

 Int. J. Product Lifecycle Management, Vol. 2, No. 2, 2007 173

 Copyright © 2007 Inderscience Enterprises Ltd.

Application of Data Mining and intelligent agent
technologies to Concurrent Engineering

Pericles A. Mitkas* and
Andreas L. Symeonidis
Electrical and Computer Engineering Department,
Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
Fax: +30 2310 99 6398
and
Intelligent Systems and Software Engineering Laboratory,
Informatics and Telematics Institute/CERTH,
1st km Thermi-Panorama road, 57001,
Thermi, Thessaloniki, Greece
E-mail: mitkas@iti.gr E-mail: asymeon@iti.gr
*Corresponding author

Dionisis D. Kehagias
Intelligent Systems and Software Engineering Laboratory,
Informatics and Telematics Institute/CERTH,
1st km Thermi-Panorama road, 57001,
Thermi, Thessaloniki, Greece
E-mail: diok @iti.gr

Ioannis N. Athanasiadis
Istituto Dalle Molle di Studi sull’ Intelligenza Artificiale,
CH-6928 Manna,
Lugano, Switzerland
E-mail: ioannis@idsia.ch

Abstract: Software agent technology has matured enough to produce
intelligent agents, which can be used to control a large number of Concurrent
Engineering tasks. Multi-Agent Systems (MAS) are communities of agents that
exchange information and data in the form of messages. The agents’
intelligence can range from rudimentary sensor monitoring and data reporting,
to more advanced forms of decision-making and autonomous behaviour. The
behaviour and intelligence of each agent in the community can be obtained by
performing Data Mining on available application data and the respected
knowledge domain. We have developed Agent Academy (AA), a software
platform for the design, creation, and deployment of MAS, which combines the
power of knowledge discovery algorithms with the versatility of agents. Using
this platform, we illustrate how agents, equipped with a data-driven inference
engine, can be dynamically and continuously trained. We also discuss three
prototype MAS developed with AA.

In International Journal of Product Lifecycle Management, 2 (2):173-186, 2007.

 174 P.A. Mitkas et al.

Keywords: Agent Academy; Concurrent Engineering; Data Mining; Intelligent
agents.

Reference to this paper should be made as follows: Mitkas, P.A., Symeonidis,
A.L., Kehagias, D.D. and Athanasiadis, I.N. (2007) ‘Application of Data
Mining and intelligent agent technologies to Concurrent Engineering’, Int. J.
Product Lifecycle Management, Vol. 2, No. 2, pp.173–186.

Biographical notes: Pericles A. Mitkas is a Professor of Electrical and
Computer Engineering at the Aristotle University of Thessaloniki, Greece. He
is also the Associate Director of the Informatics and Telematics Institute. His
research interests include databases and knowledge bases, data mining,
concurrent engineering, software agents, and bioinformatics. He received his
Diploma of Electrical Engineering from Aristotle University of Thessaloniki in
1985 and an MSc and a PhD in Computer Engineering from Syracuse
University, USA, in 1987 and 1990, respectively.

Andreas L. Symeonidis is a Lecturer with the Department of Electrical and
Computer Engineering at the Aristotle University of Thessaloniki and a
Research Associate with the Informatics and Telematics Institute in
Thessaloniki, Greece. He received his diploma and PhD from the Department
of Electrical and Computer Engineering at the Aristotle University of
Thessaloniki. His research interests include software agents, data mining and
knowledge extraction, intelligent systems, and evolutionary computing.

Dionisis D. Kehagias holds a Diploma and a PhD in Electrical and Computer
Engineering from the Aristotle University of Thessaloniki, Greece and he
currently works as an Associate Researcher at the Informatics and Telematics
Institute in Thessaloniki, Greece. His research interests include intelligent
agents and data mining.

