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1 Introduction 

Understanding and solving global environmental  
problems requires a new kind of science: one that is 
interdisciplinary, collaborative, and responsive to the  
needs of decision-makers (Dicastri, 2000; Newell et al., 
2005; Welp et al., 2006). Cross-disciplinary networks  
of scientists aim to integrate their understanding to provide 
scientific results that target complex problems worldwide. 
These networks of scientists – such as the Long Term 
Ecological Research (LTER) networks originally developed 
in the US (http://www.lternet.edu/) and now located 
worldwide (http://www.ilternet.edu/) – employ information 
managers whose primary task is to provide online access to 
relevant information. With available information rapidly  
increasing, the difficulty of discovering and making use  

of those resources is increasing as well, especially in 
conjunction with rapid expansion of the Web as a whole.  
A number of efforts are underway to enable better sharing 
of data, information, and knowledge within ecology and 
related disciplines, as discussed in Athanasiadis (2007), 
Michener et al. (2007), Rizzoli et al. (in press), and Villa  
et al. (in press). These efforts all include ontology-driven 
middleware applications that make use of formal semantic 
reasoning to enable integration of heterogeneous resources 
(Madin et al., 2008). 

Ontology-based approaches often rely on eliciting 
shared knowledge from large communities of domain 
scientists and decision makers, and formally representing 
that knowledge within structured semantic frameworks  
such that automated mechanisms may be used to support  
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discovery and integration of semantically-related resources. 
The authors are part of several large-scale initiatives that are 
building such shared ontologies for information discovery 
and integration: the National Science Foundation-funded 
projects Science Environment for Ecological Knowledge 
(SEEK; http://seek.ecoinformatics.org) and Assessment and 
Research Infrastructure for Ecosystem Services (ARIES; 
http://ecoinformatics.uvm.edu/projects/the-aries-framework. 
html) focus on automated integration of environmental, 
economic, and policy data with models and analytical 
pipelines; and the EU-funded System for Environmental  
and Agricultural Modelling project (SEAMLESS; 
http://www.seamless-ip.org), aimed at generating integrated 
assessment tools to understand how future alternative 
agricultural and environmental policies affect sustainable 
development in Europe. In each of these projects the need to 
crystallise community knowledge into formal ontologies is 
critical. However, each of these projects has confronted 
three challenges: 

Lack of similar showcase applications. The complexity  
and diversity of concerns within ecology make it difficult  
to develop semantics that support a single, far-reaching 
‘success story’. As a case study, the Gene Ontology  
(GO: Ashburner et al., 2000) has probably been the  
most successful community ontology effort to date. The GO 
focuses on a circumscribed set of issues – the cellular 
location, molecular function, and biological processes 
associated with genes. The simplicity of the conceptual 
realm addressed by the GO is well shown by the fact that 
despite listing several thousand concepts, it connects them 
with only a few structural relationships: is-a, part-of, 
regulates, positively-regulates and negatively-regulates. 
Compared to the GO field of application, the complexity  
of even the simplest useful description of entities, processes 
and interactions associated with ecology is overwhelming. 
First of all, there are many complementary ways to 
conceptualise ecological systems, focusing for example  
on individuals, populations, communities, information  
or energy flow. This multiplicity of scales applies to the  
spatio-temporal realm as well: observed ecological 
phenomena are different if observations are made at smaller 
or larger spatial scales and over short or large time horizons. 
According to the scale of the observation, processes can be 
seen as entities and the other way around: for example, 
populations can be identified as ‘things’ unless their 
composing individuals also are, which makes the notion  
of a population a changing process. Populations in turn  
can be conceptualised as composing communities through 
their interactions (e.g., the food web), creating more 
ambiguity of description. Ecology deals with abiotic 
components (structural elements of the environment) as well 
as with biotic elements. Roles of entities are multiple  
and change according to the focal observation: e.g., living 
entities typically serve as the structural environment of 
others (trees for insects, insects for bacteria). As a result,  
a successful ecological ontology is likely to require  
the incorporation of notions of endurance and perdurance 
(Masolo et al., 2003), will need to define notions of 

hierarchical composition, and ultimately will never match 
the crisp simplicity of the GO, where all phenomena happen 
at the same scales within a well-understood set of processes 
and entities. Given all of these issues, ontology management 
is critical yet there is no centralised curation mechanism as 
with GO. 

Disparity in work and benefit (Grudin, 1994). Scientists 
possessing the knowledge that must be captured in 
ontologies typically lack insight into the benefits that 
semantic modelling will ultimately provide them, in  
part because of the lack of a referential success story. 
Consequently, they are unwilling to engage in activities  
that do not provide clear, short-term benefits. Information 
managers, on the other hand, might have a better 
understanding of the long-term benefits of advanced 
knowledge modelling, but are also often occupied  
with more immediate problems and development of  
short-term solutions. Hence, ontology development requires 
“additional work from individuals who do not perceive a 
direct benefit” (Grudin, 1994). 

Critical mass (Grudin, 1994). Ontology-driven applications 
can be useful for individuals, but they are far more  
useful when groups share their resources, requiring  
a “critical mass of users” (Grudin, 1994). Given the  
amount of initial work necessary, early adopters  
of semantically-enabled technologies must contribute 
substantial effort with no guarantee that others will follow. 
Grudin makes a number of relevant suggestions for 
addressing these problems: 

• reduce the work required of non-beneficiaries and 
indirect beneficiaries 

• design processes that create benefits for all group 
members 

• build in incentives for use. 

In this paper, we explore a new approach to ontology 
construction which we feel can address these challenges,  
by vastly simplifying the process of developing formal 
Knowledge Representations (KRs) for ecology. We call this 
approach ‘indirectly-driven’ knowledge modelling. The goal 
of the indirectly-driven approach is to augment elicitations 
of knowledge models through direct interactions with users 
with indirect, systematic gathering of scientists’ semantic 
usages from their daily work, as reflected in books, journals, 
research design, and other communications. We believe that 
semantic patterns discernible in these constitute strong 
evidence for the underlying knowledge models that  
inform domain discourse. Additionally, we show that 
evidence-gathering systems can support scientists’ ability to 
perform such work while also facilitating knowledge 
modelling activities, providing an incentive and a benefit for 
all group members. Lastly, because these activities and 
supporting systems build on participants’ ongoing work it is 
easier to construct a compelling immediate vision of the 
usefulness of knowledge modelling that all participants can 
understand and anticipate, while continuing on the path to 
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the longer-term more comprehensive solutions that we 
envision. 

We begin with a description and investigation of the 
indirectly-driven knowledge modelling approach. Then, we 
provide a description of our experiences in knowledge 
modelling within the SEEK project: the participants, user 
communities, an example of our ontology needs, and the 
challenges we encountered. These sections provide an 
example and context for understanding the kinds and 
complexity of knowledge that we need to model. Next,  
we present a set of scenarios for semantic-based work  
tasks commonly undertaken by scientists and how  
evidence-gathering systems could support those. These 
scenarios and the systems supporting them are hypothetical, 
though we base them on our own use cases, including real 
examples drawn from our experiences. The objective is to 
generate an initial vision for evidence-gathering systems 
that can motivate creative thinking and debate about generic 
issues that confront interdisciplinary ontology development 
efforts. 

