ð0:3Þ ffi 1:4576

Therefore, d1(v,w) > d1(u,w) as expected intuitively from Fig. 3 by inspection. In the fol-
lowing we show that the common sense triangle inequality d1(x1,x2) 6 d1(x1,u) + d1(x2,u)
is satisfied

d1ðx1;x2Þ¼ d1ð½0:2;0:2�; ½0:7;0:7�Þþd1ð½0:4;0:4�; ½0:7;0:7�Þ

¼ v1ð½0:2;0:7�Þ�v1ð½0:7;0:2�Þþv2ð½0:4;0:7�Þ� v2ð½0:7;0:4�Þ

¼ v1ðh1ð0:2ÞÞþv1ð0:7Þ� v1ðh1ð0:7ÞÞ� v1ð0:2Þþv2ðh2ð0:4ÞÞþv2ð0:7Þ�v2ðh2ð0:7ÞÞ�v2ð0:4Þ

d1ðx1;uÞ¼ v1ðh1ð0:2ÞÞþv1ð0:7Þ� v1ðh1ð0:2ÞÞ� v1ð0:2Þþv2ðh2ð0:4ÞÞþv2ð0:7Þ�v2ðh2ð0:4ÞÞ�v2ð0:4Þ

d1ðx2;uÞ¼ v1ðh1ð0:2ÞÞþv1ð0:7Þ� v1ðh1ð0:7ÞÞ� v1ð0:7Þþv2ðh2ð0:4ÞÞþv2ð0:7Þ�v2ðh2ð0:7ÞÞ�v2ð0:7Þ

First, in the unit hypercube IN, functions vi(x) = x and hi(x) = 1 � x, i = 1,2 imply

d1ðx1; x2Þ ¼ 1:6; d1ðx1; uÞ ¼ 0:8 and d1ðx2; uÞ ¼ 0:8

Second, in the space RN, functions vi(x) = 1/(1 + exp(�k(x � x0))) and hi(x) = 2x0 � x

with parameter values k = 6 and x0 = 0.4, i = 1,2 imply

d1ðx1; x2Þ ¼ 1:9694; d1ðx1; uÞ ¼ 0:9847 and d1ðx2; uÞ ¼ 0:9847

Therefore, the triangle inequality d1(x1,x2) 6 d1(x1, u) + d1(x2,u) is satisfied.

4. The fuzzy lattice reasoning (FLR) classifier

This section describes and analyzes the operation of the FLR classifier.

4.1. Rule induction (learning)

The fuzzy lattice reasoning (FLR) classifier induces rules from the training data by let-
ting a rule’s diagonal size increase up to a maximum threshold size Dcrit (Fig. 4).

The FLR is a leader-follower classifier [24], which learns rapidly in a single pass
through the training data. The order of input data presentation is significant. The FLR
classifier may set out learning without a priori knowledge; however, a priori knowledge
can be supplied to the FLR classifier in the form of an initial set of rules.

The total number of rules to be learned is not known a priori but, rather, it is deter-
mined on-line during learning. Further training of the FLR classifier, using additional
training data, does not wash away previous learning. More specifically, retraining the
FLR classifier with a new data set either enhances previously learned rules (step-5 in
Fig. 4) or it creates new rules (step-2 in Fig. 4). There is only one (real number) parameter
to tune, that is the maximum threshold size Dcrit, which regulates the granularity of learn-

ing; the latter means the number of rules induced. It turns out that, in general, larger
values of Dcrit result in fewer (also, more generalized) rules, whereas smaller values of
Dcrit result in more (also, more specific) rules. Note that in step-4 (Fig. 4), condition
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‘diag1(ai _ AJ) 6 Dcrit’ can equivalently be replaced by condition ‘k(AJ 6 ai) P qcrit’,
where qcrit = N/(N + Dcrit) () Dcrit = N(1 � qcrit)/qcrit with the dimensionless vigilance

parameter qcrit in the interval [0.5,1], i.e. qcrit 2 [0.5,1].

4.2. Generalization

Fig. 5 describes the FLR classifier’s generalization based on a rule base RB induced
previously.

We remark that during both rule induction and generalization the inclusion measure
k(Æ, Æ) is used to compute, in parallel, a fuzzy degree of activation for each rule. It was
pointed out above that in the context of this work a positive valuation function vi : Li! R
and an isomorphic function hi : L@i ! Li are selected in a constituent lattice Li, i = 1, . . . ,n

such that vi([a,b]) = 1 + diag1([a,b]), where [a,b] 2 s(Li). It follows kða0 6 AlÞ ¼ vðAlÞ
vða0_AlÞ ¼

diag1ðAlÞþN
diag1ða0_AlÞþN. Based on the latter formula this work attaches Occam razor semantics to

inclusion measure k(Æ, Æ) as explained in the following. Let A1, . . . ,AL be hyperboxes (rule
antecedents) competing over hyperbox (rule antecedent) a0, i.e. the largest k(a0 6 Al),
l = 1, . . . ,L is sought. It follows that winner AJ among hyperboxes A1, . . . ,AL will be the
one whose diagonal size needs to be modified, comparatively, the least so as to include
a0. In this sense, the winner box AJ is the simplest hypothesis that fits the data, that is
Occam razor semantics [77].

Fig. 5. Generalization by the fuzzy lattice reasoning (FLR) classifier.

Fig. 4. Rule induction by the fuzzy lattice reasoning (FLR) classifier.
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4.3. FLR classifier execution

This section illustrates the mechanics of classifier FLR. Consider three rules A1! c0,
A2! c1, A3! c1, whose antecedents (boxes) A1, A2, and A3 are shown in Fig. 6. Assume
a sigmoid positive valuation function v(x) = 1/(1 + exp(�k(x � x0))) and a linear isomor-
phic function h(x) = 2x0 � x with parameter values k = 6 and x0 = 0.4 in both dimen-
sions. The latter functions are shown in Fig. 1. In the following we demonstrate
execution of classifier FLR for training assuming a used-defined threshold size Dcrit =
1.05.

Let an input (rule) a! c1 appear as shown in Fig. 6(a). Recall that initially all rules are
‘set’, that is all rules can claim input a! c1. According to classifier FLR for training, all
rules compete over input rule a! c1 (Fig. 6(b)) by calculating the following inclusion
measures:
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Fig. 6. Execution of classifier FLR for training. Functions v(x) = 1/(1 + exp(�k(x � x0))) and h(x) = 2x0 � x

were used in both dimensions on the plane with parameter values k = 6 and x0 = 0.4. (a) Input rule a! c1, where
‘a’ is a point and ‘c1’ is the corresponding class label, is presented to the initially ‘set’ rule base
RB = {A1! c0,A2! c1,A3! c1}. (b) Competition among the ‘set’ rules in RB: Winner is rule A2! c1, since
k(a 6 A1) = 0.7847, k(a 6 A2) = 0.8738, and k(a 6 A3) = 0.8236. Nevertheless rule A2! c1 is ‘reset’ because it
does not satisfy the Assimilation Condition; in particular diag1(a _ A2) = 1.10 > 1.05 = Dcrit. (c) Competition
among the ‘set’ rules in RB: Winner is now rule A3! c1, which satisfies the Assimilation Condition; in particular,
diag1(a _ A3) = 1.0434 < 1.05 = Dcrit. (d) The antecedent of the winner rule A3! c1 has been replaced by the
join-interval A03 ¼ a _ A3. The updated rule is A03 ! c1.
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kða 6 A1Þ ¼
vðA1Þ

vða _ A1Þ
¼ vð½0:2; 0:8� � ½1; 1:2�Þ

vð½0:2; 0:8� � ½0:2; 1:2�Þ

¼ vðhð0:2ÞÞ þ vð0:8Þ þ vðhð1ÞÞ þ vð1:2Þ
vðhð0:2ÞÞ þ vð0:8Þ þ vðhð0:2ÞÞ þ vð1:2Þ

¼ vð0:6Þ þ vð0:8Þ þ vð�0:2Þ þ vð1:2Þ
vð0:6Þ þ vð0:8Þ þ vð0:6Þ þ vð1:2Þ ffi 0:7847:

kða 6 A2Þ ¼
vðA2Þ

vða _ A2Þ
¼ vð½�0:2; 0:2� � ½0:3; 0:7�Þ

vð½�0:2; 0:4� � ½0:2; 0:7�Þ ffi 0:8738:

kða 6 A3Þ ¼
vðA3Þ

vða _ A3Þ
¼ vð½0:6; 0:8� � ½0:4; 0:7�Þ

vð½0:4; 0:8� � ½0:2; 0:7� Þ ffi 0:8236:

