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Abstract: Software agent technology has matured enough to produce 
intelligent agents, which can be used to control a large number of Concurrent 
Engineering tasks. Multi-Agent Systems (MAS) are communities of agents that 
exchange information and data in the form of messages. The agents’ 
intelligence can range from rudimentary sensor monitoring and data reporting, 
to more advanced forms of decision-making and autonomous behaviour. The 
behaviour and intelligence of each agent in the community can be obtained by 
performing Data Mining on available application data and the respected 
knowledge domain. We have developed Agent Academy (AA), a software 
platform for the design, creation, and deployment of MAS, which combines the 
power of knowledge discovery algorithms with the versatility of agents. Using 
this platform, we illustrate how agents, equipped with a data-driven inference 
engine, can be dynamically and continuously trained. We also discuss three 
prototype MAS developed with AA.

In International Journal of Product Lifecycle Management, 2 (2):173-186, 2007.



      

      

   174 P.A. Mitkas et al.    

      

      

      

Keywords: Agent Academy; Concurrent Engineering; Data Mining; Intelligent 
agents. 

Reference to this paper should be made as follows: Mitkas, P.A., Symeonidis, 
A.L., Kehagias, D.D. and Athanasiadis, I.N. (2007) ‘Application of Data 
Mining and intelligent agent technologies to Concurrent Engineering’, Int. J. 
Product Lifecycle Management, Vol. 2, No. 2, pp.173–186. 

Biographical notes: Pericles A. Mitkas is a Professor of Electrical and 
Computer Engineering at the Aristotle University of Thessaloniki, Greece. He 
is also the Associate Director of the Informatics and Telematics Institute. His 
research interests include databases and knowledge bases, data mining, 
concurrent engineering, software agents, and bioinformatics. He received his 
Diploma of Electrical Engineering from Aristotle University of Thessaloniki in 
1985 and an MSc and a PhD in Computer Engineering from Syracuse 
University, USA, in 1987 and 1990, respectively.  

Andreas L. Symeonidis is a Lecturer with the Department of Electrical and 
Computer Engineering at the Aristotle University of Thessaloniki and a 
Research Associate with the Informatics and Telematics Institute in 
Thessaloniki, Greece. He received his diploma and PhD from the Department 
of Electrical and Computer Engineering at the Aristotle University of 
Thessaloniki. His research interests include software agents, data mining and 
knowledge extraction, intelligent systems, and evolutionary computing. 

Dionisis D. Kehagias holds a Diploma and a PhD in Electrical and Computer 
Engineering from the Aristotle University of Thessaloniki, Greece and he 
currently works as an Associate Researcher at the Informatics and Telematics 
Institute in Thessaloniki, Greece. His research interests include intelligent 
agents and data mining. 

Dr. Ioannis N. Athanasiadis holds a Diploma and a PhD in Electrical and 
Computer Engineering, both from the Aristotle University of Thessaloniki, 
Greece. Currently, he is a Researcher with the Dalle Molle Institute for 
Artificial Intelligence, in Lugano, Switzerland. His research interests include 
software engineering for ecoinformatics, ontologies and the semantic web, 
software agents, and knowledge engineering. In 2004, he was awarded the 
Student Prize of the International Environmental Modelling and Software 
Society. 

1 Introduction 

The idea of using a systematic approach for the integrated, concurrent design of products 
and their related processes, including manufacturing and support has proven appealing. 
Concurrent Engineering (CE) is intended to guide the developer, through all the elements 
of a product’s lifecycle, from concept to disposal, including quality control, cost 
estimation, scheduling, and user requirements. The Integrated Product Development 
(IPD) process, that CE embraces, is a philosophy that systematically employs a teaming 
of functional disciplines to integrate and concurrently apply all necessary processes, in 
order to efficiently engineer a product according to the customer needs. There are no 
guidelines for implementing IPD, because there is no single solution – each application 
can be unique. Since IPD is, in fact, the splitting of a major deliverable into multiple, 
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simultaneous tasks, real world CE design projects require the cooperation of multi-
disciplinary design teams using sophisticated and powerful engineering tools (Shen, 
Norrie and Barthes, 2001). 