2 Indirectly-driven knowledge modelling 
Indirectly-driven knowledge modelling is an augmentation 
of traditional approaches to knowledge modelling  
rather than a replacement approach (Figure 1). Traditional 
approaches are usually direct: knowledge modellers engage 
their user community through personal interactions that 
range from structured meetings where each term is carefully 
considered to loosely structured arenas for the community to 
devise and edit basic conceptual frameworks in ad hoc 
ways. While these approaches provide information for 
ontology construction, the sole intent of these interactions is 
development of the ontologies, and users make decisions 
about the knowledge model itself. 

Figure 1 Interaction between direct and indirect methods of 
knowledge elicitation (shown within dashed ellipses). 
Semantic-laden tasks performed by scientists and 
information managers (1) are captured and analysed by 
a system designed to marshal evidence (2) for ontology 
construction by knowledge modellers (3,4), which 
feeds back to inform ongoing tasks (5).  
Indirectly-driven ontologies jumpstart and extend 
frameworks developed through traditional interactions 
with the user community (6). The evidence-gathering 
system is a supplementary step in the development  
of knowledge-based solutions (7) 

 

The complexity of ontologies and the difficulty of the 
knowledge modelling task presents a daunting obstacle to 
those who are not familiar with KR. Few of the community 
collaborators have the time or interest to cultivate an 
understanding of formal ontologies. Nor do they fully 
understand the benefits of ontology-driven systems, since 
few examples of those systems exist. Hence, their personal 
commitment to ontology development is limited. Yet they 
recognise that semantic approaches may provide future 
benefits to them and are willing to help to the extent that it 
does not impede their more immediate objectives. 

In contrast, indirect approaches engage the user in some 
other task that is semantic-laden, capturing and analysing 
their actions and providing semantic usage evidence that 
reflects their latent conceptual frameworks. They do not 
need to directly specify those frameworks. Rather, ontology 
construction is driven by the evidence available from usages 
found in typical discourse, and not by user community 
decision-making.  

In science, there are many semantic-laden tasks from 
which to marshal evidence, aside from the resource 
discovery and integration goals of the Semantic Web.  
Smith (2003) suggested that philosophers often turn to 
science as a reliable way to learn about the things and 
processes operating within a given domain. Much effort in 
science is focused on acquiring knowledge through 
participating in scientific discourse, which requires some 
level of mastery of a specialised and interrelated 
terminology. This process begins during formal education 
but is ongoing throughout the life of a scientist, who must 
be able to share their own perspective while understanding 
those of competing explanations. These semantic 
perspectives are implicit in the main artifacts of science: 
models, datasets, and natural language communications. 
Creation of these artifacts involves tasks that are inherently 
semantic and detecting semantic patterns in these artifacts 
could both contribute to ontology development and be 
assisted by a knowledge base.  

The KR method of choice in science has historically 
been written texts (publications) or conference presentations 
with accompanying figures and tables. These approaches are 
highly expressive and have worked well for sharing 
scientific knowledge for generations. Effective mechanisms 
for extracting information from these sources could provide 
abundant information for ontology development (Cowie  
and Lehnert, 1996). Data collection and experimentation  
links scientific theories and understanding with real  
world objects. Datasets, therefore, capture particular 
conceptualisations of the objects within a scientific domain. 
Descriptions of datasets (e.g., metadata) provided by 
scientists and information managers also contain rich 
semantic information. Similarly, scientific models embody 
assumptions about how processes and objects interact, and 
the concepts involved are often well-defined and understood 
within a domain. A wealth of information about scientific 
concepts is thus contained in publications, datasets, and 
models, and scientists engage in construction of these 
artifacts on a daily basis. Literature-based approaches to 
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ontology construction are already being developed  
(Hahn and Schnattinger, 1998; Sicilia et al., 2003). What is 
lacking is a comprehensive assessment of the variety of 
artifacts that can constitute evidence and a formalisation of 
the relationship and interactions between directly-obtained 
and indirectly-derived ontologies. 

The downside of indirect approaches is that the  
structure or presentation of knowledge within these artifacts 
represents the perspective of one or a few scientists,  
and does not necessarily capture the perspective of the 
broader community. Ontologies developed from one or a 
few artifacts may not provide knowledge models for  
which there can be widespread ontological commitment. 
Therefore, indirectly-derived ontologies are dependent  
on extensive collaborative review of the results.  
Conversely, the more artifacts available for evidence 
marshalling, the greater the ability to generate ontologies 
that truly represent shared conceptual frameworks. 

The indirectly-driven approach represents a new way  
of engaging with scientists. This new approach is virtual 
rather than physical, and focuses on linking user-centered 
task support with knowledge development task needs.  
It combines ‘pulling’ ontology development through 
analysis of the way semantics are used by the community 
with ‘pushing’ ontology development with easy 
mechanisms for reviewing and suggesting changes during 
task performance. It is an attempt to solve the problems  
of disparity of work and benefit, and critical mass  
(Grudin, 1994) that are prevalent in collaborative ontology 
development projects. This approach bridges the gap 
between formal and informal semantic approaches in ways 
that reduce workload and provide immediate benefits for all 
participants.  

However, these domain ontologies must be viewed  
as dynamic rather than static and subject to ongoing 
revision. This suggests that it is important to quickly deploy 
semantically-based tools that will enable scientists to test 
and refine their knowledge models. These knowledge-based 
systems must be designed to accommodate such  
changes. After all, the goal of science is to improve our 
understanding and conceptual view of the observable world; 
the notion of a ‘final’ ontology is inherently at odds with the 
scientific enterprise. While basic domain terminology may 
be relatively static, periodically there are revolutions in any 
science that fundamentally change conceptualisations in that 
field (Kuhn, 1962). Ontology-based systems in science  
must foresee and strategically prepare for such paradigm 
shifts. Another common issue in collaborative projects is 
that terms are connoted with additional meaning, developing 
a project ‘jargon’. This is a result of simplification or 
overloading of terminology. In such cases, terms employed 
within a project end up with broader or narrower meanings 
with respect to the rest of the scientific community. 
Ontology-based systems need to distinguish such  
project-specific connotations from community-sanctioned 
usages. 

Direct and indirect approaches to ontology development 
must interact (Figure 1). While substantial semantic 

evidence can be gathered and used in many ways,  
advanced reasoning capabilities depend on formal semantic 
structuring of knowledge that someone ultimately must 
decide. Ultimately, knowledge modellers must make some 
independent decisions about how best to model the domain 
within a formal ontology based on the evidence available. 
The community must be involved in that decision-making to 
a greater or lesser degree, depending on the abundance  
of evidence and the variability shown by that evidence  
to achieve community commitment (Davis et al., 1993).  
By augmenting decision-making with evidence-gathering 
systems, modellers are not completely dependent on  
direct engagement with users. They may construct tentative 
ontologies based on evidence that provides a starting point 
for engaging the community directly, and can further refine 
ontologies with the formalisms and detail that would 
otherwise require substantial time and effort for users who 
may not regard provision of such detail as a high priority in 
their work efforts.  

