

 94 Int. J. Advanced Systemic Studies, Vol. 4, Nos. 1/2, 2011

 Copyright © 2011 Inderscience Enterprises Ltd.

Enriching environmental software model interfaces
through ontology-based tools

Ioannis N. Athanasiadis*
and Andrea-Emilio Rizzoli
Dalle Molle Institute for Artificial Intelligence (IDSIA),
USI-SUPSI,
Galleria 2, CH-6928 Manno,
Lugano, Switzerland
E-mail: ioannis@idsia.ch
E-mail: andrea@idsia.ch
*Corresponding author

Marcello Donatelli
Research Institute for Industrial Crop,
Italian Agriculture Research Council,
Via di Corticella 133,
40129 Bologna, Italy

and

IPSC MARS-AGRI4CAST,
Joint Research Centre – European Commission,
21027 Ispra (VA), Italy
E-mail: marcello.donatelli@jrc.ec.europa.eu

Laura Carlini
TSE S.r.l. Ingegneria e Impianti,
Via G. Galilei,
18 50021 Barberino Val d’Elsa (FI), Italy
E-mail: laura.carlini@icetindustrie.it

Abstract: Common practice has proven that software implementations
of environmental models are seldom reused by broader communities or in
different modelling frameworks. One of the reasons for this situation is the
poor semantics of model interfaces. Model interfaces embrace a critical amount
of the modellers’ knowledge, but their software implementations can be
considered as ‘poor reflections’ of modellers’ perceptions, as they fail to
represent the complexity of model assumptions in software terms. This paper
addresses the problem by adopting an ontology-driven approach that aims to
enrich software model interfaces with advanced semantics.

Keywords: knowledge-based software engineering; software component
integration and reuse; declarative modelling; environmental informatics.

 Enriching environmental software model interfaces 95

Reference to this paper should be made as follows: Athanasiadis, I.N.,
Rizzoli, A-E., Donatelli, M. and Carlini, L. (2011) ‘Enriching environmental
software model interfaces through ontology-based tools’, Int. J. Advanced
Systemic Studies, Vol. 4, Nos. 1/2, pp.94–105.

Biographical notes: Ioannis N. Athanasiadis holds a Diploma and a PhD in
Electrical and Computer Engineering, both from the Aristotle University
of Thessaloniki, Greece. Since 2005, he has been a Researcher with the Dalle
Molle Institute for Artificial Intelligence in Lugano, Switzerland. His research
interests include software engineering for ecoinformatics, ontologies and the
semantic web, intelligent systems and software agents, agent-based social
modelling and simulation, decision support systems, machine learning, and data
and knowledge engineering.

Andrea-Emilio Rizzoli holds a Laurea in Electronics and Informatics
Engineering (1989), and a PhD in Information and Automation Engineering
(1993), both from Politecnico di Milano. He is a Senior Researcher at the
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, in Lugano,
Switzerland. His research interests include industrial and logistic chain system
modelling and simulation, integration and reuse of simulation models, and
decision support systems for natural resources management. Since 2005 he has
also been a Professor with the University of Applied Sciences of Southern
Switzerland (SUPSI).

Marcello Donatelli is a Senior Researcher at the Research Institute for
Industrial Crops of the Italian Agriculture Research Council. His activity over
the last 15 years has been focused on modelling in agrometerology and
cropping systems. Over the last five years he has worked extensively on the
development of software components for biophysical systems modelling,
developing software designs to maximise transparency, reusability and
extensibility. He is currently with the European Joint Research of the European
Commission, leading the development of a modular platform for simulation via
biophysical models of scenarios related to climate change and agriculture.

Laura Carlini was an Associated Researcher at the Research Institute for
Industrial Crop of the Italian Agriculture Research Council. She has been
working on model development and software prototyping in the area of
agrometeorology, agro-ecology and agricultural production. She currently
works in the area of renewable resources, focused on designing solar energy
plants.

1 Introduction

Writing a model of an environmental system is a complex process, which aims
at providing an abstraction of real world processes, using a given formalism, and
exploiting a wide collection of techniques originating from general systems theory to
economics and social sciences.

A model, being an abstraction, in order to tame the complexity of the real world,
approaches its subject from a specific point of view; particular assumptions and
hypotheses about the phenomena involved are made. We, therefore, neglect the full
extent of causal chains and driving forces of the phenomena of interest and strive for
simplification, focalisation and modularisation of the model construction process.