Dr. Ioannis N. Athanasiadis holds a Diploma and a PhD in Electrical and
Computer Engineering, both from the Aristotle University of Thessaloniki,
Greece. Currently, he is a Researcher with the Dalle Molle Institute for
Artificial Intelligence, in Lugano, Switzerland. His research interests include
software engineering for ecoinformatics, ontologies and the semantic web,
software agents, and knowledge engineering. In 2004, he was awarded the
Student Prize of the International Environmental Modelling and Software
Society.

1 Introduction

The idea of using a systematic approach for the integrated, concurrent design of products
and their related processes, including manufacturing and support has proven appealing.
Concurrent Engineering (CE) is intended to guide the developer, through all the elements
of a product’s lifecycle, from concept to disposal, including quality control, cost
estimation, scheduling, and user requirements. The Integrated Product Development
(IPD) process, that CE embraces, is a philosophy that systematically employs a teaming
of functional disciplines to integrate and concurrently apply all necessary processes, in
order to efficiently engineer a product according to the customer needs. There are no
guidelines for implementing IPD, because there is no single solution – each application
can be unique. Since IPD is, in fact, the splitting of a major deliverable into multiple,

 Application of Data Mining and intelligent agent technologies 175

simultaneous tasks, real world CE design projects require the cooperation of multi-
disciplinary design teams using sophisticated and powerful engineering tools (Shen,
Norrie and Barthes, 2001).

The process of CE is shown in Figure 1. The IPD process is comprised of a set of
concurrent workflows executed horizontally leading to the implementation of a system.
Each workflow consists of a set of simultaneous tasks executed vertically. The end of all
tasks in a workflow signals the completion of one step in the horizontal execution
process. From a computing perspective, CE has efficiently been serviced by the
flourishing and establishment of object-oriented programming. The desirable
characteristics of autonomy and heterogeneity, along with the need to implement changes
at small computational cost and increased versatility, have led to the introduction of
autonomous agents (state-of-the-art for objected-oriented programming) as a powerful
metaphor for building software applications. Usually, these agents are not developed as
‘stand-alone’ applications; rather they are built to act within communities, called Multi-
Agent Systems (MAS).

Figure 1 The process of concurrent engineering

Since each one of the agents in MAS has its own thread of control, with its own beliefs
and cooperation primitives, agent technology can be considered to emerge from the
principles of CE (Agha, 1986; Agha and Hewitt, 1988; Agha, Wegner and Yonezawa,
1988). The deployment of this programming paradigm leads to the mapping of the
discrete, yet related, engineering tasks and subtasks of the CE design process into
(generic) agents and agent behaviours. In Figure 2, agents undertake the responsibility of
executing the vertical tasks. Each agent corresponds to a parallel process and the
signalling required for the synchronisation of the tasks is implemented by messages
exchanged among agents. The agent oriented perspective of the CE process shown in
Figure 2 enables execution of tasks by exploiting the abilities of agents of cooperation
and coordinated activity.

 176 P.A. Mitkas et al.

Figure 2 Deploying agent technology for Concurrent Engineering

Let us consider the case of an organisation that has decided to adopt the agent-based
approach and wants to transform their CE process into a MAS. First, through an agent
modelling phase, the number and types of agents must be determined. If the existing CE
process is well-defined and divided into separate subtasks, the assignment of tasks to the
agents can be a straightforward exercise. The second step, however, that of determining
the behaviour and reasoning engine of each agent, can be considerably more complex
and, thus, costly. This step can be facilitated by the availability of historical data on prior
decisions and actions of the organisation. As shown in Figure 3, knowledge extraction
techniques can be applied on historical data in order to derive one or more knowledge
models. Such models will provide the reasoning engines of agents in the form of decision
trees or rule engines and they can be inserted ‘as–is’ or combined into agent types.

The confluence of agent modelling and knowledge extraction, as described in the
figure, can be automated to become more efficient. This software development process
can be especially exploited in environments with large amounts of periodically produced
data, as is the typical environment of an Information Technology (IT)-supported
enterprise today.