Developing evidence-gathering systems that depend  
on and enable group sharing of resources differs in 
fundamental ways from developing software that  
supports individuals and large organisations (Grudin, 1994).  
One clear difference is that in theses cases, the tasks to be 
supported are defined in advance by product managers or 
in-house IT experts, respectively. In contrast, semantic tasks 
are poorly defined for any new community that is to be 
supported. For instance, much analysis has been conducted 
on semantic tasks of online shoppers and therefore systems 
that support and make use of these activities are becoming 
common place (Lohse and Spiller, 1998). Those tasks are 
not necessarily analogous to the semantic tasks of a 
completely different group such as scientists. 

A second difference is that introducing systems that 
change work patterns requires corresponding investments  
in dealing with sociotechnical factors that go along with 
change management. These issues are largely absent in 
development of single-user software. They are strongly 
present in organisational settings where there is also an 
infrastructure in place to provide training, restructure work, 
and provide leadership. Semantic systems for scientists 
bring about all of the challenges of changing work  
processes with little of the supporting infrastructure.  
For these reasons and it is essential that collaborative 
knowledge development teams become strategic in their 
activities. Unfortunately, there are few models available to 
guide strategic choices. 

We propose the following model for development of 
semantic systems that depend on collaboration between KR 
specialists and the communities that they aspire to support. 
System development should be explicitly divided into two 
phases: an idea generation phase and an implementation 
phase (Figure 2). The idea generation phase is separated out 
to emphasise that this may be a lengthy and time-consuming 
process, requiring a similar level of resource investment as 
the implementation phase. Idea generation is an iterative 
process that has the goal of understanding semantic tasks 
and discovering task linkages within the collective group of 
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participants that can be leveraged by system design. In its 
simplest form, it consists of learning about the workflow of 
each participating stakeholder group, analysing those in 
terms of semantic tasks, then analysing the collective set for 
tasks that can be linked in some way. In practice this often 
involves a rather chaotic period of interaction between 
different participants as they learn about each other’s 
perspectives and search for common ground (Olson and 
Olson, 2000). These interactions are difficult because they 
depend on overcoming the very semantic barriers that 
semantic systems target. In the case of engagement  
between two such disparate groups as knowledge modellers 
and ecologists, the semantic barriers can be large. 
Developing cross-disciplinary understanding is the first step 
towards the truly interdisciplinary perspective that is 
required for effective idea generation within semantic 
projects. 

Figure 2 Components of an idea generation phase of 
development of semantic systems.  Semantic tasks of 
all stakeholders (user community and knowledge 
modellers) are extracted from workflow descriptions. 
These are collectively analysed to identify linkages 
between semantic tasks of different stakeholders.  
These linkages are used to design systems that interact 
in strategic ways 

 

3 Participants and user community 
In this section and the next, we describe components of  
the SEEK project including stakeholders, an example of  
the kinds of knowledge we need to represent in these 
projects, and an overview of a high-level ontology we have 
developed to structure that knowledge. Although we focus 
on SEEK because it is a more mature project, analogous 
structures are present in the ARIES and SEAMLESS 
projects. We collaborate between projects such that  
we can leverage each others’ work and create a larger, 
multi-disciplinary group that is more capable of critical 
evaluation of proposed ontologies. Our collaboration has the 
added benefit of leading to ontologies that will interoperate. 

The SEEK Knowledge Representation (KR) group has 
cross-disciplinary expertise in computer science and domain 
science. It consists of three computer scientists with 
expertise in ontologies, reasoning, and semantic mediation, 

and four domain scientists with differing disciplinary 
expertise, relatively high levels of computing experience, 
and varying backgrounds in KR. The group has met 
regularly to devise strategies for ontology development. 
Discussion at these meetings ranges from formal symbolic 
logic to philosophy of science to targeted discussion about 
implicit knowledge embedded in datasets. Time and effort 
was required to bridge disciplinary boundaries and 
understand inherent assumptions that impact the groups’ 
ability to collaborate on what is clearly an interdisciplinary 
task. Numerous real examples of environmental data and 
analyses obtained from scientists and information managers 
have guided and informed these discussions. One of the 
domain scientists is tasked with developing and maintaining 
the ontologies in Protégé (http://protege.stanford.edu/). 
Another is tasked with acting as liaison to the scientific 
community.  

The KR group is continually involved in outreach  
to acquire community-based vocabularies and informally-
structured knowledge. These outreach activities provide  
a flow of informally-structured semantic description  
among collaborators. Some of these activities involve direct 
interaction for the purpose of ontology development;  
other activities lead indirectly to ontology development. 
Across the three projects, we have engaged directly with 
dozens of users for the purpose of ontology development. 
Informally, we have collected information from hundreds of 
users.  

The KR group has attempted to directly engage groups 
of scientists in ontology development through small 
working meetings where they are asked to talk about their 
research, explain terms, brainstorm hierarchies, and provide 
lists of terms. Generally, their level of interest in such 
activities fades rather rapidly. Additionally, the hierarchical 
structures that they propose are often unusable in our 
ontologies due to their informal nature (e.g., they are often 
inconsistent). Most importantly, those who are willing to 
participate are typically new faculty who are under 
substantial pressure to produce research results quickly in 
order to obtain tenure. In general, they only participate in 
activities that will quickly lead to publication. There are  
few short-term incentives for assisting in the development 
of ontologies; hence, few can remain engaged at the level 
needed.  

Another direct source of information has been a  
week-long training workshop on ecoinformatics that  
the SEEK project held each January from 2002 to 2007.  
The participants in this training each year were 20 new 
faculty and postdoctoral associates representing the most 
technically-savvy of young ecologists who applied, with 
more than 100 participants trained. Many were tackling 
problems that required advanced computational approaches 
(Pennington et al., 2008). During the workshop, one  
full day was spent covering ontologies. Over the four years 
that the training was conducted, the ontology portion  
was constantly modified based on feedback from students, 
and many approaches were tried. In general, the students 
were exposed to exercises that highlighted the semantic 
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issues in ecological datasets and the requirements for 
resolving those issues. They construct ontologies for their 
research interests on paper. We demonstrated ontology 
editors and touchgraph visualisations. They stepped through 
portions of ontology editing exercises such as CO-ODE’s 
pizza ontology (Horridge et al., 2004). The ontology portion 
of the training was the most difficult to present,  
and the content often received criticism in post-training 
surveys designed to evaluate all aspects of the workshop. 
Even though participants understood the semantic issues 
and recognised that ontologies might be useful for 
addressing them, they did not think semantic approaches 
were important for them to learn. In the most recent 
workshop (January 2007) survey feedback indicated  
that 50% of participants, when asked what one thing they 
would change about the training, thought the ontology 
portion should be removed. This is a clear indication that 
direct interaction with ontologies is an obscure task for 
ecological scientists and more compelling demonstrations 
are needed for communicating the value of semantic 
models. 