 96 I.N. Athanasiadis et al.

When we implement the model on a computer, we introduce more assumptions; more
limitations (for instance, the model is forced to a discretisation) and, therefore, the
software implementation of a model should be considered as a poor realisation of the
original formalisation. Such an approximation states only implicitly the assumptions
made for building it. For instance, the spatial discretisation of a model variable can only
be inferred by a close inspection of the data type used to implement it.

During the last decades, a number of models have been designed and implemented,
and it has become natural to assemble them together in order to try to address more and
more complex problems. Integrated assessments are becoming increasingly common in
environmental management and therefore we are faced with the problem of integrating
models across scales and disciplines. This is neither an easy, nor a straightforward
process.

Software Engineering promotes the concepts of reusing “components-off-the-shelf”
(Szyperski et al., 2002; Egyed et al., 2005), distributed computing (Attiya and Welch,
2004), agent-based computing (Luck et al., 2005), service-oriented architectures and web
services (Erl, 2004) to support the development of modular applications. The very same
concepts are meant to be used to develop modular and integrated environmental software
applications.

However, software integration is not the sole necessary condition for a proper
assemblage of environmental models. In other words, if a set of (good) software model
implementations is working together, this is not at all a sign that the compound model
makes any sense from a modelling point of view and generates credible results. Different
authors have tried to target the issue of quality assurance in the development of
environmental models (Refsgaard et al., 2006; Jakeman et al., 2006), but their main focus
is on the quality of the modelling process.

In this work we argue that sound integration of environmental models also requires
automated coupling of the knowledge hidden behind each software implementation. In
particular, in Section 2 we investigate a model structure and identify its knowledge
elements, typically implicit both in the model interface and implementation. Section 3
focuses in the utilisation of ontologies for specifying model interfaces, while in Section 4
we present a demo web-based tool for communal ontology authoring for defining model
interfaces. Section 5 presents a second tool for generating the source code of model
interface data types, specified using ontologies, and the paper concludes with a discussion
in Section 6.

2 Model knowledge and linking

2.1 The knowledge encapsulated in a model

The result of the modelling process is a formalisation that encapsulates knowledge
related to both the interactions of the modelled system with its surrounding environment
(model interface and data exchange), and the internal behaviour of the system (model
equations, or endogenous variables). Consequently, a software component implementing
a model will consist of two parts, the interface and the implementation. The interface
defines the inputs, outputs and parameters of a model, while the implementation defines
the model equations.

 Enriching environmental software model interfaces 97

Declarative modelling aims to separate the algorithms, which execute the numerical
solution of the model equations from the ‘declarations’ of the equations themselves, and
the variables and parameters occurring in the equations. Prior work has focused on the
equation part (Muetzelfeldt, 2004), whereas in this paper we concentrate on a declarative
approach for describing a model interface to facilitate model linking and integration
using ontologies. Ontologies provide a formal support to express conceptualisations
(Gruber, 1993), and a number of tools support the creation of ontologies. Furthermore,
model knowledge stored in the ontology can be used both for formal documentation and
provide functionalities which go beyond the computation of model variables.

2.2 Sound model linking and integration

Easy model linking and integration is a key feature that is advertised by most modelling
frameworks. However, we advocate that simple integration in software terms is not
enough for sound model integration. A software implementation of an environmental
model does not take into account the full semantics of the model interface. The model’s
assumptions are not captured in a components’ software interface. The information
associated with the inputs, states, outputs and parameters is limited to their data type.
For instance, a typical software implementation expounds as model interface arrays
of doubles, integers, and strings, whose context is described in the software
documentation, or, even worse, only in the variable names. However, this practice
requires that someone has to read the documentation in order to understand how to reuse
this model properly. This is because the model’s knowledge related to its interface is not
encapsulated in the actual interface of the model implementation in a self-explained
fashion.

Consider, for example, the case depicted in Figure 1, where Models A and B are
linked to another Model C. Model C is exposed to inputs CI1 and CI2, which are to be
linked to model outputs AO1 and BO1. Let us assume, without loss of generality, that all
these variables are simple floats. In software terms, integration can be achieved simply if
both CI1 and CI2 are linked to any software component output that provides a float.
However, from a modelling point of view, each model input or output is not simply a
float; instead, it measures a specific quantity in a specific temporal and spatial context
(i.e., it could be a car’s velocity or an ambient air pollutant’s concentration at ground
level, and so on). Moreover, even if two models correctly link a variable expressing the
same element, the model receiving the variable as an input may be able to handle only a
sub-range of the values provided as outputs (due to model assumptions). It becomes
evident that standard software interface conventions are not enough for encapsulating the
full knowledge of the model interface.