A number of agent-based approaches have been implemented (Cutkosky et al., 1993;
McGuire et al., 1993; Petrie et al., 1994) indicating the need for an integrated agent
development platform, which could consolidate the issues of agent design,
communication, coordination, and control. Nevertheless, none of the existing
development platforms has fulfiled this demand, i.e. to provide enhanced capabilities in
terms of the level of abstraction in the design and development process of agent-oriented
applications (Nwana et al., 1999; Gutknecht and Ferber, 2000; Jeon, Petrie and Cutkosky,
2000; Suguri et al., 2001). A quite desirable approach would be the creation of a software
product that supports knowledge extraction and agent development, and combines several
widely used mainstream technologies into a common environment. This is why we have
developed Agent Academy (AA- Agent Academy on sourceforge, 2003; Mitkas et al.,
2004), an integrated framework for constructing multi-agent applications and for
embedding rule-based reasoning into agents, both at the design phase and at the runtime.

 Application of Data Mining and intelligent agent technologies 177

Figure 3 Combining agent modelling and knowledge extraction for the development of Multi-
Agent Systems

This framework has been implemented upon the Java Agent Development (JADE)
infrastructure (Jennings, Sycara and Wooldridge, 1998). AA is itself an MAS, whose
architecture is based on the GAIA methodology (Wooldridge, 1997). It provides an
integrated Graphical User Interface (GUI)-based environment that enables the design of
both single- and multi-agent communities, using common drag-and-drop operations. This
capability of AA enables agent application developers to build a whole community of
agents with predefined behaviour types and attributes in short time. Using AA, an agent
developer can easily go into the details of the designated behaviours of agents and
precisely regulate their communication properties. These include the type and number of
the Agent Communication Language (ACL) messages exchanged between agents, the
performatives and structure of messages – conforming to FIPA specifications (FIPA,
Foundation for Intelligent Physical Agents Specifications, 2000) – as well as the
semantics, which can be defined by constructing ontologies with Protégé-2000 (Grosso
et al., 1999).

The latter is a publicly available ontology-authoring tool. It is free, distributed under
an open source license. Therefore, it allows direct access to its Application Programming
Interface (API), which is written in Java. This was the main reason for using Protégé.
Since AA, also distributed as an open source product, is written in Java, it can launch
Protégé from inside its main application. Another reason for choosing Protégé is that
today it is a widely supported tool forming the de facto standard for building ontologies.

 178 P.A. Mitkas et al.

The latest version of Protégé supports the latest specification of the Web Ontology
Language (OWL).

It should also be noted that the AA framework approaches agent development not
only from a pure software engineering perspective, but also deals with agent reasoning.
For this purpose, it implements the training mechanism illustrated in Figure 3.
Specifically, AA involves the use of Data Mining (DM) techniques for knowledge
extraction. DM is applied on application data generated by the history of past design and
production processes. The methodology developed within AA, results in the extraction of
agent reasoning models associated with knowledge models (e.g. a decision tree, a set of
clusters, etc.). On the other hand, appropriate agent types and behaviours are designed by
the corresponding tools of AA. Bringing together knowledge models and agent types, the
extracted models are embedded into specific agent instantiations. The applied DM
techniques are, by definition, updateable as new data come into the AA repository. Thus,
it is easy to update the reasoning models of agents, by performing agent ‘retraining’.

The rest of the paper is structured as follows. Section 2 describes the architecture of
our framework and illustrates the development process and the use of tools provided for
the construction of MAS. In Section 3, a detailed presentation of the agent training
mechanism is given. Section 4 introduces the three test case pilots of the platform, while
Section 5 concludes the paper and outlines future work.

