A Sensor Observation Service Extension
for Internet of Things

Argyrios Samourkasidis and Ioannis N. Athanasiadis®™)

Information Technology Group, Wageningen University,
Hollandseweg 1, 6706 KN Wageningen, The Netherlands
{argyrios.samourkasidis,ioannis.athanasiadis}@wur.nl

Abstract. This work contributes towards extending OGC Sensor
Observation Service to become ready for Internet of Things, i.e. can
be employed by devices with limited capabilities or opportunistic inter-
net connection. We present an extension based on progressive data
transmission, which by-design facilitates selective data harvesting and
disruption-tolerant communication. The extension economizes resources,
while respects the SOS specification requirement that the client should
have no a-priori knowledge of the server capabilities. Empirical exper-
iments in two case studies demonstrate that the extension adds little
overhead and may lead to significant performance improvements in cer-
tain cases, as for irregular timeseries. Also, the proposed extension is not
invasive and backwards compatible with legacy clients.

Keywords: Open Geospatial Consortium - Sensor Observation Service *
Internet of Things - Syntactic interoperability + SOS 2.0 - Sensor Web -
Progressive transmission - Pagination + Timeseries data

1 Introduction

Internet of the Things (IoT) is a dynamic, open, participatory ecosystem of
decentralized and collaborative devices. Recent technological advances resulted
in a plethora of low-cost devices with extended capabilities compared to tradi-
tional sensors. New generation of devices are miniaturized and empowered with
storage, processing and networking capacity. They are essentially transformed
into smart nodes, that operate autonomously, may offer added value services
[31], and collaborate with each other in the cloud [4]. Smart nodes could offer
capture, storage and dissemination services of sensory information in a single
device [36]. IoT devices are also instrumental to the proliferation of new data
sources [14], sharing of information [15], and contribute to the big data move-
ment. Internet of Things advances the vision of Sensor Web, an infrastructure
which enables interoperable usage of sensor resources [8]. In the IoT era, Sensor
Web is challenged to offer services that are interoperable, but at the same time
perform efficiently with less resources, saving processing power and network
bandwidth.

© Springer International Publishing AG 2017

I. Podnar Zarko et al. (Eds.): InterOSS-IoT 2016, LNCS 10218, pp. 56-71, 2017.
DOI: 10.1007/978-3-319-56877-5_4

A Sensor Observation Service Extension for Internet of Things 57

Interoperable data interchange for sensor data has been driven by the
Open Geospatial Consortium (OGC). OGC introduced service interfaces and
information models within Sensor Web Enablement (SWE), which is founded
on machine-to-machine communication [5,7]. Service interfaces, as the Sensor
Observation Service, Web Feature Service, Web Coverage Service, SensorThings
provide interoperable means for geospatial information discovery and retrieval.
Sensor Observation Service (SOS) [24,25] is an OGC service interface, which
promotes interoperable sensor-borne data exchange, operates as a web service,
and supports for syntactic and semantic interoperability.

In the IoT era, architectural paradigms and technologies need to respect the
limited capabilities of devices. The SWE 2.0 has been established with technolo-
gies as the Simple Object Access Protocol (SOAP) and XML-based information
models, which are considered to add substantial overhead - a critical issue for
IoT devices. On the other hand, Representational State Transfer (REST) and
JSON-based information models seem to provide services which excel over SOAP
and XML, in terms of power consumption and performance [22]. Beyond these
technical limitations, there are certain design choices that preclude SOS as an
appropriate IoT outlet.

In this paper, we investigate current SOS design and propose an extension. In
Sect. 2, we present related work, how SOS operates and challenges identified in
the literature. In Sect. 3, we identify SOS design shortcomings from an IoT per-
spective, and introduce a pagination technique in order to promote selective data
harvesting, enable seamless data integration and facilitate machine-to-machine
interoperability. Section4 presents an implementation and details the two case
studies, which were designed to test the efficiency of the extension, along with
experimental results. Section 5 provides with a discussion about our findings and
contributions, concludes the research and lays the groundwork for future work.

2 Related Work

2.1 Service Orientation and Interoperability in Sensor networks

Service-Oriented Architecture (SOA) is an architectural paradigm founded on
self-describing, self-contained services. Key concept in SOA is that services may
be developed, maintained and served by different entities, and can subsequently
be combined and produce composite applications. SOA has been instrumen-
tal for highly interoperable systems, as services are platform and language
independent [30].

In the frame of interoperable data interchange, OGC introduced Sensor Web
Enablement (SWE), which follows the SOA architectural paradigm. Standards
developed within SWE provide means for the discovery and retrieval of sen-
sor observations. SWE contributes towards the vision of Sensor Web, where
web-accessible sensor networks and archived sensor observations can be dis-
covered and accessed using standard protocols and application program inter-
faces (APIs) [5]. They are realized through web services, i.e. services “identi-
fied by a URI, whose service description and transport utilize open Internet

58 A. Samourkasidis and I.N. Athanasiadis

standards” [30]. Communication between service interfaces and other services or
clients is achieved through Simple Object Access Protocol (SOAP), which builds
on existing communication layers (i.e. HT'TP) [10]. SWE is a very important
infrastructure [8] as it offers interoperable protocols for advertising, disseminat-
ing and requesting data among heterogeneous sensor systems and devices.