The process of CE is shown in Figure 1. The IPD process is comprised of a set of 
concurrent workflows executed horizontally leading to the implementation of a system. 
Each workflow consists of a set of simultaneous tasks executed vertically. The end of all 
tasks in a workflow signals the completion of one step in the horizontal execution 
process. From a computing perspective, CE has efficiently been serviced by the 
flourishing and establishment of object-oriented programming. The desirable 
characteristics of autonomy and heterogeneity, along with the need to implement changes 
at small computational cost and increased versatility, have led to the introduction of 
autonomous agents (state-of-the-art for objected-oriented programming) as a powerful 
metaphor for building software applications. Usually, these agents are not developed as 
‘stand-alone’ applications; rather they are built to act within communities, called Multi-
Agent Systems (MAS). 

Figure 1 The process of concurrent engineering 

Since each one of the agents in MAS has its own thread of control, with its own beliefs 
and cooperation primitives, agent technology can be considered to emerge from the 
principles of CE (Agha, 1986; Agha and Hewitt, 1988; Agha, Wegner and Yonezawa, 
1988). The deployment of this programming paradigm leads to the mapping of the 
discrete, yet related, engineering tasks and subtasks of the CE design process into 
(generic) agents and agent behaviours. In Figure 2, agents undertake the responsibility of 
executing the vertical tasks. Each agent corresponds to a parallel process and the 
signalling required for the synchronisation of the tasks is implemented by messages 
exchanged among agents. The agent oriented perspective of the CE process shown in 
Figure 2 enables execution of tasks by exploiting the abilities of agents of cooperation 
and coordinated activity. 
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Figure 2 Deploying agent technology for Concurrent Engineering 

Let us consider the case of an organisation that has decided to adopt the agent-based 
approach and wants to transform their CE process into a MAS. First, through an agent 
modelling phase, the number and types of agents must be determined. If the existing CE 
process is well-defined and divided into separate subtasks, the assignment of tasks to the 
agents can be a straightforward exercise. The second step, however, that of determining 
the behaviour and reasoning engine of each agent, can be considerably more complex 
and, thus, costly. This step can be facilitated by the availability of historical data on prior 
decisions and actions of the organisation. As shown in Figure 3, knowledge extraction 
techniques can be applied on historical data in order to derive one or more knowledge 
models. Such models will provide the reasoning engines of agents in the form of decision 
trees or rule engines and they can be inserted ‘as–is’ or combined into agent types. 

The confluence of agent modelling and knowledge extraction, as described in the 
figure, can be automated to become more efficient. This software development process 
can be especially exploited in environments with large amounts of periodically produced 
data, as is the typical environment of an Information Technology (IT)-supported 
enterprise today. 

A number of agent-based approaches have been implemented (Cutkosky et al., 1993; 
McGuire et al., 1993; Petrie et al., 1994) indicating the need for an integrated agent 
development platform, which could consolidate the issues of agent design, 
communication, coordination, and control. Nevertheless, none of the existing 
development platforms has fulfiled this demand, i.e. to provide enhanced capabilities in 
terms of the level of abstraction in the design and development process of agent-oriented 
applications (Nwana et al., 1999; Gutknecht and Ferber, 2000; Jeon, Petrie and Cutkosky, 
2000; Suguri et al., 2001). A quite desirable approach would be the creation of a software 
product that supports knowledge extraction and agent development, and combines several 
widely used mainstream technologies into a common environment. This is why we have 
developed Agent Academy (AA- Agent Academy on sourceforge, 2003; Mitkas et al., 
2004), an integrated framework for constructing multi-agent applications and for 
embedding rule-based reasoning into agents, both at the design phase and at the runtime. 
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Figure 3 Combining agent modelling and knowledge extraction for the development of Multi-
Agent Systems 