2 The Agent Academy development framework

Our development framework acts as an integrated GUI-based environment that facilitates
the design process of MAS. It also supports the extraction of decision models from data
and the insertion of these models into newly created agents. Developing an agent
application using AA involves the following activities from the developer’s side:

1 the creation of new agents with limited initial reasoning capabilities

2 the addition of these agents into a new MAS

3 the determination of existing, or the creation of new behaviour types for each agent

4 the importation of ontology-files from Protégé-2000

5 the determination of message recipients for each agent.

In case that an agent application developer intends to create a reasoning engine for one or
more agents of the designed MAS, two more operations are required for each of those
agents:

the determination of an available data source of agent decision attributes

the activation of the training procedure, by specifying the parameters of the training
mechanism.

Figure 4 illustrates the AA main functional diagram, which represents the core
components and the interactions between them. In the remaining sections, we discuss the
AA architecture and explain the agent development process.

 Application of Data Mining and intelligent agent technologies 179

Figure 4 Diagram of the Agent Academy development framework

2.1 Architecture

An application developer launches the AA platform in order to design a multi-agent
application. The main GUI of the development environment is provided by the Agent
Factory (AF), a specifically designed agent, whose role is to collect all the required
information from the agent application developer regarding the definition of the types of
agents involved in MAS, the types of behaviours of these agents, as well as the ontology
they share with each other. The initially created agents possess no referencing capabilities
(denoted as ‘dummy’ agents). The developer may request from the system to create rule-
based reasoning for one or more agents of the new MAS. These agents interoperate with
the Agent Training Module (ATM), which is responsible for inserting a specific
knowledge model into them. The latter is produced by performing DM on data entered
into AA as XML documents or as datasets stored in a database. This task is performed by
the Data Miner Module (DMM), another agent of AA, whose task is to read available
data and extract knowledge models.

AA hosts a database system for storing all information about the configuration of the
new created agents, their decision models, as well as data entered into the system for DM
purposes. The whole AA platform was created as MAS, which is executed upon JADE.

2.2 Developing multi-agent applications

AF consists of a set of graphical tools, which enable the developer to carry out all
required tasks for the design and creation of MAS, without any effort for writing even a
single line of source code. In particular, AF comprises the Ontology Design Tool, the
Behaviour Type Design Tool, the Agent Type Definition Tool, and the MAS Creation
Tool.

 180 P.A. Mitkas et al.

2.2.1 Creating agent ontologies

A required process in the creation of MAS is the design of one or more ontologies, in
order for the agents to interoperate adequately. AF provides an Ontology Design Tool,
which helps developers adopt ontologies defined with the Protégé-2000. The ontology
files that are created with Protégé-2000 are saved in the AA database for further use.
Since AA employs JADE for agent development, ontologies need to be converted into
special JADE ontology classes.

By sharing ontology, agents become aware of common knowledge and therefore able
to communicate and perform reasoning over common concepts. The AA agents are
armed with a set of basic ontologies, which enable efficient agent communication in the
AA environment. The users create their own ontologies, thus explicitly defining the
semantics of new agent communication messages and agent activities. However, in this
case, the users should also provide new behaviours (using the Behaviour Type Design
tool) to enable the agents handle the messages. The ontologies need to be converted to
appropriate JADE classes to become understandable by the agents. Therefore, the agents
are not limited to share a specific set of ontologies. However, this ability can only be
enabled in a manual fashion.

Once the agents are created, users can extend the existing ontologies, or create new
ones in order to introduce new concepts. This operation may be performed using any
ontology authoring tool, as long as it adheres to the ontology language standards, which
are compatible with the Protégé tool, as e.g. Resource Description Framework (RDF) or
OWL. The ontologies are finally imported into the AA environment using the Protégé
compatibility function.