2.2 The Sensor Observation Service

Sensor Observation Service (SOS) is an OGC service interface specification for
accessing sensor observations, which acts as “the intermediary between a client
and an observation repository” [5]. SOS interface enables clients to request, filter
and retrieve observations, and metadata about repositories and sensors.

SOS comes with a core set of services, and extensions that enrich it with extra
functionality, or profiles for domain-specific behavior. The current 2.0 specifica-
tion [24] defines three core operations:

a. service discovery (GetCapabilities),
b. sensors metadata retrieval (DescribeSensor), and
c. observations retrieval (GetObservation).

There are several extensions and profiles available, but their description falls
outside the scope of this paper. As an indicative example for the reader, the
transactional extension provides with services to register new sensors and add
new observations.

Client Sener
side side

YES Do | know. NO

senice's —>
metadata?

Do nothing

YES Do | know NO
—

procedure’s
metadata?

GetCapabiliies()

Calculate
GetCapabiliies
document
GetCapabilt

document.

o
(procedure)

Calculate
SensorML.
document

document

|
|
|
|
| SensorML.
|
|
|

No - Shalllretiewe . ves GetObsevation

(temporalFilter, etc.)

obsenvations?

Greatl I got all
obsenations |
requested...
YEs Canyoutransmit
requested
obsenvations?

document

NO

Hmm... | have to
find @ more
‘appropriate

temporalFilter

imit

exception

..m_______ B BN N BN N W

>—o

]

Fig. 1. A typical observation retrieval workflow using SOS

A Sensor Observation Service Extension for Internet of Things 59

SOS is a pull-based service interface and is intended for machine-to-machine
communication. The protocol prescribes a communication between a client and
a server, both can be considered to be software agents. The client submits a
request and the server answers with a response, typically in the form of XML
document. Responses are encoded in appropriate SWE related XML schemas
as Observation & Measurements [23], or SensorML [27]. A typical observation
retrieval workflow using SOS is depicted in Fig. 1. First, the client inquires the
server for its capabilities. Then, it may ask for descriptions on certain sensors,
and finally requests for observations from one or more sensors. A typical Get-
Observation request includes temporal and/or spatial boundaries.

When SOS server encounters an error while performing a GetObservation
operation, it returns an exception. For example, if client asks for wrong values
of arguments an InvalidParameterValue exception is rendered. In the current
SOS 2.0 interface standard [24] there is also a type of exception for the cases
that the response exceeds a size limit. We will investigate this further below.

2.3 Challenges in Sharing Sensor Observations in IoT

Internet of Things consists of smart nodes equipped with sensors and network
connectivity, able to interact with their environment and share information.
Smart nodes are entitled with specific characteristics:

a. restrained capabilities (in terms of energy and processing power),
b. opportunistic Internet connection, and
c. heterogeneity in resulting data formats and communication protocols [3].

Key challenges towards the IoT realization include energy efficiency, integra-
tion of service technologies and security/privacy [21]. Also, thematic and spatial
concerns of deployed IoT systems pose great challenges in spatiotemporal aggre-
gation of disperse observation datasets.

As regards with heterogeneous sensor integration, previous studies have
been conducted towards various directions. A virtual integration framework for
heterogeneous meteorological and oceanographic data sources is demonstrated
n [33]. A SOS profile to facilitate multi-agency sensor data integration was
reported in [1,19]. Fredericks et al. argue in [12] that quality metadata should
also be transmitted through SWE services, in order the realization of automatic
data integration to be achieved.

Integration of spatially diverse sensor timeseries utilizing OGC standards
concerned Horita et al. in [16]. They developed a spatial decision support sys-
tem for flood risk management, associating Volunteered Geographic Information
(VGI) and measured data derived from Wireless Sensor Networks (WSNs). Data
acquisition, integration and dissemination is orchestrated by a SOS instance.

Only recently, OGC introduced SensorThings API to facilitate “the intercon-
nection of IoT devices, data, and applications over the Web” [28]. In contrast with
other OGC standards, SensorThings API adopts the REST paradigm and uti-
lizes JSON-based information models. SensorThings API defines HT'TP requests
to facilitate observations’ retrieval, as well tasking of sensors and actuators.

60 A. Samourkasidis and I.N. Athanasiadis

Using parameters to regulate response size to requests within OGC-related
standards, was a topic of interest for [26,28,29]. Lengthy responses to Get-
Observation requests have been identified as a potential danger to both SOS
server and clients [26]. In the same work, it has been indicated that beyond the
ResponseExceedSizelLimit exception, other certain limitations as regards with
the number of returned observation should be concerned and imposed. The WFS
interface standard [29] and the SensorThings APT offer a paging implementation,
that allows the client to limit the number of features included in a response by
using two optional arguments (count, startindex for WFS, and top, skip for
SensorThings API).