Hence, winner of the competition is rule A2! c1 because it includes input rule a! c1

more than any other rule. In order to test the Assimilation Condition we calculate the fol-
lowing diagonals:

diag1ða_A1Þ¼diag1ð½0:2;0:8�� ½0:2;1:2�Þ ¼ d1ð½ð0:2;0:2Þ;ð0:8;1:2Þ�Þ¼ d1ðð0:2;0:2Þ;ð0:8;1:2ÞÞ
¼ d1ð0:2;0:8Þþd1ð0:2;1:2Þ¼ vð0:8Þ� vð0:2Þþ vð1:2Þ� vð0:2Þffi 1:4456:

diag1ða_A2Þ¼diag1ð½�0:2;0:4�� ½0:2;0:7�Þ ffi 1:1000:

diag1ða_A3Þ¼diag1ð½0:4;0:8�� ½0:2;0:7�Þ ffi 1:0434:

It follows that winner rule A2! c1 is ‘reset’ because it does not satisfy the Assimilation

Condition since diag1(a _ A2) = 1.10 > 1.05 = Dcrit. According to algorithm FLR
(Fig. 4), competition resumes among the remaining rules as shown in Fig. 6(c). Winner
is now rule A3! c1, which satisfies the Assimilation Condition since diag1(a _ A3) =
1.0434 < 1.05 = Dcrit. In conclusion, the antecedent A3 of winner rule A3! c1 is replaced
by the join-interval a _ A3 ¼ A03 shown in Fig. 6(d).

Overlapping of rules (hyperboxes) is possible including ‘contradictory overlapping’ of
hyperboxes with different labels. Our experience in a large number of computational exper-
iments has shown that overlapping of contradictory rules (hyperboxes) is especially rare.

4.4. Fuzzy lattice reasoning (FLR) essentials

Four essentials of fuzzy lattice reasoning are summarized in this section.
First, according to the Assimilation Condition, rule induction may be effected by replac-

ing a hyperbox AJ by a larger hyperbox ai _ AJ. It follows that there might be points
within the larger hyperbox ai _ AJ which (points) are assigned category label CJ ‘induc-
tively’ without explicit evidence. The latter is called here Type I Generalization. Note that
Type I Generalization may result in overlapping of hyperboxes. The latter can be avoided
by conditionally augmenting the Assimilation Condition (Fig. 4, step-4) at the expense of
longer computer processing times. Our extensive experimental experience using a number
of data sets in various classification applications has shown that FLR’s capacity for gen-
eralization, defined as the percent classification accuracy on a testing data set, behaves like
a convex function in the threshold size Dcrit; hence, a globally optimum threshold size can
typically be sought by simple hill climbing. No theoretical analysis is currently available
regarding the aforementioned ‘convexity’, nevertheless relevant plots have been reported
[63]. Further theoretical study is a topic for future research.
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Second, a rule Al! Cl, l = 1, . . . ,L defines a fuzzy set k(x 6 Al) in the family of
hyperboxes such that hyperbox Al corresponds to the core of fuzzy set k(x 6 Al).
Different positive valuation functions imply different membership functions for
the fuzzy set k(x 6 Al). In all cases generalization becomes feasible beyond core
(hyperbox) Al. The latter generalization is called here Type II Generalization. Further-
more, note that x in k(x 6 Al) can be a hyperbox in order to compensate for data
ambiguity.

Third, fuzzy lattice reasoning can deal with semantics in at least two different senses: (1)
Occam razor semantics as explained above, and (2) non-numeric data, e.g. structured data
(graphs), etc., can be accommodated in a constituent lattice [47,91].

Fourth, the FLR classifier can deal with a missing data value in a constituent lattice Li

by replacing a missing datum with a lattice interval [a,b] such that vi([a,b]) = vi(hi(a)) +
vi(b) ffi 0. The latter replacement is semantically interpreted as ‘absence of information’.
For instance, a missing feature in the constituent lattice I = [0,1] in the N-dimensional unit
hypercube IN is replaced by [1,0]. Note that dealing with missing data values is an impor-
tant issue in practice [112].

4.5. Geometric interpretations on the plane and modes of reasoning

Assume that five rules, namely a1! 0, a2! 0, a3! 0, a4! 1, and a5! 1, have been
computed by the FLR classifier (Fig. 7). Let the first three rules map the antecedent boxes
a1, a2 and a3 to class label ‘0’, whereas let the last two rules map the antecedent boxes a4

and a5 to class label ‘1’. In Fig. 7, no antecedent boxes overlap each other but it could be
otherwise.

Each one of the rule antecedent boxes a1, . . . ,a5 can be regarded as a conjunctive logical
expression. For example, the conjunctive logical expression which corresponds to anteced-
ent box a3 = [0.1,0.2] · [0.4,0.7] is true for a point (x1,x2) if and only if ‘0.1 6 x1 6

0.2’.AND.‘0.4 6 x2 6 0.7’. It follows that class ‘0’ is a disjunction of three conjunctions
specified by the boxes a1, a2 and a3. In other words, class ‘0’ is true for a point (x1,x2)
if and only if ‘(x1, x2) 2 a1’.OR.‘(x1,x2) 2 a2’.OR.‘(x1,x2) 2 a3’. Likewise, class ‘1’ is true
for a point (x1,x2) if and only if ‘(x1,x2) 2 a4’.OR.‘(x1,x2) 2 a5’.

The FLR classifier supports at least two different modes of reasoning, namely General-

ized Modus Ponens and Reasoning by Analogy. On the one hand, Generalized Modus Pon-

ens is a common form of deductive reasoning whereby, in the context of this work, given
both a rule a1! cl and an antecedent x such that x 6 a1 it follows cl. Generalized modus
ponens is directly supported by FLR. For instance given ‘a2’ in Fig. 7(a) there follows class
‘0’. Moreover, in Fig. 7(b), given both a5! 1 and b 6 a5 there follows class ‘1’. On the
other hand, Reasoning by Analogy is a mode of approximate reasoning suitable for dealing
with incomplete knowledge. More specifically, given a set of rules al! cl, l = 1, . . . ,L as
well as an antecedent a0, such that a0 6 al for no l 2 {1, . . . ,L}, the FLR classifier selects
the rule which best fits the data (a0) in an Occam razor sense as explained above. An exam-
ple is illustrated in Fig. 7(c) where box b1 partially overlaps boxes a3 and a4, each one of
the latter boxes is mapped to a different class. The FLR classifier responds by calculating
the fuzzy degrees of inclusion k(b1 6 a3) and k(b1 6 a4); finally, box b1 is assigned to the
class label attached to the winner of the competition between a3 and a4. A less obvious
situation arises in Fig. 7(c) regarding box b2. Note that a conventional subsethood crite-
rion here fails because b2 is outside all rule antecedents a1, . . . ,a5. Nevertheless, using
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inclusion measure k, box b2 is assigned to the best fit, in an Occam razor sense as explained
above, among hyperboxes a1, . . . ,a5.