Figure 1 A model linking example

 98 I.N. Athanasiadis et al.

The vision of reusing model software implementations as off-the-shelf components
requires the assumptions on the model interface to be represented in the implementation
in a machine-readable format. Following the previous example, suppose Models A, B,
and C are supplied by diverse vendors. In order to achieve sound model integration, each
linkage should be verified not only at the low level of data type matching (which is the
unique requirement for software integration), but also against the actual semantics
(context and assumptions) related to model interface. To elaborate a bit more, let Model
A (of the previous example) expose a single float AO1 that represents the calculated
rainfall output, while Model C has a water pressure input CI1, also a float. Suppose that
someone tries to make a link from AO1 to CI1. In such a case, as both variables are
represented as single floats, the integration is feasible in software terms, though it makes
no sense from a modelling perspective. The same holds for less semantically diverse
cases, where we could have model variables expressing the same concept, but with
mismatches in characteristic times, units, pre- and post- conditions, temporal or spatial
dimensions and sampling rates.

This discussion leads us to the conclusion that we need to express all the knowledge
related to the model interface in a declarative way. This could be done by using an
ontology, as we demonstrate in the following section.

2.3 Principles and methods

In this paper, we consider biophysical agricultural models in the context of the
development of the Agricultural Production and Externalities Simulator (APES –
http://www.apesimulator.it). APES is a modular simulation system, adopting a
component-based architecture. A community of scientists from different disciplines
contributed with model implementations that followed common design patterns. More
than 20 scientists were involved in APES development, making scientific collaboration
and knowledge sharing an important issue: Modellers needed to agree on common
definitions of the entities exchanged by their models interfaces. In order to achieve a
consensus, we followed a community-based, mediated approach, which involved
ontological definitions, collaboration through scientific workshops and over the web, and
tools for software development.

The first step was to identify key modelling assumptions, involving model types,
units and dimensions, and translate them into an ontology specifying model interfaces.
Then the community of developers continued the work, to populate the ontology with
axioms specific to the model under development. This involved mediated workshops for
exemplifying tools and goals. Then, after a couple of iterations and reviews, a consensus
has been reached, with an ontology that specified model interfaces. The final step is to
further exploit the definitions written in the ontology by exporting them to code.

3 Towards an ontology for specifying model interfaces

3.1 Models and model types

In order to enrich model interfaces with advanced semantics, we developed an ontology,
called the Model Interface Ontology, that aims to encapsulate our knowledge on the
model interface in a declarative fashion. While we focused on agricultural biophysical

 Enriching environmental software model interfaces 99

processes, which occur through time and space, and usually are modelled using stocks
and flows following the system dynamics approach, the Model Interface Ontology is
generic and can be reused for other domains with similar properties. A model interface
exposes both stocks (states) and flows (rates of inputs and outputs) and it can be accessed
by a simulation engine (numerical integrator) for calculating the stocks as an
accumulation of flows over the simulation time horizon.

These concepts are declared in the Model Interface Ontology as follows: we identify
two types of models: Static and Dynamic models. The first kind of model does not expose
any states and rates, as it is not required to be integrated over time. The opposite holds
for the dynamic models. All inputs, outputs, states and rates of models are types of
an abstract Measurement concept, which is used for defining their semantics in
different contexts (space, time units, and so on). The Measurement class is detailed
below. Figure 2, illustrates the relations between the two model types in the ontology.

Figure 2 The relations between the model type concepts of the model interface ontology
(see online version for colours)

3.2 Model interface elements as measurements

The Measurement class is the key instrument for conceptualising the model interface
elements. The Measurement class specifies the following properties of a model interface
element:

• The observed quantity

• The spatial observation context

• The temporal observation context

• The sampling frequency

• Value conditions (minimum, maximum and default value and default unit).

A Quantity can be considered as the result of applying a physical dimension on a subject
of interest. For example, AirTemperature can be considered as a physical quantity that
represents the Temperature dimension of air. Spatial and Temporal contexts are used to
define the dimensionality of a measurement in space and time. Sampling frequency
associates the tempo-spatial dimension of a measurement with a sampling rate and grid
size. Finally, value conditions are used for defining boundary conditions for a
measurement’s allowed values. An abstract view on the Measurement class and its
relationships with the rest concepts in the ontology is presented in Figure 3.