Given all of these issues, the KR group had to be 
creative about finding other ways to obtain  
community input. We decided to rely on activities that 
indirectly provide evidence of the communities’ ontological 
perspectives. For example, information managers often 
construct controlled vocabularies from the keywords  
used by scientists to describe their publications and  
datasets. These controlled vocabularies were further used  
by our group to create some simple domain ontologies. 
Hence, rather than directly engaging scientists and 
information managers we took advantage of the tasks these 
individuals were already performing to capture evidence 
regarding semantic usage for ontology development.  
Based on those outcomes, we were able to provide feedback 
to the information managers, suggesting revisions to their 
controlled vocabulary. 

4 Ontology needs 
In each of our projects, KR is tightly integrated  
into technical research and development. We are  
working toward (semi-)automated resource discovery and 
integration, including approaches for finding and merging 
heterogeneous datasets and constructing workflows that 
pipe data through heterogeneous computing environments 
(Bowers et al., 2004; Bowers and Ludaescher, 2004; 
Berkley et al., 2005). We are also constructing  
ontology-driven environmental decision support systems. 
These applications require high-quality ontologies and 
formal reasoning provided by description logics for 
consistency checking and validation. Much of the 
functionality provided by ontological reasoning will be 
hidden from the user, yet will help to automate many  
low-level tasks that the user would otherwise have to 
undertake manually. 

Our ontology development has been two tiered:  

• development of an upper-level conceptual framework 
for observation and measurements (core ontology) 

• development of domain-specific extensions to the core 
ontology. 

Our early work was more focused on the first task though 
the need for domain extensions was known. An initial 
version of the core observation and measurement ontology 
developed within SEEK is described in Madin et al. (2007) 
and is undergoing additional development.  

4.2 Observation, measurement, and metadata 

Scientists make observations about the world that  
are recorded as measurements and captured in datasets 
(Madin et al., 2007). The design of ecological field 
experiments depends on the nature of the questions of 
interest, the context within which those are embedded, and 
the preferences of the scientist with regards to which  
factors of the environment to measure or alter, and how to 
accomplish this. Two scientists investigating the same 
phenomena may thus design very different experiments.  
For example, two ecologists studying changes in the 
quantity of aphids relative to ladybugs in the field under 
different chemical treatments may use quite different 
experimental designs (Figure 3). Although their final 
measurements might be identical (counts of the numbers  
of ladybugs and aphids), these numbers might not be 
directly comparable. Also, because these ecological field 
experiments are conducted in nature, their experimental 
designs might involve important spatial considerations. 
Unfortunately, the terminology used to describe these 
spatial/experimental nested structures is not consistent.  
The same term may refer to different parts of the 
experimental hierarchy. 

The common characteristics of these two field 
experiments are that they both measured numbers of 
ladybugs and aphids in controlled environments where 
different treatments were applied. At least one of the 
treatments was common to both – nitrogen enrichments to 
the soil – and both coded that treatment with the single letter 
‘N’. The spatial arrangement of experimental design 
differed, as well as the terms that were used to refer  
to different parts of that design. Any attempt to integrate 
these observations into a single dataset must resolve  
these semantic discrepancies. Other discrepancies are less 
obvious. A capture time of one week will allow many more 
insects to be captured than a capture time of 84 h therefore 
some sort of transformation must be applied to make these 
semantically equivalent. The transformation may or may not 
be a linear relationship. Additionally, decisions must be 
made about how to transform data from the first experiment, 
conducted twice per year, into annual measurements 
comparable to the second dataset. Finally, in this case  
the smallest sampling areas were both one meter square,  
but this is not always the case. Samples could be from 
different sized areas. As with temporal differences, the 
transformation of values of different measurements between  
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different sized areas may or may not be linear depending on 
the phenomena being studied. For example, aphid density 
might scale linearly with area, but trap efficiency might not. 

Figure 3 Comparison of two real field experiments, both 
investigating the relationship between ladybugs and 
aphids under different chemical treatments. Each 
experiment has a nested experimental structure that 
takes place on the ground within spatial constructs.  
The terminology used to describe the experiment and 
the spatial structuring differs between experiments.  
In some cases the same term means different things;  
in others semantically-equivalent things are given 
different names. Both experiments catch insects in 
traps, and count the number of ladybugs and aphids 
captured. Associated datasets code each of the nesting 
levels along with insect counts. A) Three ‘sites’ each 
contain eight ‘replicates’. Each replicate has two 
‘plots’. Each with a chemical treatment. An insect trap 
is at the centre of each plot. B) Two ‘sites’ each are 
divided into four ‘blocks’, each of which has eight 
‘plots’. Each plot receives a different chemical 
treatment and is divided into eight ‘quadrats’. A trap is 
at the centre of each quadrat 

 

Substantial effort has been placed on developing better 
metadata standards for ecology that help capture and 
describe the full range of methods in experiments such  
as these so that others may make sense of, and reuse, 
datasets (Michener et al., 1997; Brilhante and Robertson, 
2001; Fegraus et al., 2005). These efforts have focused  
on standardised metadata descriptions that are human 
readable. These rich descriptions can be further formalised 
through the use of ontologies to automatically discover and 
(at least potentially) integrate datasets from disparate yet 
semantically related field experiments. 

4.2 Ontologies 

The core ontology developed within the SEEK project is 
called the Extensible Observation Ontology (OBOE), and 

provides a formal and generic conceptual framework for 
describing the semantics of datasets that contain 
observations and measurements. In OBOE, an observation 
is about an entity (concept or thing), and a measurement is 
of a characteristic of the entity (Figure 4). Measurement 
relates a value to a measurement standard (e.g., a unit) as 
well as an estimate about the confidence level of the  
value (e.g., measurement precision). OBOE provides a 
structured approach for connecting domain-specific 
ontology terms to data through the use of ‘extension points’, 
i.e., specific classes, properties, and constraints that  
are elaborated by different areas or views/models of  
science. Therefore, OBOE can serve as an upper-level 
framework for defining new domain ontologies as well as 
interoperating and relating existing domain ontologies, and 
linking these to specific observations and measurements. 

Figure 4 Use of the Extensible Observation Ontology (OBOE) 
to structure field data through annotation of classes 
(ellipses) and properties (arrows).  Field data represent 
counts of numbers of ladybugs and aphids in the 
experimental projects shown in Figure 3.  Core classes 
represent any observable phenomena.  Extension 
classes represent specific scientific domains, in this 
case organismal ecology. Modified and simplified from 
Madin et al. (2007) 

 
OBOE differs from other existing ontologies related  
to datasets and scientific measurement that focus on the 
physical structure of datasets and attaching methods, 
pedigree, etc. to the notion of a dataset as a whole. OBOE 
differs by providing very detailed, conceptual descriptions 
of the contents of a dataset via the notions of observation, 
entity, characteristic, etc. OBOE also differs from a number 
of other similar ontology and relational approaches for 
describing observations by providing a flexible and generic 
notion of observation context, whereas most other 
approaches assign a standard set of contexts to observations 
(like space, time, etc.). Madin et al. (2008) provide a survey 
of these other approaches and compare them with OBOE. 