4.6. Complexity of both training and testing

When a rule ai! ci, i = 1, . . . ,n for training is presented then the fuzzy inclusion mea-
sure k(ai 6 Al), l = 1, . . . ,L is calculated for all L rules in the rule base RB. The worst-case
training scenario is to keep ‘resetting’ all L rules in RB for every input rule. Since both (1)
the largest value for L is L = n, and (2) a single pass through the data suffices for learning,
it follows that the training complexity of the FLR classifier is quadratic Oðn2Þ in the num-
ber n of rules/data for training. Likewise, it can be shown that the testing complexity of the
FLR classifier is linear OðnÞ.

5. The physical problem

The FLR classifier was applied in an environmental monitoring problem. This section
presents relevant information regarding the physical problem. Experimental results as well
as advantages of the FLR classifier are presented in the following section.
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Fig. 7. (a) Class 0 can be regarded as the logical disjunction ‘a1.OR.a2.OR.a3’ of three conjunctive logical
expressions specified by the boxes a1, a2 and a3, respectively. For instance, the conjunctive logical expression a3 is
true for a point (x1,x2) if and only if ‘0.1 6 x1 6 0.2’.AND.‘0.4 6 x2 6 0.7’. Likewise, class 1 can be regarded as
the logical disjunction ‘a4.OR.a5’ of two conjunctive logical expressions specified by the boxes a4 and a5,
respectively. (b) Since box b is inside box a5, class label 1 is assigned to box b by Generalized Modus Ponens based
on the rule a5! 1. (c) Inclusion measure function k(Æ, Æ) is used by the FLR classifier to assign ‘in principle’ a class
label to either an overlapping box b1 or a non-overlapping box b2.
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Growing public concern, regarding significant increases of air pollutants during the last
decades, has spurred governments around the world to establish Air Quality Operational
Centers (AQOC) for monitoring ambient air quality by collecting volumes of data from
ground station networks. Human expertise is typically employed for real-time decision-
making, whereas complex mathematical models are used ‘off-line’ for more accurate pre-
dictions at the expense of long computing times [69]. Computerized decision support could
be useful for attaining accurate predictions on-line. In the aforementioned context a useful
learning model would need to comply to the following specifications: (1) induction of
descriptive, decision-making knowledge (rules) from the data, (2) a capacity for generaliza-
tion using only a small number of rules, and (3) a capacity to deal effectively with missing
data.

5.1. Environmental learning models

Several learning models have been phased in environmental monitoring software sys-
tems for predicting air pollution. For instance, neural networks were used for short-term
ozone prediction [98,117]; case-based reasoning (CBR) as well as classification and regres-
sion trees (CART) were employed for predicting nitrogen dioxide [56]. A computational
model for environmental monitoring networks was proposed in [101] using software
agents. Along the guidelines of the latter, a multi-agent prototype, namely distributed

NEMO or DNEMO for short, was developed for managing air pollution in Athens,
Greece by integrating a number of machine learning and predictor modules [57]. A differ-
ent multi-agent environmental monitoring system, namely O3RTAA, was developed lately
[5] for ambient air monitoring in Valencia, Spain. The FLR classifier has been accommo-
dated experimentally in O3RTAA.

5.2. Data acquisition

The data used in this work have been collected in one meteorological station in the
vicinity of Valencia, Spain. Eight variables, including both meteorological and air-pollu-
tant variables, have been sampled on a quarter-hourly basis during the year 2001. In
all, 4 · 24 · 365 = 35,040 data vectors have been available 6020 of which, that is around
17% of the total data vectors, had at least one missing value. The sampled variables as well
as their corresponding units are shown in Table 1, where the ozone concentration level is

Table 1
Four air pollutant and three meteorological variables were used for estimating ozone concentration levels

Data attribute name Symbol Data type Units

1 Sulfur dioxide SO2 Real number lg/m3

2 Nitrogen oxide NO Real number lg/m3

3 Nitrogen dioxide NO2 Real number lg/m3

4 Nitrogen oxides NOx Real number lg/m3

5 Wind velocity VEL Real number m/s
6 Temperature TEM Real number �C
7 Relative humidity HR Real number %
8 Ozone concentration level O3 Class label ‘low’ (0–60 lg/m3)

‘med’ (60–100 lg/m3)
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labeled either ‘low’ or ‘med(ium)’ for values in the ranges 0–60 lg/m3 and 60–100 lg/m3,
respectively.

5.3. Specifics

An estimation of ambient ozone concentration from other variables is theoretically fea-
sible based on ‘first principles modeling’. For instance, ambient ozone concentration is
known to be a function of both nitrogen oxides NOx [14] and meteorological variables
[40]. However, an estimation of ozone-level based on ‘first principles modeling techniques’
is not straightforward in practice due to the feedback of ozone in the corresponding chem-
ical reaction. It has been demonstrated that estimation of environmental missing data is
possible using regression techniques, e.g. linear extrapolation [35]. Nevertheless, conven-
tional regressor models are restricted by a priori assumptions including the model
structure.

An empirical approach is proposed here for estimating missing ozone measurements
directly from the data by classification using the fuzzy lattice reasoning (FLR) classifier.
Note that prediction by classification is an acknowledged practice [77]. In particular, we
point out that several learning schemes have already been presented for prediction/estima-
tion by classification based on fuzzy lattices. For instance, in [55] estimation of the stapes
bone thickness has been effected by applying the dr-FLN classifier in a lattice stemming
from a metric space of linear operators. Furthermore, in [92] prediction of industrial sugar
production has been demonstrated by applying the FINkNN classifier in a lattice of fuzzy
numbers. In this work the FLR classifier is applied in lattices of hyperboxes towards esti-
mating ozone concentration level.

6. Experimental results and discussion

We have employed the following four classifiers in our experiments:

1. back-propagation neural networks,
2. the fuzzy adaptive resonance theory (fuzzy-ART) classifier,
3. the C4.5 classifier, and
4. the fuzzy lattice reasoning (FLR) classifier.

In a preprocessing step the data attributes have been normalized in the interval [0, 1] by
straightforward translation followed by linear scaling using only the training data. Two
series of experiments have been carried out: first, using data vectors without missing values
and, second, using all data vectors including the ones with missing values. In both series of
experiments the data collected from January 1, 2001 until mid June have been used for
training, whereas the remaining data until year-end have been used for testing. The corre-
sponding numbers of data vectors in classes ‘low’ and ‘med’ are shown in Table 2. Note
that 197 and 368 data vectors have been removed from the training data set and the testing
data set, respectively, because the aforementioned vectors included missing ozone attribute
values.