Last but not least, several researchers investigated the suitability of limited
bandwidth, energy, and processing power devices to host a SOS server. These
have mainly concentrated on (a) adoption of lightweight architectural paradigms
(e.g. REST instead of SOAP [17,35,39]), and (b) evaluation of SOS lightweight
implementations [18,32]. We have also deployed SOS over a Raspberry Pi to
exploit the potential of low-cost embedded devices [36].

In this work we concentrate on the SOS service interface design and evaluate
the efficiency of communication between client and server.

3 Methods

3.1 SOS Service Interface Design Issues

According to SOS specification, clients are not allowed to know sensor observa-
tions’ frequency. The server advertises the boundaries of the information it holds,
but not the resolution. Any client is not possible to infer the sensor temporal or
spatial resolution, based on their communication with the server. This require-
ment is that the client has access with no a-priori knowledge [25]. While this
enforces reusability and generality of the service interface, it may lead to exces-
sive data requests, which may result to server overload, or even Denial of Service
attacks.

Excessive data transmission has been identified as an issue for GetObser-
vation requests. In the first specification of SOS, there was not imposed any
limitation, regarding the maximum number of observations which could be trans-
mitted. For the server, the only viable response to of a GetObservation request
was to return a set of observations. The server had no way to refuse to respond,
in cases where the client was asking for an excessive amount of data, it was busy,
or any other reason.

To illustrate the above shortfall we will consider a service offered by National
Oceanic and Atmospheric Administration (NOAA) [9]. NOAA’s Center for Oper-
ational Oceanographic Products and Services (CO-OPS) offers openly a variety
of sensor observations using SOS. In this implementation, if a client requests
observations for a time range which exceeds 31 days, the server responds with
an exception, rejecting the parameter value:

A Sensor Observation Service Extension for Internet of Things 61

<Exception exceptionCode="InvalidParameterValue"
locator="eventTime">
<ExceptionText>
Max 31 days of data can be requested.
62.0 days were requested.
</ExceptionText>
</Exception>

Note that the exception rejects the parameter value, disclosing in a non
machine interoperable message of the size limits for this request.

In the future work section of SOS 1.0 specification [25] it was acknowledged
that: “The density of requests and offerings must be addressed,... so that large
data volumes are not transmitted unnecessarily due to a lack of information
about service offerings.”. Indeed, that was addressed in SOS 2.0 by introducing
an exception to manage excessive data requests, while taking into considera-
tion the no a-priori knowledge requirement [5]. The ResponseExceedSizeLimit
exception functionality resembles the response of NOAA server above, but with
pertinent semantics to the exception thrown: The server is able to inform the
client that the “requested result set exceeds the response size limit of the service
and thus cannot be delivered” [24]. Both server and client applications are pro-
tected from extremely big response sizes, and the no a-priori knowledge require-
ment is respected.

The ResponseExceedSizelLimit exception of SOS 2.0 is a significant
improvement compared to SOS 1.0, as it allows the server to respond to a request
with an exception than with actual data. Note that, the response size limit should
not be considered a fixed parameter. It could change when there is high traffic,
or service maintenance. In those conditions, the server should be allowed to not
to respond to requests that would under normal conditions.

However, the main limiting factor to this design is that clients have no insights
regarding the carrying capacity of the server, or (equivalently) the density of an
offering. Due to the no a-priori knowledge requirement, clients cannot infer how
to narrow down their requests so that server responds.

We identify two cases here. First case is when the server publishes regular
sensor observations. Under this category fall most long-term, permanent sen-
sor infrastructures. In this case, clients could implement heuristic techniques to
discover the response size limit (assuming that it is constant).

In the second case, observation streams are irregular. This may happen if
the sensor sampling frequency varies, or sensors move. For example, consider
sensors operating in energy restrained environments and adopt opportunistic
sensing techniques, or event-based sensing [2]. Volunteered Geographic Informa-
tion Systems which enable individuals [11,13] or cars [6] as data providers, fall
in the same case. In these situations, it is impossible for the client to make any
kind of estimate on the response size, and devise a strategy to reduce accordingly
the spatiotemporal boundaries of their query.

Responding with an exception to voluminous requests could be tolerated in
fixed sensor networks (case one above). However, it hinders SOS applicability in

62 A. Samourkasidis and I.N. Athanasiadis

resource-constrained environments. As clients are neither aware of the response
size limits, nor how to restrict their queries, the SOS communication protocol
underperforms: It wastes both processing power and network bandwidth as it
is engaged in more request/response cycles. This, ultimately results in bigger
response times. Such drawbacks are incompatible with the Internet of Things
needs. This problem could be addressed by introducing a progressive data trans-
mission technique described below.