2.2.2 Creating behaviour types

The Behaviour Type Design Tool assists the developer in defining generic behaviour
templates. Agent behaviours are modelled as workflows of basic building blocks, such as
receiving/sending a message, executing an in-house application, and if necessary,
deriving decisions using inference engines. The data and control dependencies between
these blocks are also handled. The behaviours can be modelled as cyclic or one-shot
behaviours of the JADE platform. These behaviour types are generic templates that can
be configured to behave in different ways; the structure of the flow is the only process
defined, while the configurable parameters of the application inside the behaviour, as
well as the contents of the messages can be specified using the MAS Creation Tool. It
should be denoted that the behaviours are customised according to the application
domain.

The building blocks of the workflows, which are represented by nodes, can be of four
types:

1 receive nodes, which enable the agent to filter incoming FIPA-SL0 messages

2 send nodes, which enable the agent to compose and send FIPA-SL0 messages

3 activity nodes, which enable the developer to add predefined functions to the
workflow of the behaviour, in order to permit the construction of MAS for existing
distributed systems

 Application of Data Mining and intelligent agent technologies 181

4 Java Expert System Shell (JESS; Friedman-Hill, 2003) nodes, which enable the
agent to execute a particular reasoning engine, in order to deliberate about the way it
will behave.

2.2.3 Creating agent types

After having defined certain behaviour types, the Agent Type Definition Tool is provided
to create new agent types that will be later used in the MAS Creation Tool. An agent type
is in fact an agent plus a set of behaviours assigned to it. New agent types can be
constructed from scratch or by modifying existing ones. Agent types can be seen as
templates for creating agent instances during the design of MAS.

During the MAS instantiation phase, which is performed by the MAS Creation Tool,
several instances of already designed agent types will be instantiated, with different
values for their parameters. Each agent instance of the same agent type can deliver data
from different data sources, communicate with different types of agents, and even
execute different reasoning engines.

2.2.4 Deploying a Multi-Agent System

The design of the behaviour and agent types is followed by the deployment of the MAS.
The MAS Creation Tool enables the instantiation of all defined agents running in the
system from the designed agent templates. The receivers and senders of the ACL
messages are set in the behaviours of each agent. After all, the parameters are defined and
the agent instances can be initialised. AF creates default AA agents, which have the
ability to communicate with AF and ATM. Then, the AF sends to each agent, the
necessary ontologies, behaviours, and knowledge models.

3 Agent training

As discussed already, the initial effort for the implementation of AA was motivated by
the lack of an agent-oriented Software engineering tool coupled with Artificial
Intelligence (AI) aspects. The ability to incorporate business knowledge into an agent’s
decision-making process is arguably essential for effective performance in dynamic
environments and unfortunately, agent-oriented software engineering methodologies do
not deal with agent reasoning issues (Witten and Frank, 2000). Moreover, building MAS
with a large number of agents usually requires the reasoning to be distributed in many
agents of the MAS community, reducing the degree of reasoning per agent. From our
perspective, an agent-oriented development infrastructure should both provide high-level
design capabilities and deal with the internals of the agent architecture, in order to be
considered complete and generic.

The knowledge extraction and incorporation processes are depicted in Figure 5. At
first, let us consider an available source of data formatted in XML. The DMM receives
data from the XML document and executes certain DM algorithms (suitable for
generating a decision model), determined by the agent-application developer. The output
of the DM procedure is formatted as a Predictive Model Markup Language (PMML)
specifications document (The Data Mining Group, 2001).

 182 P.A. Mitkas et al.

PMML is an XML-based language, which provides a rapid and efficient way for
companies to define predictive models and share models between compliant vendors’
applications. PMML provides compatibility to other major DM software vendors, such as
Oracle, SAS, SPSS, and MineIt.

The PMML document represents a knowledge model that expresses the referencing
mechanism of the agent that we intend to train. The resulted decision model is translated,
through the ATM, to a set of facts executed by a rule engine. The implementation of the
rule engine is provided by JESS, a robust mechanism for executing rule-based reasoning.