The corresponding classification results using the four classifiers mentioned above are
summarized in Tables 3 and 4, where a Confusion Matrix for each classifier is presented
along with the best percentage of correct classifications on the testing data. Since the
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Table 2
Numbers of data vectors available

Data vectors in class Total

‘low’ ‘med’

Without missing values

for training 6865 4761 11,626
for testing 12,256 5138 17,394

With missing values

for training 9472 6074 15,546
for testing 13,483 5446 18,929

Table 3
Confusion matrices for the testing data for four classifiers after removing all vectors with missing data values. A
total number of 17,394 data vectors were used for testing

Classifier name Percentage of the testing data classified
as:

‘low’ ‘med’

Back-propagation neural network

Percentage of the testing data in class ‘low’ 56.95 13.52
Percentage of the testing data in class ‘med’ 4.34 25.20

Overall success 82.15%
Total number of induced rules Not applicable

Fuzzy-ART

Percentage of the testing data in class ‘low’ 54.16 16.30
Percentage of the testing data in class ‘med’ 9.25 20.29

Overall success 74.45%
Total number of induced rules 100

C4.5 decision tree

Percentage of the testing data in class ‘low’ 48.79 21.67
Percentage of the testing data in class ‘med’ 4.59 24.95

Overall success 73.74%
Total number of induced rules 131

FLR classifier (applied in [0,1]N for N = 7)

Percentage of the testing data in class ‘low’ 64.64 5.82
Percentage of the testing data in class ‘med’ 10.95 18.59

Overall success 83.23%
Total number of induced rules 3

FLR classifier (applied in RN for N = 7)

Percentage of the testing data in class ‘low’ 65.02 5.55
Percentage of the testing data in class ‘med’ 9.23 20.20

Overall success 85.22%
Total number of induced rules 3
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Table 4
Confusion Matrices for the testing data for two classifiers including vectors with missing data values. A total
number of 18,929 data vectors were used for testing

Classifier name Percentage of the testing data classified
as:

‘low’ ‘med’

C4.5 decision tree

Percentage of the testing data in class ‘low’ 55.58 15.65
Percentage of the testing data in class ‘med’ 6.79 21.98

Overall success 77.56%
Total number of induced rules 44

FLR classifier (applied in [0,1]N for N = 7)

Percentage of the testing data in class ‘low’ 68.56 2.67
Percentage of the testing data in class ‘med’ 12.74 16.04

Overall success 84.60%
Total number of induced rules 19

FLR classifier (applied in RN for N = 7)

Percentage of the testing data in class ‘low’ 68.61 3.17
Percentage of the testing data in class ‘med’ 11.30 16.92

Overall success 85.53%
Total number of induced rules 19

Table 5
Training and testing % classification accuracy using back-propagation neural networks (only data without
missing values have been considered)

No. of hidden neurons % classification accuracy

Training set Testing set

Linear hidden layer

3 75.24 78.37
5 75.68 80.32
7 76.33 74.07
9 76.79 73.01

11 74.62 82.15

13 76.80 72.95
15 77.48 74.34
17 76.43 72.45
19 77.51 72.56

Sigmoid hidden layer

3 66.69 78.79
5 70.22 68.03
7 68.68 82.06

9 76.60 70.28
11 74.43 78.00
13 76.89 76.79
15 63.89 42.48
17 75.92 74.42
19 77.42 72.86
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back-propagation as well as fuzzy-ART neural networks cannot deal directly with missing
data values, classification results by both back-propagation and fuzzy-ART appear only in
Table 3. Both Tables 3 and 4 also show the corresponding total number of induced rules.
Details regarding the application of each classifier are presented next followed by a com-
parative classifier discussion.

6.1. Back-propagation neural networks

Many experiments have been carried out on various network architectures using
different neuron activation functions as well as different numbers of hidden neurons.
Table 5 summarizes the experimental results for selected parameter values. The transfer
function in the hidden layer was either linear or sigmoid. The total number of hidden
layer neurons varied from 3 to 19 in steps of 2. The transfer function for the output
layer was always sigmoid, furthermore training was carried out using the resilient back-
propagation algorithm with mean square error (MSE) target 0.01 and maximum number
of training epochs 1500. A best classification accuracy of 82.15% has been attained on the
testing data by a neural network with linear transfer functions including 11 hidden
layer neurons. A comparable best classification accuracy of 82.06% has been attained
by another neural network with sigmoid transfer functions including 7 hidden layer
neurons.

6.2. The fuzzy adaptive resonance theory (fuzzy-ART) classifier

A standard fuzzy-ART classifier was employed as a typical representative of algorithms
which handle hyperboxes. The fuzzy-ART was applied in the 7-dimensional unit hyper-
cube for various values of its vigilance parameter (q). The corresponding classification
accuracies are summarized in Table 6.

For parameter q values in the range 0.30–0.70 a constant number of 100 rules was
induced. For larger values of q the number of rules increased exponentially. In the latter
case the training- and testing-classification accuracies remained around 47% and 59%,
respectively.

Table 6
Training and testing classification accuracy by the fuzzy-ART classifier. The corresponding numbers of induced
rules are also shown (only data without missing values have been considered)

Vigilance parameter q % classification accuracy No. of induced rules

Training set Testing set

0.30 41.48 40.57 100
0.35 54.96 74.45 100

0.40 48.56 64.54 100
0.45 44.01 46.29 100
0.50 41.85 40.23 100
0.55 41.13 41.93 100
0.60 52.52 73.12 100
0.65 47.39 48.52 100
0.70 44.40 41.07 100
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6.3. The C4.5 classifier

The C4.5 classifier has been employed on a standard software platform (WEKA plat-
form [115]), for generating decision trees (DT) in which the internal nodes specify inequal-
ities for the values of environmental attributes, moreover the tree leaves specify an output
class. Initially, the C4.5 classifier has been applied on the data without missing values,
without pruning, resulting in a DT of height 697 with 1393 rules; the corresponding clas-
sification accuracy on the training set reached 94.8%, whereas on the testing set it was only
64.85% (Table 7). Obviously the latter DT overfits the training data, therefore two pruning
methods were employed: (1) Confidence Factor Pruning (CFP), and (2) Reduced Error
Pruning (REP). Results are shown in Table 7 for selected pruning parameter values. On
the one hand, a best classification performance of 73.74% on the testing data has been
recorded for REP and 100 folds. The corresponding induced DT height has been 66
including 131 leaves (rules). On the other hand, the application of CFP reduced the clas-
sification accuracy on the testing data to around 67%.

Table 7
Training and testing % classification accuracy using decision trees (C4.5 algorithm). Both the tree height and the
number of rules are also shown

Pruning method Parameter
value

% classification accuracy Tree
height

No. of rules
(tree leaves)Training set Testing set

Results on the data without missing values

Unpruned – 94.8 64.85 697 1393

Confidence factor pruning parameter: CF 0.10 91.33 67.31 288 575
0.20 92.87 66.71 412 823
0.30 93.92 67.40 528 1055
0.40 94.10 67.39 551 1101
0.50 94.31 67.19 585 1169

Reduced error pruning parameter: no. of folds 2 89.31 63.71 254 507
10 89.01 71.85 233 465
50 85.05 60.62 126 251

100 83.33 73.74 66 131

300 81.55 69.98 38 75
500 77.73 72.48 16 31

Results on all the data including data with missing values

Unpruned – 92.18 58.67 1595 798

Confidence factor pruning parameter: CF 0.10 89.14 60.26 557 279
0.20 89.98 59.19 735 368
0.30 90.81 59.44 925 463
0.40 91.37 59.30 1083 542
0.50 91.59 59.32 1195 598

Reduced error pruning parameter: no. of folds 2 88.14 64.91 635 318
10 88.28 59.19 575 288
50 85.44 60.17 287 144

100 84.01 61.36 167 84
300 82.48 77.56 87 44

500 81.33 70.19 63 32
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In the following, the C4.5 classifier has been applied on all the data (including data with
missing values), without pruning, resulting in a DT of height 1595 with 798 rules; the cor-
responding classification accuracy on the training data set has been 92.18%, whereas on
the testing set has been only 58.67% (Table 7). Apparently the latter DT overfits the train-
ing data; hence the two pruning methods (CFP and REP) have been employed again
resulting in best classification performances of 60.26% and 77.56%, respectively, on the
testing data (Table 7). Note that CFP has significantly deteriorated the classification accu-
racy results on the testing data to around 59%.