3.2 The Resumption Token Technique and Open Archives Initiative

The notion of selective data retrieval was introduced in Lagoze and Van de
Sompel [20]. Utilizing a resumption token, large and resource-demanding data
transactions are fragmented into several requests/responses. The client submits
a request and the server responds with a part of the result and a resumption
token. Then the client (harvester) can use this resumption token in follow up
requests to get the following part of its initial request. Gradually, by consecutive
requests the client retrieves the all the partial answers to its initial request. This
mechanism enables the server to handle with requests that have large responses,
with respect to available bandwidth and/or processing power.

3.3 A Pagination Extension for SOS

SOS service interface can address IoT needs by introducing progressive data
transmission. We extend the current SOS service interface with a resumption
token parameter in the GetObservation requests. By fragmenting requests into
many sequential ones, we transform SOS into a disruption-tolerant service
interface, as clients are enabled to ask for specific observation subsets. Obser-
vations are divided and loosely packed into pages of certain size. The number
of observations contained in a page (i.e. chunk of subsequent observations) is
determined by the SOS server.

The observation retrieval workflow according to the proposed design is
depicted in Fig.2. The client asks for a set of observations with a GetObser-
vation request. The server processes the request, and always responds with an
O&M document. If the response exceeds the carrying capacity of the server,
results will be organized in subsets (called pages), and the server response will
include an additional element, called next which will point to the URL of the
next page of results. The next page URL is the same as the original request, but
contains an extra parameter called page, which has the role of the resumption
token. The page parameter is optional: when a client request does not contain a
page argument, the server responds with the first page of the request. The last
page of the parts contains no next page element to notify the client of the end
of the transmission.

In the simplest case, server carrying capacity could be an arbitrary, fixed
threshold, similar to the request size limit of the SOS 2.0 exception. Of course, the
server carrying capacity may dynamically vary according to result set properties,
or server resources, enabling network load balancing, efficient use of energy, etc.

A Sensor Observation Service Extension for Internet of Things 63

Client Senver
side side

=

NO Shall | retrieve YES GetObsenvation

(temporalFilter, page = 1)

¥

Retrieve 15! page
obsenations

obsenations?

08M
document

Do nothing

NO Are there any YES
more pages to -~
retrieve?

GetObservation
(temporalFilter, page = n)

¥

I

} Retrieve ne! page
| obsenvations

|

I o8M |
| document

|

|

|

|

|

|

Great! | got all
obsenation |
requested...

NN BN NS N

]

Fig. 2. A typical paginated observation retrieval workflow

It could even change during the transmission, as the total number of pages is
not disclosed to the client. The page resumption token could be constructed
incrementally as page number in case the server has a fixed carrying capacity,
and data do not change. In case of varying page size, the page parameter can
take unique pseudo-random integer values. In case where data changed during
the communication, or any other reason, the next page token could be revoked
by the service provider.

3.4 Expected (by Design) Benefits

The paginated protocol proposed here is beneficial for both server and client
efficiency and performance. The communication protocol does not waste
resources to respond with exceptions, as all requests result to responses that
carry observations. This saves processing power and communication bandwidth
in both client and the server.

Another attribute of the design we propose is its non-invasive nature. Given
the page parameter is optional, current SOS clients can seamlessly submit Get-
Observation requests and retrieve observations, as long as the SOS server car-
rying capacity is not exceeded. This means that existing SOS 1.0 or 2.0 server
infrastructures could switch to a paginated implementation, and as long as they
do not change their size limit threshold, existing clients would continue to oper-
ate without disruption. In the rest cases, a page-parser method should be imple-
mented and incorporated in legacy clients. This method would parse a GetObser—
vation response document to determine the URL of the next GetObservation

64 A. Samourkasidis and I.N. Athanasiadis

request. On server side, the pagination extension could be easily applied on top
of existing implementations.

4 Demonstration and Implementation

4.1 Setup

The SOS pagination extension introduced above comes with design advantages
discussed in the previous section. There are also performance improvements that
we experimentally evaluated by setting up two case studies. Without loss of
generality, we assume not movable sensors that hold timeseries information. In
case study one, the server holds a regular timeseries dataset, while in the second
case study an irregular one. For both cases, we compared the SOS pagination
extension (SOS-p) service interface against SOS 2.0.

The SOS-p server is queried by a corresponding client (PAC'), that is able
to handle page resumption tokens. For SOS 2.0 server, we considered two
clients: one that is not aware of SOS 2.0 carrying capacity and finds it by
employing a divide-and-conquer algorithm (DAC'); and one that has this a-priori
knowledge (LEC).

The three clients are in detail as follows:

Divide and Conquer client (DAC): DAC submits GetObservation requests
according to SOS 2.0 specification. When the server responds with a Response-
ExceedSizeLimitexception, DAC halves the time window and submits a new
query. When DAC finds a time window for which the server responds with no
exception, it continues asking for observations with of this duration size in the
temporal filter, until it has received all the data corresponding to the original
request.