In the given example, ladybugs and aphids are 
represented by domain entity classes. They are measured 
using counts (a characteristic) that have a value and a 
precision. The standard unit is an individual. In this case, 
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multiple observations must be combined to fully describe 
the semantics of these experiments (not shown in figure). 
These multiple, associated observations are often intuitively 
assembled by scientists into a single row or record  
of a table. OBOE enables a scientist to be much more  
explicit about the interrelationship among observations 
within a record. For example, nesting of the spatial entities 
(plots, sites, replicates, etc.) within a record can be clarified 
by using the hasContext property. Madin et al. (2007) 
describe in detail the use of OBOE. 

Any given experiment is likely to require representation 
of many different kinds of observations, requiring  
many different domain extensions. While OBOE enforces  
a formal framework for describing the structure of 
observational data, the framework must be extended with 
domain ontologies. It is development of these extensions 
that requires novel approaches to knowledge acquisition. 

5 Semantic tasks, workflows and computer 
support scenarios 

Here we provide five scenarios of semantic-laden tasks  
and workflows carried out in science (specifically ecology) 
and a vision for computer-supported interaction mechanisms 
for different stakeholders. These are derived from real 
examples of work that our user communities engage in.  
The scenarios are untested ‘thought experiments’ which will 
hopefully inspire new architectural designs necessary to 
support such systems. We include examples of ongoing 
efforts that are relevant to development of such systems. 
The gap between this future vision and the methods we are 
currently able to deploy is quite large and will depend on 
advances across many perspectives within the KR and 
computer science communities, rather than just within our 
projects. Our hope is that these scenarios will lead to 
innovative thinking from many different perspectives. 

5.1 Data management scenario 

Karen is an information manager for a biological field site. 
She and several of her colleagues at other field sites have 
decided to construct a standard set of terms and definitions 
to be used as metadata keywords, to enable better data 
discovery by scientists across the community. She is aware 
of the observation ontologies that are being developed, 
understands that they enable even better data discovery and 
integration than her approach. She wants to take advantage 
of ontologies without fully understanding the nuances of  
the ontology or learning ontology languages. Therefore, she 
wants to work within the context of keywords and 
controlled vocabularies since that is what she understands, 
but she would also like to link her list of terms to the 
ontology to take advantage of whatever additional 
functionality is made available. 

Karen enters a website that provides an intuitive 
interface to a knowledge base that holds many ontologies, 
both private and shared. From this website she can create 
and manage her own private knowledge base. She imports  

a list of terms that she has previously generated. She can  
also import informal definitions (not constrained logical 
definitions), or she can enter the definitions on the website. 
Her colleagues import their lists into their own private 
knowledge base as well. They all indicate to the system that 
they want to share (or not) their private knowledge bases. 
Karen selects her colleagues’ shared knowledge bases from 
a list, generates a collaborative knowledge base, and sends a 
message through the system asking them to collaborate  
with her. From a collaboration screen, they are able to 
merge their vocabulary lists into a single unfiltered list.  
The system maintains a link between their individual  
lists and the collective list, so that any changes made  
during collaboration can optionally be copied back to their 
individual knowledge bases. Their screens are linked.  
When one person selects or edits a term everyone else’s 
screen automatically shows the change. They can make use 
of VoIP or a chat window to discuss their vocabularies.  
In this case, because there are a number of participants they 
prefer to use chat. Their chat session is recorded and at  
the end of their discussion they can request for the chat 
session to be copied to a blog attached to the collaborative 
knowledge base, providing a permanent record. The system 
also tracks what changes are made, when, and who makes 
them. This information is carried with each term and is 
available for later inspection. 

They collaboratively review duplicate terms and 
definitions to determine semantic relationships. They 
identify synonyms and can drag and drop synonyms on the 
screen so that they are adjacent to one another. Where there 
are semantic conflicts they resolve them and edit the 
collective vocabulary. 

Once they have a complete collective list of terms, they 
can choose an option to associate the terms in their list with 
an ontology. A list of ontologies is provided to them, which 
includes a list of “Our Favorite Ontologies” that the system 
generates from each individual’s list of “My Favorite 
Ontologies”. They decide on the ontologies they want to use 
(all of which are extensions to the OBOE observation 
ontology), and begin to make associations. For each  
term, the system automatically shows them syntactically 
exact matches from their selected ontologies along with 
definitions. They can easily explore parent, sibling, and 
child concepts as well as other related concepts to  
ensure that they understand the context of any given concept 
in the ontology and to reconsider the term selected for  
their controlled vocabulary. They are able to search the 
knowledge base using a Google-style interface to see what 
other concepts might be relevant. They can ask the system 
to analyse their searches and suggest concepts based on  
the choices by other users who have made similar  
searches. If they are uncertain about whether a concept  
is an appropriate match for their term, they can request  
several levels of help: tips and tricks, online documentation 
of annotation procedures, examples, live chat with a 
knowledge modeller, or e-mail support. 

If they do not find a concept that fits, they can suggest 
terms to be added to the ontology. They recommend  
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a concept and the system provides them with a wizard to 
capture their recommendations about where the concept 
belongs in the ontology. The system allows them to go 
ahead and use the term with a tentative association. 
Asynchronously, a knowledge modeller could consider 
where to place the term in the ontology. The system will 
provide him with information about the term from their 
knowledge base and from their search history; he may also 
request additional information from them. If he decides to 
add the concept as suggested, the system makes any needed 
adjustments to their knowledge base. If the concept is not 
added, the knowledge modeller can identify it as a synonym 
or make some other link from that term to the ontology, 
such that the user can continue to use that term but the 
system can resolve it to the correct association. They will 
get automatic notification of the final decision made by the 
knowledge modeller. (Task support for the knowledge 
modeller is further discussed in Section 5.5.) 

When Karen and her colleagues apply keywords to 
resources such as datasets or publications, they each  
apply terms from their individual controlled vocabulary. 
The system constructs the correct ontological associations 
and adds those to the metadata. The metadata therefore 
includes keywords from the local vocabulary and one or 
more ontology annotations allowing the resources to be used 
with ontology-driven discovery and integration tools. 

Example effort. The utility of the functionality envisioned in 
this scenario is illustrated by a controlled vocabulary effort 
currently underway by LTER information managers in 
collaboration with the SEEK KR group (Porter, 2006), who 
conducted a mining project on network datasets and 
publications to develop a controlled vocabulary. A list was 
generated by compiling all words appearing in metadata 
titles, keywords, and attributes, and in publication titles  
and keywords. The resulting list contained 21,153 terms. 
The list was filtered for stop words such as ‘of’ and ‘the’. 
Terms were then manually rated in importance based on a 
number of usage criteria. The information managers are 
continuing to collaboratively review this list to develop a 
controlled vocabulary for use in tagging datasets and 
publications. They provided this list to SEEK’s KR  
group, who were able to incorporate these terms into 
domain ontology development. The intention of both groups  
is to ultimately link the information managers’ controlled 
vocabularies to the ontology such that controlled keywords 
applied to any resource are automatically annotated to  
the ontology, the ontology can be used to suggest terms that 
are not available in the controlled vocabulary, and  
the process of users applying new keywords can inform 
continued development of both.  

