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Abstract: Common practice has proven that software implementations  
of environmental models are seldom reused by broader communities or in 
different modelling frameworks. One of the reasons for this situation is the 
poor semantics of model interfaces. Model interfaces embrace a critical amount 
of the modellers’ knowledge, but their software implementations can be 
considered as ‘poor reflections’ of modellers’ perceptions, as they fail to 
represent the complexity of model assumptions in software terms. This paper 
addresses the problem by adopting an ontology-driven approach that aims to 
enrich software model interfaces with advanced semantics. 
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1 Introduction 

Writing a model of an environmental system is a complex process, which aims  
at providing an abstraction of real world processes, using a given formalism, and 
exploiting a wide collection of techniques originating from general systems theory to 
economics and social sciences. 

A model, being an abstraction, in order to tame the complexity of the real world, 
approaches its subject from a specific point of view; particular assumptions and 
hypotheses about the phenomena involved are made. We, therefore, neglect the full 
extent of causal chains and driving forces of the phenomena of interest and strive for 
simplification, focalisation and modularisation of the model construction process. 
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When we implement the model on a computer, we introduce more assumptions; more 
limitations (for instance, the model is forced to a discretisation) and, therefore, the 
software implementation of a model should be considered as a poor realisation of the 
original formalisation. Such an approximation states only implicitly the assumptions 
made for building it. For instance, the spatial discretisation of a model variable can only 
be inferred by a close inspection of the data type used to implement it. 

During the last decades, a number of models have been designed and implemented, 
and it has become natural to assemble them together in order to try to address more and 
more complex problems. Integrated assessments are becoming increasingly common in 
environmental management and therefore we are faced with the problem of integrating 
models across scales and disciplines. This is neither an easy, nor a straightforward 
process. 

Software Engineering promotes the concepts of reusing “components-off-the-shelf” 
(Szyperski et al., 2002; Egyed et al., 2005), distributed computing (Attiya and Welch, 
2004), agent-based computing (Luck et al., 2005), service-oriented architectures and web 
services (Erl, 2004) to support the development of modular applications. The very same 
concepts are meant to be used to develop modular and integrated environmental software 
applications. 

However, software integration is not the sole necessary condition for a proper 
assemblage of environmental models. In other words, if a set of (good) software model 
implementations is working together, this is not at all a sign that the compound model 
makes any sense from a modelling point of view and generates credible results. Different 
authors have tried to target the issue of quality assurance in the development of  
environmental models (Refsgaard et al., 2006; Jakeman et al., 2006), but their main focus 
is on the quality of the modelling process. 

In this work we argue that sound integration of environmental models also requires 
automated coupling of the knowledge hidden behind each software implementation. In 
particular, in Section 2 we investigate a model structure and identify its knowledge 
elements, typically implicit both in the model interface and implementation. Section 3 
focuses in the utilisation of ontologies for specifying model interfaces, while in Section 4 
we present a demo web-based tool for communal ontology authoring for defining model 
interfaces. Section 5 presents a second tool for generating the source code of model 
interface data types, specified using ontologies, and the paper concludes with a discussion 
in Section 6. 

2 Model knowledge and linking 

2.1 The knowledge encapsulated in a model 

The result of the modelling process is a formalisation that encapsulates knowledge  
related to both the interactions of the modelled system with its surrounding environment 
(model interface and data exchange), and the internal behaviour of the system (model 
equations, or endogenous variables). Consequently, a software component implementing 
a model will consist of two parts, the interface and the implementation. The interface 
defines the inputs, outputs and parameters of a model, while the implementation defines 
the model equations. 
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Declarative modelling aims to separate the algorithms, which execute the numerical 
solution of the model equations from the ‘declarations’ of the equations themselves, and 
the variables and parameters occurring in the equations. Prior work has focused on the 
equation part (Muetzelfeldt, 2004), whereas in this paper we concentrate on a declarative 
approach for describing a model interface to facilitate model linking and integration  
using ontologies. Ontologies provide a formal support to express conceptualisations 
(Gruber, 1993), and a number of tools support the creation of ontologies. Furthermore, 
model knowledge stored in the ontology can be used both for formal documentation and 
provide functionalities which go beyond the computation of model variables. 

2.2 Sound model linking and integration 

Easy model linking and integration is a key feature that is advertised by most modelling 
frameworks. However, we advocate that simple integration in software terms is not 
enough for sound model integration. A software implementation of an environmental 
model does not take into account the full semantics of the model interface. The model’s 
assumptions are not captured in a components’ software interface. The information 
associated with the inputs, states, outputs and parameters is limited to their data type.  
For instance, a typical software implementation expounds as model interface arrays  
of doubles, integers, and strings, whose context is described in the software 
documentation, or, even worse, only in the variable names. However, this practice 
requires that someone has to read the documentation in order to understand how to reuse 
this model properly. This is because the model’s knowledge related to its interface is not 
encapsulated in the actual interface of the model implementation in a self-explained 
fashion. 