 100 I.N. Athanasiadis et al.

Figure 3 The relations of the measurement concept (see online version for colours)

3.3 Proof-of-concept and implementation

The conceptual schema of the Model Interface Ontology can be used for specifying
model interface elements as follows: consider a measurement called
“HourlyAirTemperature”. It can be defined by referring to AirTemperature quantity, and
be measured at a point in space and time, on an hourly basis, having as default unit
degrees Celsius and be consistent to some value conditions (min, max, and default
values). Consequently, such an instance of Measurement class can be attached to a model
interface.

Note that the developed Model Interface Ontology has been realised using the Web
Ontology Language (OWL, McGuinness and van Harmelen, 2004), through the Protégé
ontology editor (http://protege.stanford.edu/plugins/owl/). OWL–DL expressivity was
enough for conceptualising this domain. The specifications of units and dimensions were
based on the SWEET ontologies (2006).

In the previous sections, we advocated the potential of publishing model interfaces in
a declarative format and proposed an ontology for capturing the semantics of model
interface elements. This approach was undertaken by the Seamless-IP project and the
community of Agricultural Production Externalities Simulator (APES) modellers. A set
of tools have been developed to enable modellers to:

• share their knowledge related to environmental model components and their
interface variables

• exploit the knowledge stored in the ontology by generating source code in an
automated fashion.

4 AgrOntologies: A web-based tool for collaborative ontology authoring

The process of setting up an ontology, and populating it with modellers’ knowledge was
not straightforward. The major problems experienced, were related to managing
modeller’s conflicting views and the complexity of the domain at hand. In order to tackle

 Enriching environmental software model interfaces 101

such issues and to facilitate knowledge elicitation within a community of more than
ten modelling teams involved in APES, we built a web-based tool, called AgrOntologies,
for communal ontology authoring.

The key requirements were to enable scientists to share their modelling knowledge
at design time, enable collaboration over the web, and hide the complexity of an
axiom-based system as OWL-DL. In order to achieve this we designed it as a web portal
where scientists can register their model interfaces, review the definitions of other
scientists and reuse the community the knowledge on units, dimensions and model
interface elements. The implementation was based on Powl (Auer, 2005), a web based
platform for collaborative semantic web development, which has been tailored for the
needs of the Model Interface Ontology and the APES community.

A key issue in this process is that modellers are required to make their model
interfaces explicit and communicate them in a formal, yet comprehendible way to others.
Through the AgrOntologies portal, a modeller can

• specify model variables in detail, or even reuse existing variables defined by others

• define model interfaces and ultimately

• put together models together in components.

Note that the AgrOntologies portal presents information to the users in a ‘natural’ way for
them, not as they are represented within the ontology using description logics. In this
sense, modellers are not required to be exposed to all the complexity of the internal
ontology structure; rather, they are allowed to register their models through an easy to use
portal.

A screenshot of the developed portal is shown in Figure 4: on the left is the
component browser, which lists all models included in each bundle, while on the right
we see the model specification that contains its name, comments, the components which
is shipped with and model inputs and outputs. The pop-up screen on the top-right is the
‘edit variable’ panel through which the end user may define model variables as
measurements (i.e., by setting spatio-temporal references, units and quantity).

Figure 4 The AgrOntologies portal screenshot (see online version for colours)

 102 I.N. Athanasiadis et al.

5 DCC: A tool for generating model source code

The use of the ontology that we collaboratively authored and reviewed with
AgrOntologies, as a set of definitions (expressed as concepts and instances in the
ontology) goes beyond the purposes of documentation, consensus building and model
component linking. The attributes values associated with each variable can, in fact, be
used to provide to the component information needed to test the adequacy of values at
run time. This can be done via the implementation of the design-by-contract approach to
test pre-conditions (e.g., Donatelli et al., 2006a, 2006b). Making available variables
attributes in an implementation of model components has multiple uses, as it allows:

• validating inputs to the component

• using bounds for model parameters in automatic calibration

• defining sub-ranges of allowed variables to account for specific model limitation

• providing attribute values as simulation output for auto-documentation of results.

A software design which allows implementing the information available in components
makes use of an abstract data type called the domain class, following the approach by
Rizzoli et al. (1998). The domain class is characterised by a set of data attributes, which
are the inputs, states, outputs of the model and a set of access methods to set and get the
attribute values. The data attributes contain the numerical value, the variable’s range,
the default value, and the measurement units. Defining a domain class also allows setting
the boundaries of the domain to be modelled, providing the information to model
according to the approach chosen. Multiple models implemented in a component can
make use of the same domain class.