This framework has been implemented upon the Java Agent Development (JADE) 
infrastructure (Jennings, Sycara and Wooldridge, 1998). AA is itself an MAS, whose 
architecture is based on the GAIA methodology (Wooldridge, 1997). It provides an 
integrated Graphical User Interface (GUI)-based environment that enables the design of 
both single- and multi-agent communities, using common drag-and-drop operations. This 
capability of AA enables agent application developers to build a whole community of 
agents with predefined behaviour types and attributes in short time. Using AA, an agent 
developer can easily go into the details of the designated behaviours of agents and 
precisely regulate their communication properties. These include the type and number of 
the Agent Communication Language (ACL) messages exchanged between agents, the 
performatives and structure of messages – conforming to FIPA specifications (FIPA, 
Foundation for Intelligent Physical Agents Specifications, 2000) – as well as the 
semantics, which can be defined by constructing ontologies with Protégé-2000 (Grosso 
et al., 1999). 

The latter is a publicly available ontology-authoring tool. It is free, distributed under 
an open source license. Therefore, it allows direct access to its Application Programming 
Interface (API), which is written in Java. This was the main reason for using Protégé. 
Since AA, also distributed as an open source product, is written in Java, it can launch 
Protégé from inside its main application. Another reason for choosing Protégé is that 
today it is a widely supported tool forming the de facto standard for building ontologies. 
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The latest version of Protégé supports the latest specification of the Web Ontology 
Language (OWL). 

It should also be noted that the AA framework approaches agent development not 
only from a pure software engineering perspective, but also deals with agent reasoning. 
For this purpose, it implements the training mechanism illustrated in Figure 3. 
Specifically, AA involves the use of Data Mining (DM) techniques for knowledge 
extraction. DM is applied on application data generated by the history of past design and 
production processes. The methodology developed within AA, results in the extraction of 
agent reasoning models associated with knowledge models (e.g. a decision tree, a set of 
clusters, etc.). On the other hand, appropriate agent types and behaviours are designed by 
the corresponding tools of AA. Bringing together knowledge models and agent types, the 
extracted models are embedded into specific agent instantiations. The applied DM 
techniques are, by definition, updateable as new data come into the AA repository. Thus, 
it is easy to update the reasoning models of agents, by performing agent ‘retraining’. 

The rest of the paper is structured as follows. Section 2 describes the architecture of 
our framework and illustrates the development process and the use of tools provided for 
the construction of MAS. In Section 3, a detailed presentation of the agent training 
mechanism is given. Section 4 introduces the three test case pilots of the platform, while 
Section 5 concludes the paper and outlines future work. 

2 The Agent Academy development framework 

Our development framework acts as an integrated GUI-based environment that facilitates 
the design process of MAS. It also supports the extraction of decision models from data 
and the insertion of these models into newly created agents. Developing an agent 
application using AA involves the following activities from the developer’s side: 

1 the creation of new agents with limited initial reasoning capabilities 

2 the addition of these agents into a new MAS 

3 the determination of existing, or the creation of new behaviour types for each agent 

4 the importation of ontology-files from Protégé-2000 

5 the determination of message recipients for each agent. 

In case that an agent application developer intends to create a reasoning engine for one or 
more agents of the designed MAS, two more operations are required for each of those 
agents: 

the determination of an available data source of agent decision attributes 

the activation of the training procedure, by specifying the parameters of the training 
mechanism. 

Figure 4 illustrates the AA main functional diagram, which represents the core 
components and the interactions between them. In the remaining sections, we discuss the 
AA architecture and explain the agent development process. 
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Figure 4 Diagram of the Agent Academy development framework 

2.1 Architecture 

An application developer launches the AA platform in order to design a multi-agent 
application. The main GUI of the development environment is provided by the Agent 
Factory (AF), a specifically designed agent, whose role is to collect all the required 
information from the agent application developer regarding the definition of the types of 
agents involved in MAS, the types of behaviours of these agents, as well as the ontology 
they share with each other. The initially created agents possess no referencing capabilities 
(denoted as ‘dummy’ agents). The developer may request from the system to create rule-
based reasoning for one or more agents of the new MAS. These agents interoperate with 
the Agent Training Module (ATM), which is responsible for inserting a specific 
knowledge model into them. The latter is produced by performing DM on data entered 
into AA as XML documents or as datasets stored in a database. This task is performed by 
the Data Miner Module (DMM), another agent of AA, whose task is to read available 
data and extract knowledge models. 