Consider, for example, the case depicted in Figure 1, where Models A and B are 
linked to another Model C. Model C is exposed to inputs CI1 and CI2, which are to be 
linked to model outputs AO1 and BO1. Let us assume, without loss of generality, that all 
these variables are simple floats. In software terms, integration can be achieved simply if 
both CI1 and CI2 are linked to any software component output that provides a float. 
However, from a modelling point of view, each model input or output is not simply a 
float; instead, it measures a specific quantity in a specific temporal and spatial context 
(i.e., it could be a car’s velocity or an ambient air pollutant’s concentration at ground 
level, and so on). Moreover, even if two models correctly link a variable expressing the 
same element, the model receiving the variable as an input may be able to handle only a 
sub-range of the values provided as outputs (due to model assumptions). It becomes 
evident that standard software interface conventions are not enough for encapsulating the 
full knowledge of the model interface. 

Figure 1 A model linking example 
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The vision of reusing model software implementations as off-the-shelf components 
requires the assumptions on the model interface to be represented in the implementation 
in a machine-readable format. Following the previous example, suppose Models A, B, 
and C are supplied by diverse vendors. In order to achieve sound model integration, each 
linkage should be verified not only at the low level of data type matching (which is the 
unique requirement for software integration), but also against the actual semantics 
(context and assumptions) related to model interface. To elaborate a bit more, let Model 
A (of the previous example) expose a single float AO1 that represents the calculated 
rainfall output, while Model C has a water pressure input CI1, also a float. Suppose that 
someone tries to make a link from AO1 to CI1. In such a case, as both variables are 
represented as single floats, the integration is feasible in software terms, though it makes 
no sense from a modelling perspective. The same holds for less semantically diverse 
cases, where we could have model variables expressing the same concept, but with 
mismatches in characteristic times, units, pre- and post- conditions, temporal or spatial 
dimensions and sampling rates. 

This discussion leads us to the conclusion that we need to express all the knowledge 
related to the model interface in a declarative way. This could be done by using an 
ontology, as we demonstrate in the following section. 

2.3 Principles and methods 

In this paper, we consider biophysical agricultural models in the context of the 
development of the Agricultural Production and Externalities Simulator (APES – 
http://www.apesimulator.it). APES is a modular simulation system, adopting a 
component-based architecture. A community of scientists from different disciplines 
contributed with model implementations that followed common design patterns. More 
than 20 scientists were involved in APES development, making scientific collaboration 
and knowledge sharing an important issue: Modellers needed to agree on common 
definitions of the entities exchanged by their models interfaces. In order to achieve a 
consensus, we followed a community-based, mediated approach, which involved 
ontological definitions, collaboration through scientific workshops and over the web, and 
tools for software development. 

The first step was to identify key modelling assumptions, involving model types, 
units and dimensions, and translate them into an ontology specifying model interfaces. 
Then the community of developers continued the work, to populate the ontology with 
axioms specific to the model under development. This involved mediated workshops for 
exemplifying tools and goals. Then, after a couple of iterations and reviews, a consensus 
has been reached, with an ontology that specified model interfaces. The final step is to 
further exploit the definitions written in the ontology by exporting them to code. 

3 Towards an ontology for specifying model interfaces 

3.1 Models and model types 

In order to enrich model interfaces with advanced semantics, we developed an ontology, 
called the Model Interface Ontology, that aims to encapsulate our knowledge on the 
model interface in a declarative fashion. While we focused on agricultural biophysical 
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processes, which occur through time and space, and usually are modelled using stocks 
and flows following the system dynamics approach, the Model Interface Ontology is 
generic and can be reused for other domains with similar properties. A model interface 
exposes both stocks (states) and flows (rates of inputs and outputs) and it can be accessed 
by a simulation engine (numerical integrator) for calculating the stocks as an 
accumulation of flows over the simulation time horizon. 

These concepts are declared in the Model Interface Ontology as follows: we identify 
two types of models: Static and Dynamic models. The first kind of model does not expose 
any states and rates, as it is not required to be integrated over time. The opposite holds  
for the dynamic models. All inputs, outputs, states and rates of models are types of  
an abstract Measurement concept, which is used for defining their semantics in  
different contexts (space, time units, and so on). The Measurement class is detailed 
below. Figure 2, illustrates the relations between the two model types in the ontology. 