In our experiments REP has produced, in general, better classification results than CFP
on both testing data sets. The latter can be attributed to an enhanced capacity of REP for
generalization implied by a smaller number of induced rules. The slightly deteriorated per-
formance of the REP on the testing data without missing values compared to testing data
with missing values, i.e. 73.74% versus 77.56%, can be attributed to the fact that in the for-
mer case fewer data vectors have been available for training.

6.4. The fuzzy lattice reasoning (FLR) classifier

The dimensionless vigilance parameter qcrit = N/(N + Dcrit) () Dcrit = N(1 � qcrit)/
qcrit is more convenient than Dcrit because qcrit varies in the interval [0.5,1] for any number
of dimensions N. Therefore in the following experiments parameter qcrit has been
employed instead.

First, experiments with the FLR classifier have been carried out in the 7-dimensional
unit hypercube on normalized data using positive valuation function vi(x) = x and isomor-
phic function hi(x) = 1 � x, i = 1, . . . , 7 in a constituent lattice [0,1]. No a priori rules have
been used, i.e. initially the rule base RB has been empty. Learning took place incremen-
tally in the order the data had been sampled. In all experiments, rules were induced in a
single pass through the training data. The classification accuracies on both the training
and the testing data sets as well as the corresponding number of induced rules are shown
in Table 8 for selected values of qcrit. The fairly small number of induced rules in Table 8

Table 8
Training and testing classification accuracy by the FLR classifier applied on normalized data in the unit
hypercube [0,1]N for N = 7. The corresponding numbers of induced rules are also shown

qcrit % classification accuracy No. of induced rules

Training set Testing set

Results on the data without missing values

0.50 59.16 70.46 2
0.60 64.73 83.23 3

0.70 73.68 74.85 20
0.80 67.43 72.59 139

Results on all the data including data with missing values

0.50 60.99 71.22 5
0.60 60.99 71.22 8
0.70 63.48 84.60 19

0.80 69.00 66.54 43
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Table 9
Three rules induced from the training data (without missing values) by the FLR classifier

Rule no. SO2 NO NO2 NOx VEL TEM HR O3 class

1 IF [3.0, 87.0] & [2.0, 74.0] & [4.0, 57.0] & [6.0, 151.0] & [0.1, 9.4] & [4.0, 28.6] & [8.0, 99.0] THEN ‘low’

2 IF [3.0, 47.0] & [2.0, 24.0] & [4.0, 36.0] & [6.0, 54.0] & [0.1, 11.1] & [5.0, 35.0] & [8.0, 99.0] THEN ‘med’

3 IF [3.0, 52.0] & [2.0, 89.0] & [4.0, 65.0] & [6.0,176.0] & [0.1, 7.5] & [9.0, 35.0] & [24.0, 99.0] THEN ‘low’
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implies that FLR’s capacity for ‘Type I generalization’ has resulted in a quite thorough
coverage of the input data space. Again, the slightly better classification accuracy on
the data set with missing values (compared to the data set without missing values), i.e.
84.60% versus 83.23%, can be attributed to the larger number of training data vectors
in the former data set. Table 9 shows the three rules induced from the training data
without missing values, moreover Table 10 displays explicitly rule no. 1 as a conjunctive
‘if–then’ statement.

Second, further experiments were carried out with the FLR classifier on non-normal-
ized data using positive valuation function vi(x) = 1/(1 + exp(�k(x � xm))) and isomor-
phic function hi(x) = 2xm � x in each constituent lattice R, where k = 1/(xmax � xmin)
with 1 > 0, xm = (xmin + xmax)/2, and xmin and xmax are the minimum and maximum attri-
bute values in the corresponding constituent lattice of the training data. The classification
accuracies on both the training and the testing data sets as well as the corresponding
numbers of induced rules are shown in Table 11 for selected values of the parameters 1
and qcrit. In this case the best testing classification accuracies for the data without- and
with-missing values have been 85.22% and 85.53%, respectively. Therefore, it appears
that an application of classifier FLR in RN (on non-normalized data) rather than an
application in IN (on normalized data) tends to improve performance. The aforemen-
tioned improvement can be attributed, in part, to deterioration in performance due to
truncation of some testing data when normalization is employed, whereas no truncation
is necessary when classifier FLR is applied in RN. Another reason for the aforemen-
tioned improvement is the employment of (sigmoid) non-linearities in RN as detailed
below.

A series of experiments has been carried out to confirm FLR’s capacity for ‘Type II
generalization’, i.e. generalization beyond a rule’s core. The corresponding results are sum-
marized in Table 12. More specifically, Table 12 shows that only a small percentage of the
testing data lie outside any rule (hyperbox) core. The latter was expected in this applica-
tion since the small number of induced rules here covers quite thoroughly the input data
space as explained above. Table 12 shows that when data with missing attribute values
have been left out then only 68 (out of a total of 469 testing data outside all rule hyperbox
cores) have been classified correctly; whereas when data with missing attribute values have
been used then as many as 497 (out of a total of 520 testing data outside all rule hyperbox
cores) have been classified correctly. The aforementioned difference in performance was
attributed to the different numbers of induced rules, i.e. 3 versus 19 rules have been
induced using data without- and with-missing attribute values, respectively, as shown in
Table 8.

Table 10
Rule no. 1 of Table 9 corresponds to the following ‘‘if–then’’ statement

IF SO2 is in the range [3.0, 87.0] lg/m3 AND . . .

NO is in the range [2.0, 74.0] lg/m3 AND . . .
NO2 is in the range [4.0, 57.0] lg/m3 AND . . .

NOx is in the range [6.0, 151.0] lg/m3 AND . . .

VEL is in the range [0.1, 9.4] m/s AND . . .
TEM is in the range [4.0, 28.6] �C AND . . .

HR is in the range [8.0, 99.0] %
THEN O3 is in the class ‘low’
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The results in Table 12 imply that the improved performance of ‘classifier FLR appli-
cable in RN’ compared to ‘classifier FLR applicable in the unit-hypercube’ is mainly due to
the (sigmoid) non-linearities introduced based on lattice theory. More specifically, a trun-
cation of the testing data, does not appear to be able to deteriorate classification accuracy

Table 11
Training and testing classification accuracy by the FLR classifier on non-normalized data for various values of
parameters 1 and qcrit. The corresponding numbers of induced rules are also shown

1 qcrit % classification accuracy No. of induced rules

Training set Testing set

Results on the data without missing values

1 0.5 59.16 70.46 2
0.6 59.16 70.46 2
0.7 59.16 70.46 2
0.8 62.73 85.22 3

5 0.5 59.16 70.46 2
0.6 65.40 82.70 3
0.7 70.48 79.64 19
0.8 67.53 78.72 40

10 0.5 59.16 70.46 2
0.6 64.27 83.43 3
0.7 65.77 74.89 34
0.8 69.56 82.87 115

15 0.5 59.16 70.46 2
0.6 64.73 83.24 3
0.7 68.85 78.88 23
0.8 70.39 81.54 112

Results on the data with missing values

1 0.5 60.99 73.37 2
0.6 60.99 73.37 2
0.7 60.99 73.37 3
0.8 60.99 73.37 4

5 0.5 60.99 71.22 4
0.6 60.99 71.22 6
0.7 60.99 71.23 9
0.8 65.34 85.53 19

10 0.5 60.99 71.22 6
0.6 60.99 71.23 9
0.7 60.99 71.22 14
0.8 63.55 82.55 26

15 0.5 60.99 71.22 6
0.6 60.99 71.23 10
0.7 60.99 71.23 17
0.8 64.00 82.59 31
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significantly in this problem due to the small number of data outside any rule (hyperbox)
core as shown in Table 12.