The application Domain Class Coder (DCC) is a windows application which, from an
input file extracted from the ontology application described in Section 4, generates the C#
code of twin classes. Such classes are of the type to hold values, and a companion class to
hold variables attributes. The former is an abstract class to be used as type in the
component interface, which then allows extensions via sub-classing of its default
implementation. The other class, conventionally referred to with the postfix VarInfo to
the value class name, contains attribute values which are declared as static properties and
have only the get access method. VarInfo values are used by a component to test pre and
post conditions which uses the VarInfo type (CRA.core.preconditions.dll, available as the
DCC, at http://www.isci.it/tools; DCC is available at the page XP Utils). The XML
schema of the latter type is shown in Figure 5. From the XML schema it becomes evident
that the information realised in the domain class is less compared to that stored in the
ontology, but it is functional for the purpose described above.

Once the input file is loaded (either as an XML or as a tab separated ASCII file), the
user can change minimum and maximum values to account for specific model limitations
(if any) with respect to the values stored in the ontology. The user must also specify the
domain class name, and the namespace of the class. The output is given by the C# code
of the two classes described above, which implement interfaces which allow discovering
types and attributes via reflection. The package (which can be downloaded) also contains
a sample input file which allows generating the relevant classes.

When these classes are included in a component assembly, its content can be browsed
via reflection using the application Model Component Explorer. This component allows

 Enriching environmental software model interfaces 103

discovering the domain classes, their attributes and types, and the VarInfo values for each
attribute. The component is available in the same page of the DCC.

Figure 5 The XML schema of the VarInfo domain class (see online version for colours)

6 Discussion

Various Environmental Management Information Systems have exploited ontologies,
mainly for information processing. Most of them focus on seamless integration
of environmental data repositories, e.g., related to coastal zone management
(Christophides et al., 1999), weather (Dance and Gorman, 2002), or water management
(Felluga et al., 2003). More generic approaches for environmental data fusion, such as
Infosleuth (Nodine et al., 2000), Buster (Neumann et al., 2001) and AISLE (Athanasiadis,
2006) utilised ontologies too.

However, none of the systems developed so far used ontologies for environmental
model linking and model component integration. This is the major contribution of this
paper, where we introduced ontologies as a medium for efficient model integration.
The Model Interface Ontology was proposed for enriching environmental model
interfaces in a declarative fashion. The MIO ontology consists of a first approach for
specifying complex environmental model variables using rich semantics. Spatio-temporal
aspects, units, quantities and dimensions are captured efficiently. Also, a clear path for
building reusable software components was defined, and the use of ontologies,
accompanied by a set of supporting tools, was exemplified. A clear pathway
for developing software components and reusing them efficiently as components
off-the-shelf was demonstrated, while taking into account the complexities and the
richness of environmental models.

The principles and tools presented here have been successfully employed in the
development of the APES system. The major obstacles we experienced reside with
the human side of a complex modelling task. Engaging the community in such a unique

 104 I.N. Athanasiadis et al.

exercise proved to be a hard task that required significant efforts for promoting
the semantic modelling paradigm. However, with the tools developed we communicated
the message that community-based ontology authoring can be as easy as navigating a
portal, while the benefits of using to an ontology for defining model interfaces go beyond
the system design and documentation.

Parallel efforts (i.e., Villa et al., 2006, 2009) are focusing on extending the current
framework by specifying model equations using semantic modelling primitives. Ontology
representations of both model interfaces and equations may lead us to a fully declarative
modelling and simulation environment for ecological modelling.

Acknowledgements

The efforts leading to these results have received funding from the European
Community’s Sixth and Seventh Framework Programmes under grants “Seamless IP”
(FP6-SUSTDEV-10036) and ‘TaToo’ (FP7-IST-247893). The AgrOntologies portal tool
was implemented by David Huber, AntOptima SA.

References
Athanasiadis, I.N. (2006) ‘An intelligent service layer upgrades environmental information

management’, IT Professional, Vol. 8, No. 3, pp.34–39.
Auer, S. (2005) ‘Powl – a web based platform for collaborative semantic web development’, Proc.

of 1st Workshop Workshop Scripting for the Semantic Web (SFSW‘05), Hersonisos, Greece.
Attiya, H. and Welch, J. (2004) Distributed Computing: Fundamentals, Simulations, and Advanced

Topics, 2nd ed., Willey, Hoboken, NJ, USA.
Christophides, V., Houstis, C., Lalis, S. and Tsalapata, H. (1999) ‘Ontology-driven integration of

scientific repositories’, Proc. of the Fourth Workshop on Next Generation Information
Technologies, Zikhron-Yaakov, Israel.