Figure 2 The relations between the model type concepts of the model interface ontology  
(see online version for colours) 

 

3.2 Model interface elements as measurements 

The Measurement class is the key instrument for conceptualising the model interface 
elements. The Measurement class specifies the following properties of a model interface 
element: 

• The observed quantity 

• The spatial observation context 

• The temporal observation context 

• The sampling frequency 

• Value conditions (minimum, maximum and default value and default unit). 

A Quantity can be considered as the result of applying a physical dimension on a subject 
of interest. For example, AirTemperature can be considered as a physical quantity that 
represents the Temperature dimension of air. Spatial and Temporal contexts are used to 
define the dimensionality of a measurement in space and time. Sampling frequency 
associates the tempo-spatial dimension of a measurement with a sampling rate and grid 
size. Finally, value conditions are used for defining boundary conditions for a 
measurement’s allowed values. An abstract view on the Measurement class and its 
relationships with the rest concepts in the ontology is presented in Figure 3. 
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Figure 3 The relations of the measurement concept (see online version for colours) 

 

3.3 Proof-of-concept and implementation 

The conceptual schema of the Model Interface Ontology can be used for specifying 
model interface elements as follows: consider a measurement called 
“HourlyAirTemperature”. It can be defined by referring to AirTemperature quantity, and 
be measured at a point in space and time, on an hourly basis, having as default unit 
degrees Celsius and be consistent to some value conditions (min, max, and default 
values). Consequently, such an instance of Measurement class can be attached to a model 
interface. 

Note that the developed Model Interface Ontology has been realised using the Web 
Ontology Language (OWL, McGuinness and van Harmelen, 2004), through the Protégé 
ontology editor (http://protege.stanford.edu/plugins/owl/). OWL–DL expressivity was 
enough for conceptualising this domain. The specifications of units and dimensions were 
based on the SWEET ontologies (2006). 

In the previous sections, we advocated the potential of publishing model interfaces in 
a declarative format and proposed an ontology for capturing the semantics of model 
interface elements. This approach was undertaken by the Seamless-IP project and the 
community of Agricultural Production Externalities Simulator (APES) modellers. A set 
of tools have been developed to enable modellers to: 

• share their knowledge related to environmental model components and their 
interface variables 

• exploit the knowledge stored in the ontology by generating source code in an 
automated fashion. 

4 AgrOntologies: A web-based tool for collaborative ontology authoring 

The process of setting up an ontology, and populating it with modellers’ knowledge was 
not straightforward. The major problems experienced, were related to managing 
modeller’s conflicting views and the complexity of the domain at hand. In order to tackle 
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such issues and to facilitate knowledge elicitation within a community of more than  
ten modelling teams involved in APES, we built a web-based tool, called AgrOntologies, 
for communal ontology authoring.  

The key requirements were to enable scientists to share their modelling knowledge  
at design time, enable collaboration over the web, and hide the complexity of an  
axiom-based system as OWL-DL. In order to achieve this we designed it as a web portal 
where scientists can register their model interfaces, review the definitions of other 
scientists and reuse the community the knowledge on units, dimensions and model 
interface elements. The implementation was based on Powl (Auer, 2005), a web based 
platform for collaborative semantic web development, which has been tailored for the 
needs of the Model Interface Ontology and the APES community. 

A key issue in this process is that modellers are required to make their model 
interfaces explicit and communicate them in a formal, yet comprehendible way to others. 
Through the AgrOntologies portal, a modeller can 

• specify model variables in detail, or even reuse existing variables defined by others 

• define model interfaces and ultimately 

• put together models together in components. 

Note that the AgrOntologies portal presents information to the users in a ‘natural’ way for 
them, not as they are represented within the ontology using description logics. In this 
sense, modellers are not required to be exposed to all the complexity of the internal 
ontology structure; rather, they are allowed to register their models through an easy to use 
portal. 

A screenshot of the developed portal is shown in Figure 4: on the left is the 
component browser, which lists all models included in each bundle, while on the right  
we see the model specification that contains its name, comments, the components which 
is shipped with and model inputs and outputs. The pop-up screen on the top-right is the 
‘edit variable’ panel through which the end user may define model variables as 
measurements (i.e., by setting spatio-temporal references, units and quantity). 