Additional computational experiments were carried out using different permutations of
the training data in order to test FLR’s sensitivity to different orders of data presentation.
No significant deviations were observed from the aforementioned results. In particular, the
testing data classification accuracy did not change more than 2 percentage points, whereas
the number of induced rules did not change more than 2. Hence, the performance of clas-
sifier FLR has remained roughly the same in this classification problem. Nevertheless, it
should be pointed out that a different order of presenting the data (than the original order
the data were sampled in this real-world problem) is meaningless here.

6.5. Implementation details and comparative classifier discussion

The processing times for training/testing each classifier are shown in Table 13. All the
experiments have been carried out on a workstation Pentium 4 processor at 1.5 GHz and
768 MB of RAM. More specifically, training and testing experiments with back-propaga-
tion networks have been performed using MATLAB version 5.3. Experiments with the
fuzzy-ART were carried out using a standard MATLAB implementation downloaded
from the Web. Experiments with C4.5 have been carried out using the J48 algorithm on
the Waikato Environment for Knowledge Analysis (WEKA) [115]. The FLR classifier
has already been included in WEKA platform version 3-4-2. Table 13 shows that the
FLR classifier has been clearly faster than the C4.5 classifier furthermore the FLR classi-
fier has been orders of magnitude faster than both fuzzy-ART and back-propagation neu-
ral networks in this application due, mainly, to both the simpler activation functions and

Table 12
Demonstrating the capacity of classifier FLR for ‘type II generalization’

No. of data
correctly classified

No. of data
incorrectly classified

Total

Results on the testing data without missing values

No. of data inside a rule core 14,410 2515 16,925
No. of data outside any rule core 68 401 469

Total 14,478 2916 17,394

Results on the testing data including data with missing values

No. of data inside a rule core 15,516 2893 18,409
No. of data outside any rule core 497 23 520

Total 16,013 2916 18,929

Table 13
Training/testing times for four classifiers

Classifier name Training/testing time

1 Back-propagation neural networks Between 3 min and 25 min
2 Fuzzy-ART classifier Between 6 min and 9.5 min
3 C4.5 classifier Around 6.5 s
4 FLR classifier Around 1.5 s
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the smaller number of rules induced by classifier FLR as well as to the low training com-
plexity Oðn2Þ of classifier FLR as explained in Section 4.6.

It is worth pointing out that around 71% of the data vectors in a testing data set were in
the class ‘low’ ozone concentration level; hence a random selection of category ‘low’ would
result in a classification accuracy of around 71%. Therefore, an acceptable classifier is
required to perform above 71% in this application. It turned out that back-propagation
neural networks performed well in the experiments (82.51%) but without inducing descrip-
tive knowledge (rules), moreover back-propagation neural networks have been slow and
they could not deal with missing data values. The fuzzy-ART classifier, that is a typical
hyperbox handling classifier, performed poorly (74.45%) in this application, moreover it
induced a fairly large number (100) of rules; in addition, the fuzzy-ART classifier could
not deal with missing data values. The C4.5 classifier could deal with missing data values,
nevertheless it yielded a large number of rules (i.e. 131 and 44 rules, respectively, for data
without- and with-missing values), and it performed only slightly better than random
selection (i.e. 73.74% and 77.56%, respectively, for data without- and with-missing values).
The FLR classifier has demonstrated a good capacity for generalization (i.e. 85.22% and
85.53%, respectively, for data without- and with-missing values), it induced considerably
fewer rules than the C4.5 classifier (i.e. around 3 and 19 rules, respectively, for data with-
out- and with-missing values), and it could deal with missing data values. In conclusion,
the FLR classifier has outperformed the C4.5 classifier, the fuzzy-ART as well as the
back-propagation neural networks in this real-world problem. The FLR classifier also
demonstrated a capacity for generalization beyond rule (hyperbox) core. Another signifi-
cant advantage of the FLR classifier includes faster training in a single pass through the
training data. An additional, substantial advantage of the FLR classifier is its capacity
to employ tunable (sigmoid) non-linearities for improving performance.

The experiments presented in this section were not meant for optimal parameter estima-
tion. Rather, the experiments here were only meant for demonstrating comparatively the
capacities of different classifiers for a range of parameter values. It turns out that classifier
FLR in RN performs better than any other classifier in this application. Note that had opti-
mal parameter estimation been sought based only on the ‘training data classification accu-
racies’ displayed in Tables 5–8, and 11 then, clearly, classifier FLR prevails. In particular,
classifier FLR applied on non-normalized data (Table 11) produced 79.64% and 85.53%
testing classification accuracies on the data ‘without missing values’ and ‘with missing
values’, respectively, for optimal parameter values (1,qcrit) = (5, 0.7) and (1,qcrit) = (5,0.8)
induced from maximum classification accuracies 70.48% and 65.34%, respectively, on the
training data. The aforementioned percentages, i.e. 79.64% and 85.53%, are clearly higher
than the corresponding percentages for classifiers back-propagation, fuzzy-ART, and C4.5
shown in Tables 5–7, respectively.

7. Connections with related work

The FLR is a rule-based classifier. A number of rule-based systems have been proposed
in the literature in various contexts including decision trees, machine learning, fuzzy infer-
ence systems (FIS), (fuzzy) neural networks, etc. [2,41,44,73,74,96,100,109]. This section
presents similarities and differences between the FLR classifier and other, rule-based sys-
tems. Additional, interesting connections are also shown.
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The FLR classifier bears substantial similarities, as well as differences, with Decision
Trees (DTs) for rule-induction [94–96] – note that the term constituent lattice used in
the FLR classifier corresponds to the term attribute used in a DT. Both the FLR and a
DT induce rules from the training data by partitioning the latter conditionally. However,
a DT carries out a partition of the training data by a divide-and-conquer, batch-processing
procedure based on an information-theoretic criterion; whereas, the FLR carries out a
partition of the training data ‘on-line’ based on both a fuzzy inclusion measure and a max-
imum threshold criterion. Moreover, a rule induced by a DT typically consists of a vari-
able number of tests carried out sequentially; whereas, a rule induced by FLR consists of a
fixed number of tests, which can be carried out in parallel. Furthermore, it may appear
that the lattice-ordering relation, assumed explicitly in a data domain by the FLR classi-
fier, is too restrictive in comparison with a DT since the latter does not seem to impose any
similar restrictions. Nevertheless a ‘test’, carried out by a DT in an attribute, typically
employs a partial ordering relation, e.g. a relation ‘6’ or a relation ‘�’. Hence, a partial
ordering relation is assumed ‘implicitly’ in the data by a DT.

Compared to other classifiers note that the FLR classifier explicitly interprets a training
datum (ai,ci) as a rule: ai! ci. Hence, the FLR classifier deals with rules all along. It might
be interesting to point out that an employment of rules has been proposed for unifying
instance-based and rule-based induction in a machine-learning context [21]. In the afore-
mentioned sense the FLR classifier may be interpreted as an instance-based classifier; in
particular, the FLR classifier does not retain (lattice-ordered) instances but rather it gen-
eralizes them by the lattice-join operation. Likewise, the FLR classifier may be interpreted
as a Case-Based Reasoning (CBR) classifier [67].