Dance, S. and Gorman, M. (2002) ‘Intelligent agents in the Australian bureau of meteorology’,
Proc. of the 1st International Workshop on Challenges in Open Agent Systems held at
AAMAS’02, Bologna, Italy.

Donatelli, M., Bellocchi, G. and Carlini, L. (2006a) ‘Sharing knowledge via software components:
models on reference evapotranspiration’, European Journal of Agronomy, Vol. 24, No. 2,
pp.186–192.

Donatelli, M., Bellocchi, G. and Carlini, L. (2006b) ‘A software component for estimating solar
radiation’, Environmental Modelling and Software, Vol. 21, No. 3, pp.411–416.

Egyed, A., Müller, H.A. and Perry, D.E. (2005) ‘Integrating COTS into the development process’,
IEEE Software, Vol. 22, No. 4, pp.16–18.

Erl, T. (2004) Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services,
Prentice-Hall, Upper Saddle River, NJ, USA.

Felluga, B., Gauthier, T., Genesh, A., Haastrup, P., Neophytou, C., Poslad, S., Preux, D., Plini, P.,
Santouridis, I., Stjernholm, M. and Würtz, J. (2003) ‘Environmental data exchange for inland
waters using independent software agents’, Report 20549 EN. Institute for Environment and
Sustainability, European Joint Research Centre, Ispra, Italy.

Gruber, T.R. (1993) ‘A translation approach to portable ontologies’, Knowledge Acquisition,
Vol. 5, No. 2, pp.199–220.

 Enriching environmental software model interfaces 105

Jakeman, A.J., Letcher, R.A. and Norton, J.P. (2006) ‘Ten iterative steps in development and
evaluation of environmental models’, Environmental Modelling & Software, Vol. 21, No. 5,
pp.602–614.

Luck, M., McBurney, P., Shehory, O. and Willmot, S. (Eds.) (2005) Agent Technology: Computing
as Interaction, AgentLink, Southampton, UK.

McGuinness, D.L and van Harmelen, F. (Eds.) (2004) OWL Web Ontology Language Overview,
W3C Recommendation, www.w3.org/TR/owl-features/

Muetzelfeldt, R.I. (2004) Declarative Modelling in Ecological and Environmental Research.
European Commission Directorate-General for Research, Position Paper no. EUR 20918.
European Commission, Brussels, Belgium.

Neumann, H., Schuster, G., Stuckenschmidt, H., Visser, U. and Vögele, T. (2001) ‘Intelligent
brokering of environmental information with the buster system’, in Hilty, L.M. and
Gilgen, P.W. (Eds.): Intl. Symposium Informatics for Environmental Protection, Zurich,
Switzerland, pp.505–512.

Nodine, M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M. and Unruh, A. (2000) ‘Active
information gathering in infosleuth’, International Journal of Cooperative Information
Systems, Vol. 9, Nos. 1–2, pp.3–28.

Rizzoli, A.E., Davis, J.R. and Abel, D.J. (1998) ‘A model management system for model
integration and re-use’, Decision Support Systems, Vol. 4, No. 2, pp.127–144.

Refsgaard, J.C., van der Sluijs, J.P., Brown, J. and van der Keur, P. (2006) ‘A framework for
dealing with uncertainty due to model structure error’, Advances in Water Resources, Vol. 29,
No. 11, pp.1586–1597.

SWEET Ontologies (2006) Semantic Web for Earth and Environmental Terminology (SWEET),
http://sweet.jpl.nasa.gov.

Szyperski, C., Gruntz, D. and Murer, S. (2002) Component Software – Beyond Object-Oriented
Programming, 2nd ed., ACM Press, New York, NY.

Villa, F., Donatelli, M., Rizzoli, A., Krause, P. and van Ewert, F.K. (2006) ‘Declarative modelling
for architecture independence and data/model integration: A case study’, In 3rd Biennial
meeting of the International Environmental Modelling and Software Society, Burlington, VT,
USA, 9–12 July.

Villa, F., Athanasiadis, I.N. and Rizzoli, A.E. (2009) ‘Modelling with knowledge: a review of
emerging semantic approaches to environmental modelling’, Environmental Modelling and
Software, Vol. 24, pp.577–587.