AA hosts a database system for storing all information about the configuration of the 
new created agents, their decision models, as well as data entered into the system for DM 
purposes. The whole AA platform was created as MAS, which is executed upon JADE. 

2.2 Developing multi-agent applications 

AF consists of a set of graphical tools, which enable the developer to carry out all 
required tasks for the design and creation of MAS, without any effort for writing even a 
single line of source code. In particular, AF comprises the Ontology Design Tool, the 
Behaviour Type Design Tool, the Agent Type Definition Tool, and the MAS Creation 
Tool. 
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2.2.1 Creating agent ontologies 

A required process in the creation of MAS is the design of one or more ontologies, in 
order for the agents to interoperate adequately. AF provides an Ontology Design Tool, 
which helps developers adopt ontologies defined with the Protégé-2000. The ontology 
files that are created with Protégé-2000 are saved in the AA database for further use. 
Since AA employs JADE for agent development, ontologies need to be converted into 
special JADE ontology classes. 

By sharing ontology, agents become aware of common knowledge and therefore able 
to communicate and perform reasoning over common concepts. The AA agents are 
armed with a set of basic ontologies, which enable efficient agent communication in the 
AA environment. The users create their own ontologies, thus explicitly defining the 
semantics of new agent communication messages and agent activities. However, in this 
case, the users should also provide new behaviours (using the Behaviour Type Design 
tool) to enable the agents handle the messages. The ontologies need to be converted to 
appropriate JADE classes to become understandable by the agents. Therefore, the agents 
are not limited to share a specific set of ontologies. However, this ability can only be 
enabled in a manual fashion. 

Once the agents are created, users can extend the existing ontologies, or create new 
ones in order to introduce new concepts. This operation may be performed using any 
ontology authoring tool, as long as it adheres to the ontology language standards, which 
are compatible with the Protégé tool, as e.g. Resource Description Framework (RDF) or 
OWL. The ontologies are finally imported into the AA environment using the Protégé 
compatibility function. 

2.2.2 Creating behaviour types 

The Behaviour Type Design Tool assists the developer in defining generic behaviour 
templates. Agent behaviours are modelled as workflows of basic building blocks, such as 
receiving/sending a message, executing an in-house application, and if necessary, 
deriving decisions using inference engines. The data and control dependencies between 
these blocks are also handled. The behaviours can be modelled as cyclic or one-shot 
behaviours of the JADE platform. These behaviour types are generic templates that can 
be configured to behave in different ways; the structure of the flow is the only process 
defined, while the configurable parameters of the application inside the behaviour, as 
well as the contents of the messages can be specified using the MAS Creation Tool. It 
should be denoted that the behaviours are customised according to the application 
domain. 

The building blocks of the workflows, which are represented by nodes, can be of four 
types: 

1 receive nodes, which enable the agent to filter incoming FIPA-SL0 messages 

2 send nodes, which enable the agent to compose and send FIPA-SL0 messages 

3 activity nodes, which enable the developer to add predefined functions to the 
workflow of the behaviour, in order to permit the construction of MAS for existing 
distributed systems 
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4 Java Expert System Shell (JESS; Friedman-Hill, 2003) nodes, which enable the 
agent to execute a particular reasoning engine, in order to deliberate about the way it 
will behave. 

2.2.3 Creating agent types 

After having defined certain behaviour types, the Agent Type Definition Tool is provided 
to create new agent types that will be later used in the MAS Creation Tool. An agent type 
is in fact an agent plus a set of behaviours assigned to it. New agent types can be 
constructed from scratch or by modifying existing ones. Agent types can be seen as 
templates for creating agent instances during the design of MAS. 