The FLR classifier, based on a lattice inclusion measure, operates similar to inclusion-
based- or similarity-based-reasoning [16,23,107]. More specifically, it is known that ‘in
parallel to the mainstream approach to approximate reasoning based on CRI (Composi-
tional Rule of Inference) an extensive body of literature employs reasoning by analogy such
that similar inputs imply similar outputs’ [16]. On the one hand, a similarity-measure or an
inclusion-measure in the literature typically involves fuzzy sets. On the other hand, a lat-
tice inclusion measure here can, more generally, compute a (fuzzy) degree of inclusion of a
lattice element to another one. In particular, this work has computed a degree of inclusion
of a hyperbox (rule antecedent) to another one. However, the rule consequents employed
by the FLR classifier are (simply) class labels. Therefore, the full potential of a lattice
inclusion measure remains to be fulfilled in a future work involving more sophisticated
rule consequents, for instance in either approximate reasoning or case based building
applications [16,107].

Of further interest is relevant work in machine-learning regarding rule induction includ-
ing a combination of general-to-specific and specific-to-general learning [20]. Note that the
emphasis of this work is in a novel classifier with such capacities as introduction of tunable
non-linearities and fast processing of large data sets as demonstrated above. Such capac-
ities do not usually characterize popular rule induction classifiers. Nevertheless, certain
procedural practices of the latter classifiers can be considered creatively in future exten-
sions of the FLR classifier.

Another related work regards induction of fuzzy graphs/rules from examples towards
function approximation. For instance, the work in [7] presents an efficient algorithm
for inducing locally independent fuzzy rules from examples. Note also that there is a
substantial body of related work regarding (neuro-) fuzzy systems including (AN)FIS,
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NEFCLASS, Mamdani-/Sugeno-type fuzzy rule-based systems, etc. [44,74,80–84,109]. It
should be pointed out that, lately, a number of publications have proposed improvements
in conventional FISs by introducing non-linear metrics based on lattice theory [48,49].
Moreover, the problem of structure identification in FIS design was dealt with effectively
using a granular extension of Kohonen’s self-organizing map based on lattice theory [50].
Furthermore, the problem of ‘learning’ in linguistically-interpreted FIS has been formu-
lated as a function approximation problem based on lattice theory [47]. The FLR classifier
here represents a simple (AN)FIS for inducing rules involving fuzzy sets with hyperbox-
shaped cores. Comparative advantages of the FLR classifier include both fast data pro-
cessing and the capacity to introduce tunable non-linearities as demonstrated above.

A rule induced by the FLR classifier has been interpreted here as a logical conjunction
(logic AND) involving the constituent lattices. Since more than one rule may imply the
same class there follows a logical disjunction (logic OR) of several conjunctions as it
was shown in Section 4.5. Note that logical conjunctions and/or disjunctions have been
studied in different learning contexts including the Probably Approximately Correct
(PAC) learning framework [33,59,113]. Nevertheless, the latter publications deal solely
with crisp Boolean variables, whereas a variable in a logical form here assumes values
in the interval [0,1]. Hence, the vector of all fuzzified variables here corresponds to a point
in the unit hypercube as in [68]. We point out that an employment of fuzzy AND/OR rules
is not an innovation. For instance, fuzzy logic-based neural networks have been proposed
in [73].

There are at least three substantial differences between the FLR classifier and other
rule-based systems as explained in the following. First, a positive valuation can introduce
tunable non-linearities in order to improve classification accuracy on the testing data as
demonstrated experimentally above. Second, the FLR classifier retains a capacity for gen-
eralization beyond rule (hyperbox) core; more specifically, based on a positive valuation
function it is possible to calculate a (fuzzy) degree of rule activation for a datum beyond
a rule’s (hyperbox’) core. Third, the FLR classifier is applicable in a general lattice data
domain including both complete and non-complete lattices such as the unit-hypercube
[0,1]N and the Euclidean space RN, respectively. All aforementioned differences are based
on an explicit employment of lattice theory. Note also that a linear positive valuation func-
tion vi(x) = aix, i = 1, . . . ,N in a constituent lattice Li = R, i = 1, . . . ,n can be interpreted
as a weight for the corresponding dimension. Even though the use of weights in a classifier
is not an innovation [10,73], nevertheless the FLR classifier can employ a ‘weight function’
instead of employing a ‘weight (constant)’ in a data dimension.

Most of all, the FLR classifier bears similarities with classification algorithms, which
handle hyperboxes in the N-dimensional space. Such algorithms include min–max neural
networks [27,102,103] as well as adaptive resonance theory neural networks (ART)
[3,34,70,85,110]. Moreover, in a machine-learning context, the class of axis-parallel rectan-
gles has been shown to be efficiently probably approximately correct (PAC) learnable
[9,60,72]. Further machine learning applications have also considered hyperboxes as
instruments for learning [19,99,114]. Learning lattice intervals beyond space RN is carried
out implicitly in [113] where conjunctive normal forms (CNF) are computed in a Boolean
lattice. Nevertheless the aforementioned learning schemes fail to employ lattice theory
explicitly for their benefit. This work employs lattice theory for improving classification
performance in practice. For the interested reader an employment of lattice theory in com-
putational intelligence is delineated next.
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Lattice theory has been employed by various authors in fuzzy logic applications [25,28].
Lattices have been employed for monitoring rule execution [6] as well as in information
retrieval [12,93]. In machine-learning lattices are widely known since their employment
in version spaces [77]. Lattice theory has been a popular tool in mathematical morphology,
especially in digital image processing applications [22,31,36,76]. In addition, lattice theory
has been employed for modeling the operation of neurons in a neural network [97,108].
Lattices have also been useful for knowledge representation in various contexts
[1,29,106]. Fuzzy lattices have emerged from conventional (crisp) lattices by fuzzifying
the corresponding ordering relation using an inclusion measure function r : L · L! [0, 1]
as shown above. An inclusion measure r should not be confused with a fuzzy measure.
The latter is a real function g : F! [0,1] defined on a collection F of fuzzy sets; it follows
that fuzzy measures subsume probability measures as a special case [64]. It turns out that
an inclusion measure relates to the notion of fuzzy subsethood indicator
[11,15,26,86,104,118]. Nevertheless an inclusion measure r is more general since it applies
to any lattice, not only to a lattice of (fuzzy) sets. For details regarding an employment of
(fuzzy) lattice theory in computational intelligence the reader may refer to [47].

8. Conclusion and future work

A new classifier was presented in this work, namely fuzzy lattice reasoning (FLR) clas-
sifier, which can induce rules in a mathematical lattice data domain such that a rule ante-
cedent corresponds to a lattice interval, moreover a rule consequent is a class label. The
emphasis here has been in applications in lattice RN, where a lattice interval corresponds
to a N-dimensional hyperbox. Lattice theory enabled the introduction of useful non-
linearities. Advantages of the FLR classifier, in comparison with other algorithms from
the literature, have been presented extensively.

The FLR classifier was applied here in a environmental monitoring problem for ambi-
ent ozone estimation. The results have compared favorably with the results obtained by
C4.5 decision trees, a conventional hyperbox handling classifier namely fuzzy-ART, as
well as back-propagation neural networks. More specifically, the FLR classifier has dem-
onstrated comparatively a capacity for fast learning, a good capacity for generalization on
the testing data, it induced few rules in a single pass through the training data, it dealt
effectively with missing data values, moreover it demonstrated a capacity for tunable,
non-linear generalization beyond rule (hyperbox) core.

This work has demonstrated the potential of the rule-based classifier FLR. However, an
optimization of the operation of classifier FLR remains a topic for future work. Note that,
apart from the vigilance parameter, only the parameter values in a sigmoid positive valu-
ation function have been optimized here. Future work will seek an optimization of the
FLR classifier as described in the following.