Key needs. This scenario highlights basic functionality  
that must be provided by any semantic system  
supporting science. First, there is a need for flexible  
use and interaction between different semantic approaches. 
Thesauri, controlled vocabularies, folksonomies, ontologies 
and other approaches should interact seamlessly such that 
users can choose to work within a semantic approach that is 

appropriate for their own context and level of understanding 
yet provides opportunities to acquire functionality  
provided by other approaches with a reasonable level of 
effort. Obviously the additional functionality they can 
acquire will depend on the semantic approach they have 
chosen. Nevertheless, to the extent interactions between 
approaches can be enabled, they should be. Second, users 
should be able to use whatever term they would like to use, 
without being forced to change to an ‘approved’ term.  
If they make the effort to associate their term with a concept 
in the knowledge base the system should be able to keep 
track of that link such that they can continue to use their 
preferred term yet still make use of semantically-enabled 
functionality. Third, the system should track the provenance 
of all terms and concepts. This is important for both the 
users and the knowledge modeller. Knowledge of the 
history of a term enables review and understanding  
of perspectives embedded in a knowledge base. Those 
perspectives differ across communities and the utility of any 
given knowledge base for a particular individual or group 
depends on alignment of their perspective with the 
perspective represented in the knowledge base. Provenance 
captures the evolution of a perspective within a knowledge 
base. Fourth, collaboration must be appropriately supported.  
The efficacy of semantic approaches is closely linked to 
community engagement and sharing therefore collaboration 
must be not only facilitated but encouraged. The gains  
from collaborating on the system must outweigh the cost. 
This means incorporating highly useful collaboration 
functionality. It also leads to the last basic need, flexible, 
intuitive interfaces and a support system that provides 
different levels of help on demand. While this is true  
of any software, complex, integrated systems that are not 
used on a daily basis must have these in order to be 
approachable. 

5.2 Data description and registration scenario 

John, an ecologist, wants to contribute his data to a portal so 
that he can participate in a new collaborative project that 
will analyse plant species from around the globe. To do  
so, he must provide metadata that includes ontological 
annotations. He has numerous spreadsheets with similar but 
slightly varying schemas that he has collected over a 
number of years.  

Information managers have previously developed a web 
application that walks users through the process of creating 
metadata for datasets. The application accesses their 
knowledge base, which contains the site’s controlled 
vocabulary linked to ontologies. His information manager 
has provided some training on how to make use of the 
application. John has never actually used the system, but has 
a vague recollection of how to do it and enters the  
website with confidence knowing that both the description 
and annotation tasks are supported with intuitive user 
interfaces and online help for novices. 

John creates metadata for the first dataset. He loads  
the dataset into the web application, which analyses the 
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dataset and is able to automatically generate a fair amount 
of metadata. The system prompts him for the remainder of 
the metadata. Then he must begin the semantic registration 
process. He starts with the controlled vocabulary for his  
site. The system prompts him to select keywords for the 
dataset as a whole, then for each attribute in the dataset. 
Because the keywords are linked to domain ontologies  
that are extensions of OBOE (our upper-level ontology), the 
system prompts him to indicate the relationships between 
attributes required by that ontology and guides him through 
that task. If John has an attribute that he does not think is 
adequately expressed by any of the terms in the controlled 
vocabulary, he has all of the same ontology exploration 
functionality available to the information managers. He can 
suggest terms to be added to the controlled vocabulary 
and/or to the ontology using the same procedure as the 
information manager. In this case, his recommendation is 
forwarded to the information manager who can assess  
the term, add it to the controlled vocabulary and link it to 
the ontology, or forward it to the knowledge modeller if it 
requires modification of the ontology.  

John has several datasets with an identical schema to the 
first dataset that has been described and annotated. He loads 
the second dataset and indicates to the system that it is a 
duplicate of the first in terms of physical, logical, and 
semantic description. The system analyses both datasets 
using a metadata ontology and verifies that that seems  
to be the case. The system duplicates the metadata and 
annotations then prompts John for any edits that might  
need to be made. The system ‘knows’ which parts of the 
metadata or annotations could possibly change because  
of the existence of the metadata ontology and leads him 
through those. For example, there could be datasets of 
different sites (i.e., change in spatial reference), or different 
period (change in temporal reference). If the datasets are  
not duplicates, the system will inform John where there  
are discrepancies and support him through the process of 
comparing datasets, resolving issues and generating correct 
metadata and annotations. 

The remaining datasets are similar to the first dataset  
but vary in different ways. John loads a new dataset into the 
tool and indicates to the system that it is similar to the  
first dataset. The system compares table structures, data 
types, and column content and recognises where there are 
differences. Again, the system knows where metadata and 
annotations could possibly change, and prompts John to 
enter the correct information. 

John wants to generate a template dataset that is already 
described and annotated (to the extent possible) for future 
use. He can pick any of the datasets already described and 
annotated, and request a template. The system generates a 
blank table with associated metadata and annotations, then 
prompts for other information that is likely to be constant, 
such as project descriptions and personnel. John can elect  
to fill these in automatically from the original dataset or he 
can enter new information manually. Once the template is 
finished, he can save it and easily generate new datasets 
from it. Every time he does so, the system prompts him for 
information that is collection-specific. 

Example efforts. Cushing et al. (2007) are developing a 
database design tool for ecologists that includes domain-
specific database components they call templates, which 
contain integrity rules. This approach allows ecologists to 
select the templates that match their conceptual view and 
automatically generate appropriate databases. 

Jones et al. (2007) have developed software that  
uses formal, structured metadata encoded in XML to 
generate structured datasets and customised data entry 
forms. Their system is based on the Ecological Metadata 
Language (Fegraus et al., 2005), and output data sets that 
adhere to this specification. The datasets and forms can be 
used within handheld devices in the field as data is being 
collected. Validation routines generated from the metadata 
check for errors in data as it is entered and help maintain 
data integrity. 

Key needs. In addition to the key needs identified  
above, this scenario raises the issue of levels of review. 
Ontology curation is a demanding task for which there are 
currently few resources or business models. It is likely that 
at least in the near-term, this task will need to be shared as 
much as possible. Functionality for various levels and  
kinds of reviewers to interact and distribute the workload  
is critical. This scenario also emphasises the need for 
ontology-enabled wizards that assist with common data 
management tasks. Most scientists conduct their own data 
management activities and may not have an information 
manager available to consult. Semantic systems depend on 
well structured datasets, and the extent to which good 
dataset design can be facilitated from the beginning will 
greatly impact their utility. Semantic systems should be able 
to provide generic data management support and also 
information regarding how those concepts are best applied 
in a particular domain of interest. For instance, in designing 
a new table for collection of a particular kind of field data, 
the system could use an ontology of database design to 
provide advice and best practices, discover available 
datasets that illustrate those guidelines and that are 
semantically equivalent to the data the scientist intends to 
collect, and suggest one or more table designs.  