Leaky client (LEC): LEC knows the server carrying capacity and arranges
the temporal filter of its request, so that there are no exceptions. While this
is against the no a-priori knowledge requirement, it corresponds to the most
favorable situation for the existing SOS 2.0 protocol. LEC submits GetObser-
vation requests to SOS 2.0 only for case study 1.

Pagination-aware client (PAC): PAC client submits GetObservation
requests according to SOS-p, i.e. it is capable of processing the page resump-
tion token. In its first GetObservation request asks for the first page, and then
processes the response for the next page it will ask for. If the GetObservation
response document does not contain a next page tag, it means that all requested
observations were transmitted.

4.2 Implementation and Synthetic Datasets

This study makes use of the AIRCHIVE SOS server implemented in Python [36].
Clients were also implemented in Python. Queries to SOS server were submitted
as HTTP GET requests via Python Requests module [34]. Response times for

A Sensor Observation Service Extension for Internet of Things 65

each case study were facilitated using the Python Time module [38]. All experi-
ments were carried out on a Intel Core i5 4 Mac with a 2,4 GHz and 16.0 GB of
memory (1600 MHz DDR3), running OS X El Capitan (Version 10.11.1). SOS
server and SOS client instances operated on the same physical machine.

In both case studies, a dataset of 15,000 observations was artificially gener-
ated. In case study one, we assumed that measurements are sensed in constant
intervals of 10s. In case study two, observations were timed with a inconstant
frequency. Observation time interval varies from 10 to 3000s, distributed uni-
formly. Timestamps were generated with the Python Random Number generator
module, using Mersenne Twister [37]. Both timeseries were stored in two SQLite
databases and made available to the servers.

4.3 Experimental Setup and Metrics

As limited bandwidth and processing power are key elements of IoT systems,
we set up accordingly our experiments. The carrying capacity of the servers
was defined to be 15 observations. This arbitrary threshold was chosen so that
there will be significant traffic of SOS requests. SOS 2.0 server would render a
ResponseExceedSizeLimit exception if the result set would include more than
15 observations. SOS-p server organizes its responses in pages of 15 observations
per page.

Clients were configured to request for observations for time intervals that
result to 1 000, 2 000, 4 000, 8 000 or 15 000 observations (response length).
Experiments have been repeated 10 times for all clients and both case studies.

For all experiments, we recorded two metrics:

a. the response time is the total time passed until the client has received the
total amount of data requested. Measured in seconds.

b. transfer volume is the total size of all response documents received by the
client until the whole response has been received. It is measured in MB.

Response times are averaged across the 10 repetitions, while transfer volume
is the same for each repetition.

For the cases of SOS 2.0 implementation, in the average response time and
transfer volume, time spent and resulted size of exceptions are also included.

4.4 Experimental Results

Tables 1 and 2 summarize the results for both case studies and all clients. The
response time is reported as average and standard deviation of ten repetitions.

For case study 1, best results are achieved, as expected, by the client that
is aware of the server carrying capacity (LEC), but violates the no a-priori
knowledge requirement. The divide-and-conquer client (DAC) in SOS 2.0 adds
an overhead to the transmission, as it needs to search for a working time interval.
Its performance is affected mostly of how close the time interval found is to
the servers carrying capacity. The response time was significantly increased in

66 A. Samourkasidis and I.N. Athanasiadis

Table 1. Experimental results for the regular timeseries for all three clients. Average
response times and standard deviation across ten requests are reported. Total volume
of the data transmitted, number of requests, and number of exceptions for DAC.

Query | PAC LEC DAC

length
Resp. time Vol Regs | Resp. time Vol Resp. time Vol Exceptions
(std) [s] [MB] (std) [s] [MB] | (std) [s] [MB]

1000 | 1.34 (£0.049) | 0.59 | 67 | 1.29 (£0.013) | 0.58 | 2.36 (£0.02) |0.63
2000 | 2.68 (£0.012) | 1.2 134 | 2.57 (£0.011) | 1.2 | 4.64 (+0.05) | 1.3
4000 | 5.53 (+£0.083) |2.4 | 267 | 5.22 (£0.017)|2.3 | 9.27 (+£0.03) | 2.5
8000 |11.93 (£0.031) |4.7 | 534 |10.31 (£0.034) | 4.7 |18.31 (+£0.06) | 5.0 |10
15000 | 24.77 (£0.739) | 8.9 | 1000 | 19.05 (£0.043) | 8.7 | 21.33 (+0.06) | 8.8 |10

our experiments in Table 1. In the contrary, the performance of SOS-p and the
paginated client PAC is very close to the server carrying capacity, without any
breach of the no a-priori knowledge requirement. Experimental results in Table 1
illustrate overheads less than 5% in response time for up to few hundreds of
pages, while for bigger numbers of requests overheads in time may end up to
30% in response time. This is attributed to the efficiency of the pagination
implementation and is a well-known limitation among the database community.
In the future, we will investigate other database options that can improve this
further.