As shown in Figure 5, the DMM receives the application data in XML format and
then performs data preparation in the preprocessing unit. The clean data are manipulated
by the Miner, which applies DM algorithms and extracts the decision model after
validating it in the Evaluator unit. The decision model in the form of the JESS rule engine
finally becomes a part of the agent behaviour in the ATM module. In the context of
training, new appropriate ontologies must be authored. These will provide an agent-
readable description of knowledge pertaining to the decision models generated by the
DM procedure.

Figure 5 Diagram of the agent training procedure

 Application of Data Mining and intelligent agent technologies 183

3.1 Mining background data for creating decision models

The mechanism for extracting knowledge from available data, in order to provide agents
with reasoning, is based on the application of DM on background application-specific
data (Symeonidis, Mitkas and Kehagias, 2001). From our experience with the application
of AA to a number of industrial scenarios (Symeonidis, Kehagias and Mitkas, 2003;
Symeonidis et al., 2003; Athanasiadis and Mitkas, 2004), we have ascertained that the
enterprises’ IT infrastructures generate and manipulate large amounts of data on a
permanent basis, thus becoming suitable data providers for the needs of DMM.

In the initial phase of the DM procedure, the developer launches the GUI-based
wizard depicted in Figure 6(a) and specifies the data source to be loaded and the agent
decision attributes that will be represented as internal nodes of the extracted decision
model. In Figure 6(b), the developer selects the type of the DM technique from a set of
available options. In addition to some new algorithms (Athanasiadis et al., 2003), the
DMM has incorporated a set of DM methods based on the Waikato Environment for
Knowledge Analysis (WEKA) library and tools (Witten and Frank, 2000), appropriately
extended to support PMML.

Figure 6 The two first steps of the DMM wizard

 184 P.A. Mitkas et al.

3.2 Embedding intelligence into agents

The completion of the training process requires the translation of the decision model
extracted by DM into an agent understandable format. This is performed by the ATM,
which receives the PMML output as an ACL message sent by the DMM, as soon as the
DM procedure is completed, and activates the rule engine. Actually, the ATM converts
the PMML document into JESS rules and communicates, via appropriate messages, with
the ‘trainee’ agent, in order to insert the new decision model into it. After the completion
of this process, our framework automatically generates Java source code and instantiates
the new ‘trained’ agent into the predefined MAS. The total configuration of the new
agent is stored in the development framework, enabling future modifications of the
training parameters, or even the retraining of the already ‘trained’ agents.

4 Developed test cases

The AA consortium has developed three test cases, in order to prove the AA hypothesis
and evaluate the platform usability and added value. The three test cases were deployed
in the following domains:

1 in-house supply chain and Customer Order Management

2 real-time environmental monitoring and assessment

3 web-based Distributed Service Management (DSM).

The first test case addresses issues concerning Supply Chain Management, Customer
Relationship Management, and Supplier Relationship Management. It has been
implemented as MAS add-on to legacy Enterprise Resource Planning (ERP) systems, in
order to provide intelligent policy recommendations on customer, supplier and inventory
servicing (Athanasiadis et al., 2003; Symeonidis, Kehagias and Mitkas, 2003; Kehagias
et al., 2004).

The second test case is an agent-based intelligent environmental monitoring system
developed for assessing ambient air-quality. O3RTAA deploys a community of software
agents to monitor and validate measurements coming from several sensors, to assess air-
quality, and finally, to fire alarms to appropriate recipients, when needed. DM techniques
have been used for adding data-driven, customised intelligence into agents with
successful results (Athanasiadis et al., 2003; Athanasiadis and Mitkas, 2004).

Finally, the third test case scenario addresses issues concerning web-based DSM. The
MAS deployed is responsible for managing the physical (maintenance) services carried
out at the customer’s location, during the after sales phase. A number of agents, equipped
with intelligence via DM, are in charge of process monitoring, decision-making,
proactive event prediction, and customer segmentation (Agent Academy Consortium,
2000b).