During the MAS instantiation phase, which is performed by the MAS Creation Tool, 
several instances of already designed agent types will be instantiated, with different 
values for their parameters. Each agent instance of the same agent type can deliver data 
from different data sources, communicate with different types of agents, and even 
execute different reasoning engines. 

2.2.4 Deploying a Multi-Agent System 

The design of the behaviour and agent types is followed by the deployment of the MAS. 
The MAS Creation Tool enables the instantiation of all defined agents running in the 
system from the designed agent templates. The receivers and senders of the ACL 
messages are set in the behaviours of each agent. After all, the parameters are defined and 
the agent instances can be initialised. AF creates default AA agents, which have the 
ability to communicate with AF and ATM. Then, the AF sends to each agent, the 
necessary ontologies, behaviours, and knowledge models. 

3 Agent training 

As discussed already, the initial effort for the implementation of AA was motivated by 
the lack of an agent-oriented Software engineering tool coupled with Artificial 
Intelligence (AI) aspects. The ability to incorporate business knowledge into an agent’s 
decision-making process is arguably essential for effective performance in dynamic 
environments and unfortunately, agent-oriented software engineering methodologies do 
not deal with agent reasoning issues (Witten and Frank, 2000). Moreover, building MAS 
with a large number of agents usually requires the reasoning to be distributed in many 
agents of the MAS community, reducing the degree of reasoning per agent. From our 
perspective, an agent-oriented development infrastructure should both provide high-level 
design capabilities and deal with the internals of the agent architecture, in order to be 
considered complete and generic. 

The knowledge extraction and incorporation processes are depicted in Figure 5. At 
first, let us consider an available source of data formatted in XML. The DMM receives 
data from the XML document and executes certain DM algorithms (suitable for 
generating a decision model), determined by the agent-application developer. The output 
of the DM procedure is formatted as a Predictive Model Markup Language (PMML) 
specifications document (The Data Mining Group, 2001). 
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PMML is an XML-based language, which provides a rapid and efficient way for 
companies to define predictive models and share models between compliant vendors’ 
applications. PMML provides compatibility to other major DM software vendors, such as 
Oracle, SAS, SPSS, and MineIt. 

The PMML document represents a knowledge model that expresses the referencing 
mechanism of the agent that we intend to train. The resulted decision model is translated, 
through the ATM, to a set of facts executed by a rule engine. The implementation of the 
rule engine is provided by JESS, a robust mechanism for executing rule-based reasoning. 

As shown in Figure 5, the DMM receives the application data in XML format and 
then performs data preparation in the preprocessing unit. The clean data are manipulated 
by the Miner, which applies DM algorithms and extracts the decision model after 
validating it in the Evaluator unit. The decision model in the form of the JESS rule engine 
finally becomes a part of the agent behaviour in the ATM module. In the context of 
training, new appropriate ontologies must be authored. These will provide an agent-
readable description of knowledge pertaining to the decision models generated by the 
DM procedure. 

Figure 5 Diagram of the agent training procedure 
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3.1 Mining background data for creating decision models 

The mechanism for extracting knowledge from available data, in order to provide agents 
with reasoning, is based on the application of DM on background application-specific 
data (Symeonidis, Mitkas and Kehagias, 2001). From our experience with the application 
of AA to a number of industrial scenarios (Symeonidis, Kehagias and Mitkas, 2003; 
Symeonidis et al., 2003; Athanasiadis and Mitkas, 2004), we have ascertained that the 
enterprises’ IT infrastructures generate and manipulate large amounts of data on a 
permanent basis, thus becoming suitable data providers for the needs of DMM. 

In the initial phase of the DM procedure, the developer launches the GUI-based 
wizard depicted in Figure 6(a) and specifies the data source to be loaded and the agent 
decision attributes that will be represented as internal nodes of the extracted decision 
model. In Figure 6(b), the developer selects the type of the DM technique from a set of 
available options. In addition to some new algorithms (Athanasiadis et al., 2003), the 
DMM has incorporated a set of DM methods based on the Waikato Environment for 
Knowledge Analysis (WEKA) library and tools (Witten and Frank, 2000), appropriately 
extended to support PMML. 