For case study 2, irregular timeseries are served therefor there is no notion of
leaking the prior knowledge of the server carrying capacity. Here the paginated
SOS-p excels over SOS 2.0, as presented in Table2. SOS-p and PAC are faster
than SOS 2.0 by more than 60% on average on every GetObservation request.
Also, note that number of requests has been roughly doubled, which results to
a noticeable difference in the amount data transmitted. This is to be expected,
as the divide and conquer strategy may end up finding a query window that is
far from what can be actually served. There could be other search algorithms
employed for improving DAC performance. However, it is made clear from this

Table 2. Experimental results for the irregular timeseries. For PAC and DAC clients
reports average response times and standard deviation across ten requests. Total vol-
ume of the data transmitted, number of requests and number of exceptions for DAC.

Query PAC DAC
length
Resp. Time (std) [s] | Vol [MB] | Regs | Resp. Time (std) [s] | Vol [MB] | Exceptions

1000 1.35 (£0.02) 0.59 67 2.40 (£0.03) 0.63 7

2000 2.75 (£0.05) 1.2 134 | 4.71 (£0.05) 1.3 8

4000 5.66 (+0.07) 2.4 267 | 9.28 (£0.06) 2.5 9

8000 11.97 (40.08) 4.7 534 | 18.34 (£0.03) 5.0 10

15000 24.62 (£0.11) 8.9 1000 | 36.81 (£0.88) 9.5 11

A Sensor Observation Service Extension for Internet of Things 67

experiment, that the paginated protocol guarantees by design that the optimal
number of measurements is included in each response. SOS-p entrusts the burden
of coordinating the observation boundaries to the server, which knows its limits,
than having the client wasting resources with requests of suboptimal lengths.
The improved performance ensures that there is no waste of resources on both
the client and the server side.

5 Discussion and Conclusions

This work contributes towards improving OGC SOS protocol to become IoT
ready. Drafting on top of IoT requirements as efficient resource utilization and
opportunistic Internet connection, and taking into consideration response size to
GetObservation requests requirements set in [26], we designed a SOS extension,
which implements a pagination mechanism.

There is a fundamental difference between our design and the paging mech-
anism introduced in OGC WFS [29]. WFS paging design contradicts with the
rationale of SOS ResponseExceedSizeLimit exception, that is to enable the
SOS server to manage efficiently its resources. Conversely, it allows clients to
select the number of returned observations, which is a feature that can only
facilitate specific applications (e.g. Graphical User Interfaces which can visual-
ize a certain number of observations). In the contrary, the solution proposed in
this work follows the Open Archives Initiative design pattern, and the decision
on the page size remains with the server, not the client. As we demonstrated
above, this is a necessary condition for the server in the IoT era, as it allows for
parsimonious use of resources, and protection from queries resulting with very
big results.

Pagination introduces the notion of progressive transmission, which fits
for purpose with timeseries data sequential nature, but is also suitable for any
kind of spatiotemporal requests. It adds disruption-tolerance as an additional
SOS feature, since a client can request for and retrieve a specific page. This is very
useful when big datasets are to be transmitted or when the Internet connection is
poor. Our design enables a SOS server to exploit its resources to the maximum,
as computational power and network bandwidth are spent for yielding results,
not for handling exceptions. Thus, the paginated extension enables by-design
SOS for devices with restrained capabilities, where resources are economized in
sharing interoperable knowledge.

Whilst our suggested design entails new improvements to the existing SOS
2.0, its importance is highlighted by its non-invasive nature. Backwards
compatible design is achieved through the optional page parameter, since all
requested data could be included in one page. This way, current SOS 2.0 clients
could operate without further modifications with SOS-p extended servers, if the
server always responds with the whole data requested.

Evaluating the SOS-p extension against specific metrics, we validated
improvements by experiments. Those improvements are mainly concerned with
efficiency. Lower GetObservation requests completion times contribute towards

68 A. Samourkasidis and I.N. Athanasiadis

IoT devices energy conservation, since computational resources are occupied for
less time, and thus more clients can be served simultaneously. In addition to
that, when carrying capacity is not known to the client, the SOS 2.0 protocol
is under-operating, as possibly transmits less observations in each request. This
results to more request-response transactions, with overheads in data volume
and duration time.

The pagination extension introduced here offers a remedy to SOS 2.0 short-
falls in handling exceptions, by providing a machine interoperable solution. It
also fills-in the SOS missing piece, that is to “allow a client to determine the
density of an offering” [25]. Instead of that, it delegates to the server to drive
protocol.