5.3 Data integration scenario 

Now that John has his datasets described and annotated,  
he contributes them to the portal, which is also tied to the 
knowledge base. He and a number of other scientists then 
begin to collaboratively decide which data should be 
integrated. They enter a web application that allows them  
to load up multiple datasets and collectively discuss them.  
As with the information managers, they can link their 
screens such that changes by one person automatically 
appear on everyone else’s screen. They also have chat,  
blog, and videoteleconferencing options. As they discuss  
the datasets they are able to map between these  
semi-automatically using the knowledge base and attribute 
annotations. They can modify any of the mappings that  
the knowledge base suggests plus add new mappings.  
They can generate integrated datasets based on their 
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mappings that inherit relevant metadata and annotations 
from the source datasets, prompting them to complete 
whatever new metadata or annotations are needed. As they 
collaboratively decide on the mappings between datasets, 
the knowledge base tracks their decisions. For instance, the 
scientists decide that dataset 1 attribute 12 maps to dataset 2 
attribute 6. These two attributes were annotated differently 
and there currently is no relationship between those 
concepts in the ontology. Through their collaborative 
mapping, however, they have indicated that there is indeed a 
relationship between these concepts. As they work through 
semi-automatic mapping of many attributes from many 
datasets the system is able to analyse their choices and 
suggest changes to the ontology to the knowledge modeller. 

Example efforts. The SEEK project is implementing  
a number of tool prototypes (Bowers and Ludaescher, 2004, 
2005, 2006) for ontology-based semantic annotation of 
datasets and analytical components within the Kepler 
Scientific Workflow System (http://www.kepler-project. 
org). Tools are also being developed that use ontology 
annotations to infer mappings between datasets (i.e., to 
merge multiple datasets into a single, unified dataset)  
and analytical components (i.e., to help users compose 
workflows), as well as to enable ontology-based discovery 
of data and workflow components.  

Goguen (2004) and Wang et al. (2007) have constructed a 
user-centric, semi-automatic schema matching system  
that multiple algorithms to both suggest mappings and to 
discover critical points where user input is both necessary 
and maximally useful. Their system can be used with any 
category of schema, including XML schemas, relational 
schemas, and ontologies. Hence, their system can be used to 
help users map between two dataset schemas, or between a 
dataset schema and an ontology.  

Key needs. Semantic systems that support scientists must 
include functionality for data visualisation and exploration. 
Data discovered through semantic searches may or may not 
be desirable for a particular scientific effort, and no scientist 
will use data without any further inspection. The power of 
semantic systems for discovery must be combined with 
equally powerful mechanisms for evaluating the relevance 
of the data returned. Data visualisation and exploration  
is critical for this endeavour. Enabling (semi-)automatic 
mapping between resources and generation of integrated 
resources is one of the most fundamental needs that  
will drive adoption of semantic systems by scientists,  
who are increasingly synthesising disparate, heterogeneous 
information using manual approaches. This scenario also 
highlights the possibility of tracking user choices to inform 
development of ontological relationships. The combined 
actions of many scientists mapping between many 
semantically-described datasets can provide a wealth of 
information regarding within and across domain semantic 
relationships. 
 
 

5.4 Research collaboration scenario 

Through the data portal, John has begun a dialogue with 
several scientists from different disciplines about potentially 
working together on a research project. Because they are 
familiar with different theories, research paradigms, and 
study methods, they need to spend a significant amount of 
time developing a conceptual framework that is well 
thought out and integrates their different perspectives.  
They decide to make use of a new web application that 
provides collaborative concept mapping and is linked  
to the knowledge base. Concept maps (Novak and  
Wurst, 2005) are a form of directed graph that captures 
associations (links) between concepts (nodes). The utility of 
concept maps as a mechanism for enabling interdisciplinary 
discussion in ecology has been demonstrated (Heemskerk  
et al., 2003; Jeffrey, 2003).  

They enter the website and rather than choose specific 
ontologies, they select the data portal and request to  
use the same ontologies as the portal. Independently, they 
each draw concept maps and process flow diagrams  
that represent their research interests. Each term that they 
use, if present in the selected ontologies, is automatically 
completed as they type it in. Again, if they want to use  
a term that is not in the ontology they can suggest terms. 
The linkages between terms in the diagram provide 
information about relationships between concepts that the 
system tracks, analyses, and can use to suggest changes to 
the knowledge modeller. 

Once they have each constructed their own diagrams 
they can collaboratively view and discuss each others work 
using various Web-based and audio/video collaboration 
tools. They can draw diagrams together representing  
their collective views. As they discuss the diagrams they 
implicitly resolve semantic issues. They determine that  
there is a close relationship between certain concepts in 
their different disciplines but they use different terminology 
for those concepts. As they find these differences they draw 
links on their diagrams. The system tracks these linkages 
and can use them to suggest links across domain-specific 
extensions of the ontology.  

They can request the system to ‘show datasets’, and next 
to each term on their concept maps it will provide titles  
of datasets in the portal that are associated with that term  
or related terms. They can explore these datasets in the  
same collaborative way as described above, and construct 
integrated datasets. The portal is linked to a repository  
of publications that have been annotated. Therefore, ‘show 
publications’ can be used to display publications that  
have been annotated with the terms related to those they 
have used. 

After drawing many diagrams, exploring datasets, and 
reading relevant publications they are ready to design their 
research project. They make use of a ‘workflow design’ 
module that provides some structure for diagramming a 
conceptual scientific workflow using concepts from the  
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knowledge base. Each node in the workflow represents a 
computational analysis or procedure (Michener et al., 2007).  
Links between the nodes represent flow of output data from 
one component to input data for the next. They use terms 
from model and process ontologies, with the system using 
automatic word completion. They can indicate specific 
datasets from the portal that are to be input to the  
workflow. When they are satisfied with their workflow, they 
can export it as a beginning workflow for a scientific 
workflow system and the annotations are transferred with 
the workflow. 

Example efforts. The Institute for Human and Machine 
Cognition (http://www.ihmc.us) is using techniques from 
logic, AI, and cognitive sciences to analyse the semantics of 
notations, such as mathematical diagrams and concept 
maps. Software tools for issue and argument visualisation 
are underway (Kirschner et al., 2003). These disparate 
efforts towards collaborative diagramming in virtual 
environments are not (as yet) linked with formal ontologies. 
The ARIES project is exploring algorithmic designs for 
semi-automatic alignments of concept maps. Our research  
in this area was inspired by existing work on  
ontology mapping (Kalfoglou and Schorlemmer, 2003). 
Salayandia et al. (2006) are developing an approach for 
defining workflow-driven ontologies that capture classes 
and relationships from domain experts and use that 
knowledge to support composition of services. 

Key needs. A simple feature highlighted in this scenario is 
the ability to choose a resource and request usage of  
the ontologies used by that resource, rather than selecting 
ontologies from a list. Another desirable feature in this 
scenario is showing linked resources of different types from 
within a different component of the system. In the scenario 
linked datasets and publications are shown within a concept 
map, but another variation would be showing linked 
publications and concept maps while exploring and 
visualising data. The main functionality highlighted  
in this scenario is support for concept maps and other 
diagrammatic forms. Scientists draw many sorts of diagrams 
and frequently find that mode of expression useful while 
discussing complicated cross-disciplinary subjects (Larkin 
and Simon, 1987). Process diagrams, flow diagrams, project 
diagrams – there are an unlimited number of forms and uses 
of diagrams in science. The system should provide flexible, 
intuitive diagramming tools that can be collaboratively 
constructed and shared, plus easily extracted and converted 
to publication-quality diagrams.  