5 Conclusions and future work

In this paper, we have pinpointed the inherent correlation between CE and agent
technology. We presented AA, a generic multi-agent development framework for

 Application of Data Mining and intelligent agent technologies 185

constructing MAS, or single agents. We argued that existing tools and infrastructures for
agent development provide suboptimal solutions in the case of designing and
implementing CE processes by the use of MAS. In contrast, the AA framework can
provide both a GUI-based, high-level MAS authoring tool and a facility for extracting
rule-based reasoning from available data and inserting it into agents. This architecture
proves capable of grasping and reproducing the core prerequisites of the CE design
processes. We have presented the functional architecture of our framework; we shortly
demonstrated a representative scenario for deploying MAS, discussed the details of the
agent ‘training’ process, and briefly mentioned three, already developed fully functional
test case scenarios.

Through our experience with AA, we are convinced that this development
environment significantly reduces the programming effort for building CE processes,
both in terms of time and code efficiency. The developed test cases have indicated that
AA meets its initial objective for building agent-based applications in a quicker and
easier manner. On the other hand, our experiments with the DMM have shown that the
completion of the decision model generated for agent reasoning is highly dependent upon
the amount of available data.

The AA framework is the result of a development effort, which begun 3 years ago.
Currently, the second stable version (1.2) of the platform is publicly available on
SourceForge (Agent Academy on sourceforge, 2003) as an open source product. Our near
future work involves the exhaustive testing of the platform and thorough exploration of
scheduling, coordination, and collaboration issues, which are of great importance in the
area of CE.

References

Agha, G. (1986) ACTORS: A Model of Concurrent Computation in Distributed Systems.
Cambridge, MA: The MIT Press.

Agha, G. and Hewitt, C. (1988) ‘Concurrent programming using actors’, in Y. Yonezawa and
M. Tokoro (Eds). Object-Oriented Concurrent Programming (pp.37–57). Cambridge, MA:
MIT Press.

Agha, G., Wegner, P. and Yonezawa, A. (Eds.) (1988) Research Directions in Concurrent Object-
Oriented Programming. Cambridge, MA: The MIT Press.

Agent Academy Consortium (2000) Technical Specifications of the Three Test Cases, Available at:
http://AgentAcademy.iti.gr/downloads.htm.

Agent Academy on sourceforge (2003), Available at: https://sourceforge.net/projects/
agentacademy.

Athanasiadis, I.N. and Mitkas, P.A. (2004) ‘An agent-based intelligent environmental monitoring
system’, Management of Environmental Quality: An International Journal, Vol. 15,
pp.238–249.

Athanasiadis, I.N., Kaburlasos, V.G., Mitkas, P.A. and Petridis, V. (2003) ‘Applying machine
learning techniques on air quality data for real-time decision support’, Paper presented in the
Proceedings of the First International NAISO Symposium on Information Technologies in
Environmental Engineering (ITEE’2003), Gdansk (p.51). Poland: Academic Press.

Cutkosky, M.R., Engelmore, R.S., Fikes, R.E., Genesereth, M.R., Gruber, T.R., Mark, W.S.,
Tenebaum, J.M. and Weber, J.C. (1993) ‘PACT: an experiment in integrating concurrent
engineering systems’, IEEE Computer, Vol. 26, pp.28–37.

FIPA, Foundation for Intelligent Physical Agents Specifications (2000) Available at: http://
www.fipa.org/.

 186 P.A. Mitkas et al.

Friedman-Hill, E.J. (2003) ‘Jess, the expert system shell for the Java platform’, version 6.1, CA,
Sandia National Laboratories, Available at: http://herzberg.ca.sandia.gov/jess/.

Gutknecht, O. and Ferber, J. (2000) ‘Madkit: a generic multi-agent platform’, The 4th International
Conference on Autonomous Agents, Barcelona, Spain.