First, even though the classification accuracy of FLR classifier has been fairly stable in
this work for different orders of data presentation, there is no guarantee that it will remain
stable in other classification problems. There is experimental evidence that an ensemble of
voter classifiers can both stabilize and improve the classification accuracy of an individual
voter classifier [63]. Therefore, the development of a ‘voting FLR’ classifier will be pursued
in the future. Second, rule (hyperbox) overlapping can be contained using genetic
algorithms ‘likewise’ as in conventional fuzzy system design where it was treated as a
constraint in a multiple constraint satisfaction problem [84]. Third, for a large number
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of rules, an employment of standard database indexing techniques [38,65] could reduce
time complexity in practice. Additional types of optimization may also be pursued.
Finally, an interesting future work could interpret the lattice inclusion measure presented
in this work as an equality relation towards the development of approximate reasoning
optimization techniques.

Acknowledgements

The authors thankfully acknowledge both Eibe Frank and Mark Hall for including
the FLR classifier in the WEKA platform. The dataset used in the experiments has
been a courtesy of the Fundación Centro de Estudios Ambietales del Mediterráneo
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Appendix

Useful definitions are listed in this Appendix followed by the proofs of propositions.

Definition A1. A partially ordered set (poset) is a set P in which a binary relation x 6 y is
defined, which satisfies the following conditions for all x,y,z 2 P:

P1: x 6 x Reflexive

P2: x 6 y and y 6 x) x ¼ y Antisymmetry

P3: x 6 y and y 6 z) x 6 z Transitivity

Definition A2. A metric in a non-empty set S is real function d : S · S! R satisfying

M0: dðx; yÞP 0;

M1: dðx; yÞ ¼ 0() x ¼ y;

M2: dðx; yÞ ¼ dðy; xÞ; and

M3: dðx; zÞ 6 dðx; yÞ þ dðy; zÞ – The Triangle Inequality:

for x,y,z 2 S.

Definition A3. Let P and Q be partially ordered sets. A mapping w : P! Q is called

(i) Order-preserving (or, alternatively, monotone), if x < y in P implies w(x) < w(y) in Q.
(ii) Order-isomorphism (or, simply, isomorphism), if both ‘x < y in P () w(x) < w(y) in

Q’ and ‘w is onto Q’.

When there is an isomorphism from P to Q, then P and Q are called isomorphic,
symbolically P ffi Q.
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Proposition 3. If r : L · L! [0,1] is an inclusion measure on lattice L, then hL,ri is a fuzzy

lattice.

Proof. Given an inclusion measure r : L · L! [0, 1] we need to prove the equivalence
x 6 y () r(x,y) = 1.

(1) In the one direction let x 6 y.
From conditions C1 and C2 it follows x 6 y) r(x,x) 6 r(x,y)) 1 6 r(x,y))
r(x,y) = 1.

(2) In the other direction let r(x,y) = 1.
Consider the following three mutually exclusive and exhaustive cases (i) x 6 y, (ii)
y < x, and (iii) xky.

In the following we reject cases (ii) and (iii).
(ii) Let y < x. Then, based on condition C3, it follows y < x) x ^ y < x) r(x,y) <
1-contradiction.
(iii) Let xky. The latter implies ‘‘x ^ y < x < x _ y’’.AND. ‘‘x ^ y < y < x _ y’’.
Based on conditions C3 and C3 0 it follows

xky )
x ^ y < x < x _ y ) x ^ y < x

x ^ y < y < x _ y ) y < x _ y

( )
) rðx; yÞ < 1-contradiction:

Therefore we have to accept case (i) x 6 y. h

Proposition 4. If L is a (complete) lattice and v : L! R is a positive valuation (with v(O) = 0)

then (1) kðx; uÞ ¼ vðuÞ
vðx_uÞ, and (2) sðx; uÞ ¼ vðx^uÞ

vðxÞ are inclusion measures.

Proof

(C0) Only for complete lattices: kðx;OÞ ¼ vðOÞ
vðx_OÞ ¼ 0, x 6¼ O sðx;OÞ ¼ vðx^OÞ

vðxÞ ¼ 0; x 6¼ O.

(C1) kðx; xÞ ¼ vðxÞ
vðx_xÞ ¼ 1. sðx; xÞ ¼ vðx^xÞ

vðxÞ ¼ 1.

(C2) The truth of u 6 w) k(x,u) 6 k(x,w) is known from [51].
The truth of u 6 w) s(x,u) 6 s(x,w) is known from [91].

(C3) x ^ y < x) y < x) y < x ¼ x _ y
ykx) x ^ y < y < x _ y

� �
) kðx; yÞ ¼ vðyÞ

vðx_yÞ < 1.

x ^ y < x) y < x) x ^ y ¼ y < x
ykx) x ^ y < x < x _ y

� �
) sðx; yÞ ¼ vðx^yÞ

vðxÞ < 1. h

Proposition 5. Let Li be a totally-ordered lattice, let v : Li! R be a positive valuation, and

let h : L@i ! Li be an isomorphic function in Li. Then a positive valuation function

v : s(Li)! R is given by v([a,b]) = v(h(a)) + v(b).

Proof. First, we have to show that v([a,b]) + v([c,d]) = v([a,b] ^ [c,d]) + v([a,b] _ [c,d]).
Second, we have to show that [a,b] < [c,d]) v([a,b]) < v([c,d]).
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First; vð½a; b�Þ þ vð½c; d�Þ
¼ vðhðaÞÞ þ vðbÞ þ vðhðcÞÞ þ vðdÞ ¼ ½vðhðaÞÞ þ vðhðcÞÞ� þ ½vðbÞ þ vðdÞ�
¼ ½vðhða ^ cÞÞ þ vðhða _ cÞÞ� þ ½vðb ^ dÞ þ vðb _ dÞ�
¼ ½vðhða ^ cÞÞ þ vðb _ dÞ� þ ½vðhða _ cÞÞ þ vðb ^ dÞ�
¼ vð½a ^ c; b _ d�Þ þ vð½a _ c; b ^ d�Þ
¼ vð½a; b� ^ ½c; d�Þ þ vð½a; b� _ ½c; d�Þ:

Second; ½a; b� < ½c; d�

)
c < a and b 6 d

c 6 a and b < d

� �
)

hðaÞ < hðcÞ and b 6 d

hðaÞ 6 hðcÞ and b < d

� �

)
vðhðaÞÞ < vðhðcÞÞ and vðbÞ 6 vðdÞ
vðhðaÞÞ 6 vðhðcÞÞ and vðbÞ < vðdÞ

� �
) vðhðaÞÞ þ vðbÞ < vðhðcÞÞ þ vðdÞ

) vð½a; b�Þ < vð½c; d�Þ: �

Proposition 7. For p = 1,2, . . . we have diagp([a,b]) = maxx,y2[a,b]dp(x,y).

Proof. Consider an interval [a,b] in a product lattice L = L1 · � � � · LN. If a = (a1, . . . ,aN)
and b = (b1, . . . ,bN) it follows ai 6 bi, i = 1, . . . ,N. Let x = (x1, . . . ,xN) and y = (y1, . . . ,yN)
be two points in the interval [a,b]. Note that x 2 [a,b] is equivalent to ai 6 xi 6 bi,
i = 1, . . . ,N. In the following we show that di(xi,yi) 6 di(ai,bi).

xi 6 bi ) xi _ yi 6 bi _ yi ¼ bi

ai 6 xi ) ai ^ yi ¼ ai 6 xi ^ yi

�
) ai 6 xi ^ yi 6 xi _ yi 6 bi ) viðaiÞ 6 viðxi ^ yiÞ 6 viðxi _ yiÞ 6 viðbiÞ
) diðxi; yiÞ ¼ viðxi _ yiÞ � viðxi ^ yiÞ 6 viðbiÞ � viðaiÞ ¼ diðai; biÞ:

It follows dp(x,y) 6 dp(a,b), hence diagp([a,b]) = maxx,y2[a,b]dp(x,y). h
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