If we consider two scientists drawing diagrams about the 
same research area, each will have their own diagram using 
the same or different terms and relationships. If the nodes 
on the diagrams are linked to ontologies they can provide an 
individual ‘view’ of the knowledge base, allowing each 
scientist to maintain his own conceptual perspective without 
compromising the collective formal structure. We have 
found that it is important to the scientists to be able to 
express their individual view with no constraints, and that 
the underlying subsumption hierarchy is much less 

important to them (Pennington, 2006). Science is about 
investigating areas of our understanding where there is not 
agreement, and understanding linkages across hierarchies 
rather than within hierarchies. Systems must facilitate 
working with different views of a set of ontologies based on 
individual perspectives and choices about representation. 
During scientific discourse, these disparate concept spaces 
may or may not become partially aligned. 

Concept maps and other diagrams from multiple 
scientists build a participatory ecosystem of content that  
can provide important vocabulary, indicate synonyms,  
show informal associations between terms, and provide 
hierarchical relationships. These semantic tags require 
structuring by a knowledge modeller and subsequent review 
and editing for clarity, cohesion, and soundness.  

5.5 Ontology review scenario 

Chris is a knowledge modeller working within the 
ecological community. He works on a tightly-coupled team  
that includes both computer and domain scientists. 
Combining the teams’ collective knowledge with 
information from text mining he has generated the 
knowledge base used in the above cases. He is rapidly 
receiving input from all of the suggestions made by his 
colleagues, as well as analysis of user actions from the 
system. He needs some sort of semantic management 
system to help him track all of these recommendations, 
make sense of them, experiment with various formal 
semantic constructs, make revisions and generate automated 
responses to users who are affected by a given decision that 
he makes. 

He is able to generate term lists from any combination 
of the above sources, flexibly sort and group terms, and  
try out tentative hierarchical structures before making any 
changes to his formal ontology. As he works with the 
tentative hierarchies he can invite participants to collaborate 
with him using linked screens. He can also request that 
colleagues review and modify a copy of any tentative 
hierarchy. The system will compare the modified copy with 
his tentative structure and show him where changes have 
been proposed. At any point he can modify the tentative 
ontology. When Bob is ready, he can request the system to 
align his tentative ontology with the existing ontology and 
show changes. When he is satisfied with the tentative 
ontology he can commit it and the system will automatically 
replace the affected portion of the existing ontology with  
the necessary changes. The earlier version is stored in case 
he needs to return to it. The provenance of all of the 
collective changes throughout the life of the ontology is 
available. The system analyses the changes and determines 
which annotated resources are affected. It creates a new 
version of annotations for those resources and notifies the 
user of the change. 

Example effort. SEEK is exploring different ways of 
extracting knowledge from a popular ecological  
textbook (Begon et al., 2006) for use as extensions of  
the OBOE framework. The group is quantifying the  
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strength of association among key ecological terms using 
various measures of proximity. For example, the term 
‘population’ is strongly associated with ‘individual’ and 
also ‘community’; however, the association between 
‘individual’ and ‘community’ is considerably weaker. 
Moreover, the proximity of different sets of prepositions 
and verbs to coupled ecological terms is being used  
as a mechanism to determine the most likely type of 
relationship between terms. For example, when ‘individual’ 
and ‘population’ are in close proximity, words like ‘in’, 
‘part’ and ‘contain’ are often also in close proximity 
suggesting a part-of relationship between these terms.  
The group is also using book chapter, section, and 
subsection headings to help structure the nested ecological 
terms, which helps distill broader concepts in the textbook 
domain (e.g., ‘competition’ or ‘ecosystem’).  

Key needs. The basic need in this scenario is a system  
that analyses all of the semantic-rich information generated 
in the other scenarios and makes recommendations to a 
knowledge modeller. It is this collective functionality  
that we refer to as an indirectly-driven semantic system. 
Other needs include the ability to flexibly explore,  
compare and modify multiple ontologies individually and 
collaboratively. As mentioned above, mechanisms to track 
provenance of concepts are important. 

5.6 Lessons learned from the scenarios 

The scenarios highlight a number of sources of indirectly-
derived evidence, some of which are easily obtained  
now but many of which depend on research and 
development of an evidence-gathering system. The kinds of 
functionality that are needed in an evidence-gathering 
system include: 

• useful, usable, and fully supported functionality 

• individual’s can work within their own, custom 
semantic terminology and views, while linkage to the 
community view provides generic functionality 

• flexible migration from semantic views to views of 
resources linked to particular terms 

• knowledge-based scientific diagramming 

• easy ontology curation and levels of review 

• grid approach to ontologies – ability to easily discover, 
access and use different ontologies either from a 
centralised query or by selecting a resource and 
choosing the ontologies that it uses 

• integrated data discovery, visualisation and exploration 
functionality 

• knowledge-driven wizards for data management and 
other common tasks 

• enables collaborative interactions on all aspects 
 
 

• tracking of user choices and ontology revision 
recommender functionality 

• provenance tracking of all terms, concepts, and linkages 

• flexible interaction between a variety of semantic 
approaches 

• scaffolding of functionality – interactions between 
approaches enable greater semantic functionality than 
any given approach would generate. 

Participants in our group are following various lines of 
research related to the above needs. We are investigating 
informal concept representation, and socio-cognitive 
processes for generating indirect evidence from users.  
We are pursuing funding for certain facets of  
evidence-gathering systems, particularly for collaborative 
design of scientific research. We are continuing research 
and development on ontology construction for ecology, and 
the use of ontologies in workflow and modelling systems. 
Lastly, we have a long history of research on heterogeneous 
data integration, and the use of ontologies to assist such 
efforts. These many lines of research tackle different  
aspects of the problem, but ultimately converge on enabling 
sensemaking of complex knowledge and information in 
ecology using emerging semantic-based approaches. 

6 Conclusions 
This paper describes interactions that have taken place 
between a KR group, ecological scientists and information 
managers and uses those to drive a set of scenarios  
for design of systems that enable better collaboration  
on ontology development. Previous interactions have  
been hindered by the lack of community understanding  
of ontologies and willingness to dedicate time towards 
ontology development. These problems reflect the lack of 
direct, immediate benefit for participants. Our experience 
leads us to believe that formal ontology development could 
be more effectively informed by constructing tools that 
capture semantic decisions that are made in the course of  
the community’s everyday work. Our community of interest 
regularly semantically tags the artifacts used to conduct 
science – datasets, publications, and models – and makes 
use of them in ways that reveal semantic linkages.  
Design and development of systems that capture these 
semantic decisions and effectively make use of them to 
inform ontology development has been initiated but is in its 
infancy. Ultimately, we hope to have prototype systems and 
showcase applications that use those systems to demonstrate 
the collective benefits of ontology-based systems and 
applications.  

The ideas that are generated through this process are  
not a complete set. They represent several possible 
integrated approaches to linking semantic tasks. As the 
ideas are implemented and enacted within the broader  
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community, other ideas will emerge. It is extremely 
important that any strategy explicitly account for feedbacks 
throughout the entire process including providing 
mechanisms to incorporate the changing views of the 
broader community in long-term system development. 
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