Figure 6 The two first steps of the DMM wizard 



      

      

   184 P.A. Mitkas et al.    

      

      

      

3.2 Embedding intelligence into agents 

The completion of the training process requires the translation of the decision model 
extracted by DM into an agent understandable format. This is performed by the ATM, 
which receives the PMML output as an ACL message sent by the DMM, as soon as the 
DM procedure is completed, and activates the rule engine. Actually, the ATM converts 
the PMML document into JESS rules and communicates, via appropriate messages, with 
the ‘trainee’ agent, in order to insert the new decision model into it. After the completion 
of this process, our framework automatically generates Java source code and instantiates 
the new ‘trained’ agent into the predefined MAS. The total configuration of the new 
agent is stored in the development framework, enabling future modifications of the 
training parameters, or even the retraining of the already ‘trained’ agents.

4 Developed test cases 

The AA consortium has developed three test cases, in order to prove the AA hypothesis 
and evaluate the platform usability and added value. The three test cases were deployed 
in the following domains: 

1 in-house supply chain and Customer Order Management 

2 real-time environmental monitoring and assessment 

3 web-based Distributed Service Management (DSM). 

The first test case addresses issues concerning Supply Chain Management, Customer 
Relationship Management, and Supplier Relationship Management. It has been 
implemented as MAS add-on to legacy Enterprise Resource Planning (ERP) systems, in 
order to provide intelligent policy recommendations on customer, supplier and inventory 
servicing (Athanasiadis et al., 2003; Symeonidis, Kehagias and Mitkas, 2003; Kehagias 
et al., 2004). 

The second test case is an agent-based intelligent environmental monitoring system 
developed for assessing ambient air-quality. O3RTAA deploys a community of software 
agents to monitor and validate measurements coming from several sensors, to assess air-
quality, and finally, to fire alarms to appropriate recipients, when needed. DM techniques 
have been used for adding data-driven, customised intelligence into agents with 
successful results (Athanasiadis et al., 2003; Athanasiadis and Mitkas, 2004). 

Finally, the third test case scenario addresses issues concerning web-based DSM. The 
MAS deployed is responsible for managing the physical (maintenance) services carried 
out at the customer’s location, during the after sales phase. A number of agents, equipped 
with intelligence via DM, are in charge of process monitoring, decision-making, 
proactive event prediction, and customer segmentation (Agent Academy Consortium, 
2000b). 

5 Conclusions and future work 

In this paper, we have pinpointed the inherent correlation between CE and agent 
technology. We presented AA, a generic multi-agent development framework for 
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constructing MAS, or single agents. We argued that existing tools and infrastructures for 
agent development provide suboptimal solutions in the case of designing and 
implementing CE processes by the use of MAS. In contrast, the AA framework can 
provide both a GUI-based, high-level MAS authoring tool and a facility for extracting 
rule-based reasoning from available data and inserting it into agents. This architecture 
proves capable of grasping and reproducing the core prerequisites of the CE design 
processes. We have presented the functional architecture of our framework; we shortly 
demonstrated a representative scenario for deploying MAS, discussed the details of the 
agent ‘training’ process, and briefly mentioned three, already developed fully functional 
test case scenarios. 

Through our experience with AA, we are convinced that this development 
environment significantly reduces the programming effort for building CE processes, 
both in terms of time and code efficiency. The developed test cases have indicated that 
AA meets its initial objective for building agent-based applications in a quicker and 
easier manner. On the other hand, our experiments with the DMM have shown that the 
completion of the decision model generated for agent reasoning is highly dependent upon 
the amount of available data. 

The AA framework is the result of a development effort, which begun 3 years ago. 
Currently, the second stable version (1.2) of the platform is publicly available on 
SourceForge (Agent Academy on sourceforge, 2003) as an open source product. Our near 
future work involves the exhaustive testing of the platform and thorough exploration of 
scheduling, coordination, and collaboration issues, which are of great importance in the 
area of CE. 
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