Advancements discussed so far lay the groundwork for future work. Firstly,
our intention to use pagination was exploratory, thus there is room for further
improvements in the implementation to further improve performance. One direc-
tion for improvement is the adoption of a caching mechanism. Pagination is a
good candidate for caching techniques, since requests are incremental and queries
are submitted sequentially. With the design introduced here, the client reveals
its intentions to the server, by asking the whole spatiotemporal boundaries of
interest. If the response is too big, the server will return the first page that
includes a part of the results. As the client intentions have been disclosed to the
server, this allows for caching mechanisms to be set up on the server side.

Following the anonymous reviewer comments and the discussions during the
InterOSS-IoT Workshop in Stuttgart on November 7th, 2016, authors will con-
sider bringing this forward to OGC for consideration as a white paper.

To summarize, we argued that current SOS design was not intended for
the Internet of the Things era. We designed a pagination extension offering
progressive data transmission, economizing resources and tackling with limited
or interrupted Internet connectivity with a disruption-tolerant protocol, while
respecting SOS specification. There is a small effort into extending current SOS
servers and clients to implement the pagination extension, while there are signif-
icant performance improvements, as indicated by the experimental results. The
pagination extension sets the grounds for enabling SOS as an Internet of the
Things dissemination outlet for sensor observations.

Supplementary Materials

Pagination cumulative results are available on Zenodo:
http://doi.org/10.5281/zenodo.178913

Acknowledgements. This work was partially supported by Greek General Secre-
tariat for Research and Technology, grant 11SYN-6-411 (ALPINE), and the Euro-
pean Community’s Seventh Framework Programme grant 613817 (MODEXTREME).
Authors are grateful to the four anonymous reviewers for their valuable feedback and
the participants of the InterOSS-IoT Workshop (Stuttgart, Nov. 7th, 2016) for their
comments.

http://doi.org/10.5281/zenodo.178913

A Sensor Observation Service Extension for Internet of Things 69

References

10.

11.

12.

13.

14.

15.

Alamdar, F., Kalantari, M., Rajabifard, A.: Towards multi-agency sensor infor-
mation integration for disaster management. Comput. Environ. Urban Syst. 56,
68-85 (2016). http://dx.doi.org/10.1016 /j.compenvurbsys.2015.11.005

de Assis, L.F.F.G., Behnck, L.P., Doering, D., de Freitas, E.P., Pereira, C.E.,
Horita, F.E.A., Ueyama, J., de Albuquerque, J.P.: Dynamic sensor management:
extending sensor web for near real-time mobile sensor integration in dynamic sce-
narios. In: Proceedings of International IEEE Advanced Information Networking
and Applications (AINA), pp. 303-310, March 2016. http://dx.doi.org/10.1109/
AINA.2016.100

Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw.
54(15), 2787-2805 (2010). http://dx.doi.org/10.1016/j.comnet.2010.05.010

Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing
and Internet of Things: a survey. Future Gener. Comput. Syst. 56, 684-700 (2016).
http://dx.doi.org/10.1016/j.future.2015.09.021

Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC®) sensor web enablement:
overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(eds.) GSN 2006. LNCS, vol. 4540, pp. 175-190. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-79996-2_10

Broering, A., Remke, A. Stasch, C., Autermann, C., Rieke, M., Méllers, J.: enviro-
Car: a citizen science platform for analyzing and mapping crowd-sourced car sensor
data. Trans. GIS 19(3), 362-376 (2015). http://dx.doi.org/10.1111/tgis.12155
Broring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S.,
Lemmens, R.: New generation sensor web enablement. Sensors 11(3), 2652-2699
(2011). http://dx.doi.org/10.3390/s110302652

Broring, A., Janowicz, K., Stasch, C., Schade, S., Everding, T., Llaves, A.: Demon-
stration: a RESTful SOS proxy for linked sensor data. In: Proceedings of 4th Inter-
national Workshop on Semantic Sensor Networks (SSN11), pp. 123-126 (2011)
Center for operational oceanographic products and services (co-ops) sen-
sor observation service (2017). https://opendap.co-ops.nos.noaa.gov /ioos-dif-sos/.
Accessed 22 Jan 2017

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.:
Unraveling the web services web: an introduction to SOAP, WSDL, and UDDI.
IEEE Internet Comput. 6(2), 86 (2002). http://dx.doi.org/10.1109/4236.991449
Drosatos, G., Efraimidis, P., Athanasiadis, 1., Stevens, M., D’Hondt, E.: Privacy-
preserving computation of participatory noise maps in the cloud. J. Syst. Softw.
92, 170-183 (2014). http://dx.doi.org/10.1016/j.jss.2014.01.035

Fredericks, J.J., Botts, M., Cook, T., Bosch, J.: Integrating standards in data
QA/QC into OpenGeospatial consortium sensor observation services. In: Proceed-
ings of OCEANS 2009-EUROPE, pp. 1-6, May 2009. http://dx.doi.org/10.1109/
OCEANSE.2009.5278211

Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. Geo-
Journal 69(4), 211-221 (2007). http://dx.doi.org/10.1007/s10708-007-9111-y
Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The
rise of “big data” on cloud computing: review and open research issues. Inf. Syst.
47, 98-115 (2015). http://dx.doi.org/10.1016/j.is.2014.07.006