Figure 4 The AgrOntologies portal screenshot (see online version for colours) 
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5 DCC: A tool for generating model source code 

The use of the ontology that we collaboratively authored and reviewed with 
AgrOntologies, as a set of definitions (expressed as concepts and instances in the 
ontology) goes beyond the purposes of documentation, consensus building and model 
component linking. The attributes values associated with each variable can, in fact, be 
used to provide to the component information needed to test the adequacy of values at 
run time. This can be done via the implementation of the design-by-contract approach to 
test pre-conditions (e.g., Donatelli et al., 2006a, 2006b). Making available variables 
attributes in an implementation of model components has multiple uses, as it allows:  

• validating inputs to the component 

• using bounds for model parameters in automatic calibration 

• defining sub-ranges of allowed variables to account for specific model limitation 

• providing attribute values as simulation output for auto-documentation of results. 

A software design which allows implementing the information available in components 
makes use of an abstract data type called the domain class, following the approach by 
Rizzoli et al. (1998). The domain class is characterised by a set of data attributes, which 
are the inputs, states, outputs of the model and a set of access methods to set and get the 
attribute values. The data attributes contain the numerical value, the variable’s range,  
the default value, and the measurement units.  Defining a domain class also allows setting 
the boundaries of the domain to be modelled, providing the information to model 
according to the approach chosen. Multiple models implemented in a component can 
make use of the same domain class. 

The application Domain Class Coder (DCC) is a windows application which, from an 
input file extracted from the ontology application described in Section 4, generates the C# 
code of twin classes. Such classes are of the type to hold values, and a companion class to 
hold variables attributes. The former is an abstract class to be used as type in the 
component interface, which then allows extensions via sub-classing of its default 
implementation. The other class, conventionally referred to with the postfix VarInfo to 
the value class name, contains attribute values which are declared as static properties and 
have only the get access method. VarInfo values are used by a component to test pre and 
post conditions which uses the VarInfo type (CRA.core.preconditions.dll, available as the 
DCC, at http://www.isci.it/tools; DCC is available at the page XP Utils). The XML 
schema of the latter type is shown in Figure 5. From the XML schema it becomes evident 
that the information realised in the domain class is less compared to that stored in the 
ontology, but it is functional for the purpose described above. 

Once the input file is loaded (either as an XML or as a tab separated ASCII file), the 
user can change minimum and maximum values to account for specific model limitations 
(if any) with respect to the values stored in the ontology. The user must also specify the 
domain class name, and the namespace of the class. The output is given by the C# code 
of the two classes described above, which implement interfaces which allow discovering 
types and attributes via reflection. The package (which can be downloaded) also contains 
a sample input file which allows generating the relevant classes. 

When these classes are included in a component assembly, its content can be browsed 
via reflection using the application Model Component Explorer. This component allows 
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discovering the domain classes, their attributes and types, and the VarInfo values for each 
attribute. The component is available in the same page of the DCC. 

Figure 5 The XML schema of the VarInfo domain class (see online version for colours) 

 

6 Discussion 

Various Environmental Management Information Systems have exploited ontologies, 
mainly for information processing. Most of them focus on seamless integration  
of environmental data repositories, e.g., related to coastal zone management 
(Christophides et al., 1999), weather (Dance and Gorman, 2002), or water management 
(Felluga et al., 2003). More generic approaches for environmental data fusion, such as 
Infosleuth (Nodine et al., 2000), Buster (Neumann et al., 2001) and AISLE (Athanasiadis, 
2006) utilised ontologies too.  

However, none of the systems developed so far used ontologies for environmental 
model linking and model component integration. This is the major contribution of this 
paper, where we introduced ontologies as a medium for efficient model integration.  
The Model Interface Ontology was proposed for enriching environmental model 
interfaces in a declarative fashion. The MIO ontology consists of a first approach for 
specifying complex environmental model variables using rich semantics. Spatio-temporal 
aspects, units, quantities and dimensions are captured efficiently. Also, a clear path for 
building reusable software components was defined, and the use of ontologies, 
accompanied by a set of supporting tools, was exemplified. A clear pathway  
for developing software components and reusing them efficiently as components  
off-the-shelf was demonstrated, while taking into account the complexities and the 
richness of environmental models. 

The principles and tools presented here have been successfully employed in the 
development of the APES system. The major obstacles we experienced reside with  
the human side of a complex modelling task. Engaging the community in such a unique 
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exercise proved to be a hard task that required significant efforts for promoting  
the semantic modelling paradigm. However, with the tools developed we communicated 
the message that community-based ontology authoring can be as easy as navigating a 
portal, while the benefits of using to an ontology for defining model interfaces go beyond 
the system design and documentation.  

Parallel efforts (i.e., Villa et al., 2006, 2009) are focusing on extending the current 
framework by specifying model equations using semantic modelling primitives. Ontology 
representations of both model interfaces and equations may lead us to a fully declarative 
modelling and simulation environment for ecological modelling. 
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