Grosso, W.E., Eriksson, H., Ferguson, R.W., Gennari, J.H., Tu, S.W. and Musen, M.A. (1999)
‘Knowledge modeling at the millennium’, The Design and Evolution of Protege-2000,
Available at: http://protege.stanford.edu.

Jeon, H., Petrie, C. and Cutkosky, M. (2000) ‘JATLite: a Java agent infrastructure with message
routing’, IEEE Internet Computing, Vol. 4, pp.87–96.

Jennings, N.R., Sycara, K. and Wooldridge, M.J. (1998) ‘A roadmap of agent research and
development’, Autonomous Agents and Multi-Agent Systems (Vol. 1) (pp.7–38). Boston:
Kluwer Academic Publishers.

Kehagias, D., Chatzidimitriou, K., Symeonidis, A.L. and Mitkas, P.A. (2004) ‘Information agents
cooperating with heterogeneous data sources for customer-order management’, Special Track
on Agents, Interactions, Mobility, and Systems (AIMS), held at the 19th ACM Symposium on
Applied Computing (SAC 2004), Nicosia, Cyprus.

McGuire, J., Huakka, D., Weber, J., Tenenbaum, J., Gruber, T. and Olsen, G. (1993) ‘SHADE:
technology for knowledge-based collaborative engineering’, Journal of Concurrent
Engineering: Applications and Research, Vol. 1, pp.137–146.

Mitkas, P.A., Kehagias, D., Symeonidis, A.L. and Athanasiadis, I.N. (2004) ‘A framework for
constructing multi-agent applications and training intelligent agents’, in P. Giorgini, J.P.
Mueller and J. Odell (Eds). Agent Oriented Software Engineering IV (pp.96–109). LNCS
2935, Springer-Verlag.

Nwana, H., Ndumu, D., Lee, L. and Collis, J. (1999) ‘ZEUS: a tool-kit for building distributed
multi-agent systems’, Applied Artifical Intelligence Journal, Vol. 13, pp.129–186.

Petrie, C., Cutkosky, M., Webster, T., Conru, A. and Park, H. (1994) ‘Next link: an experiment in
coordination of distributed agents’, The AID ’94 Workshop on Conflict Resolution, Lausanne.

Shen, W., Norrie, D.H. and Barthes, J.P.A. (2001) Multi-agent systems for concurrent intelligent
design and manufacturing (Taylor and Francis, Great Britain).

Suguri, H., Kodama, E., Miyazaki, M., Nunokawa, H. and Noguchi, S. (2001) ‘Implementation of
FIPA ontology service’, Paper presented in the Proceedings of the Workshop on Ontologies in
Agent Systems, 5th International Conference on Autonomous Agents Montreal, Canada.

Symeonidis, A.L., Mitkas, P.A. and Kehagias, D. (2002) ‘Mining patterns and rules for improving
agent intelligence through an integrated multi-agent platform’, The 6th IASTED International
Conference, Artificial Intelligence and Soft Computing ASC, Banff, Alberta, Canada.

Symeonidis, A.L., Kehagias, D. and Mitkas, P.A. (2003) ‘Intelligent policy recommendations on
enterprise resource planning by the use of agent technology and data mining techniques’,
Journal of Expert Systems with Applications, Vol. 25, pp.589–602.

Symeonidis, A.L., Kehagias, D., Koumpis, A. and Vontas, A. (2003) ‘Open source supply chains’,
Paper presented in the Proceedings of the 10th International Conference on Concurrent
Engineering (CE-2003), Vol. 1, pp.31–36.

The Data Mining Group (2001) ‘Predictive Model Markup Language Specifications (PMML)’,
ver. 2.0, Available at: http://www.dmg.org.

Wooldridge, M. (1997) ‘Agent-based software engineering’, IEEE Proceedings in Software
Engineering, Vol. 144, pp.26–37.

Witten, I.H. and Frank, E. (2000) Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. San Francisco, CA: Morgan Kaufmann publishers.