Havlik, D., Bleier, T., Schimak, G.: Sharing sensor data with SensorSA and cas-
cading sensor observation service. Sensors 9(7), 5493-5502 (2009). https://dx.doi.
org/10.3390/s90705493

http://dx.doi.org/10.1016/j.compenvurbsys.2015.11.005
http://dx.doi.org/10.1109/AINA.2016.100
http://dx.doi.org/10.1109/AINA.2016.100
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1007/978-3-540-79996-2_10
http://dx.doi.org/10.1111/tgis.12155
http://dx.doi.org/10.3390/s110302652
https://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/
http://dx.doi.org/10.1109/4236.991449
http://dx.doi.org/10.1016/j.jss.2014.01.035
http://dx.doi.org/10.1109/OCEANSE.2009.5278211
http://dx.doi.org/10.1109/OCEANSE.2009.5278211
http://dx.doi.org/10.1007/s10708-007-9111-y
http://dx.doi.org/10.1016/j.is.2014.07.006
https://dx.doi.org/10.3390/s90705493
https://dx.doi.org/10.3390/s90705493

70

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A. Samourkasidis and I.N. Athanasiadis

Horita, F.E., de Albuquerque, J.P., Degrossi, L.C., Mendiondo, E.M., Ueyama,
J.: Development of a spatial decision support system for flood risk management
in Brazil that combines volunteered geographic information with wireless sen-
sor networks. Comput. Geosci. 80, 84-94 (2015). https://doi.org/10.1016/j.cageo.
2015.04.001

Janowicz, K., Broring, A., Stasch, C., Schade, S., Everding, T., Llaves, A.: A
RESTful proxy and data model for linked sensor data. Int. J. Digit. Earth 6(3),
233-254 (2013). http://dx.doi.org/10.1080/17538947.2011.614698

Jazayeri, M.A., Liang, S.H., Huang, C.Y.: Implementation and evaluation of four
interoperable open standards for the Internet of Things. Sensors 15(9), 24343—
24373 (2015). http://dx.doi.org/10.3390/s150924343

Jirka, S., Broring, A., Kjeld, P., Maidens, J., Wytzisk, A.: A lightweight approach
for the Sensor Observation Service to share environmental data across Europe.
Trans. GIS 16(3), 293-312 (2012). http://dx.doi.org/10.1111/].1467-9671.2012.
01324.x

Lagoze, C., Van de Sompel, H.: The open archives initiative: building a low-barrier
interoperability framework. In: Proceedings of 1st ACM/IEEE-CS Joint Confer-
ence on Digital libraries, JCDL 2001, pp. 54-62. ACM, New York (2001). http://
doi.acm.org/10.1145/379437.379449

Li, S., Da Xu, L., Zhao, S.: The Internet of Things: a survey. Inf. Syst. Front.
17(2), 243-259 (2015). http://dx.doi.org/10.1007/s10796-014-9492-7

Mulligan, G., Gracanin, D.: A comparison of SOAP and REST implementations of
a service based interaction independence middleware framework. In: Proceedings
of Winter Simulation Conference (WSC), pp. 1423-1432, December 2009. http://
dx.doi.org/10.1109/WSC.2009.5429290

Observations and Measurements - XML implementation. Implementation Standard
10-025r1, Open Geospatial Consortium (2011)

OGC Sensor Observation Service 2.0. Implementation Standard 12-006, Open
Geospatial Consortium (2012)

OGC Sensor Observation Service 1.0. Standard 06-009r6, Open Geospatial Con-
sortium (2007)

OGC Sensor Observation Service 2.0 Hydrology Profile. Best Practice Paper 14—
004r1, Open Geospatial Consortium (2014)

SensorML, O.G.C.: Model and XML. Encoding Standard 12-000, Open Geospatial
Consortium (2014)

OGC SensorThings API Part 1: Sensing. Implementation Standard 15-078r6, Open
Geospatial Consortium (2016)

OGC Web Feature Service 2.0. Interface Standard 09-025r2, Open Geospatial Con-
sortium (2014)

Papazoglou, M., Georgakopoulos, D.: Service-oriented computing. Commun. ACM
46(10), 25 (2003). https://doi.org/10.1145/944217.944233

Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service
model for smart cities supported by Internet of Things. Trans. Emerg. Telecommun.
Technol. 25(1), 81-93 (2014). https://doi.org/10.1002/ett.2704

Pradilla, J., Palau, C., Esteve, M.: SOSLITE: lightweight Sensor Observation Ser-
vice (SOS) for the Internet of Things (IoT). In: ITU Kaleidoscope: Trust in the
Information Society (K-2015), pp. 1-7. IEEE, December 2015. https://doi.org/10.
1109/Kaleidoscope.2015.7383625

Regueiro, M.A., Viqueira, J.R., Taboada, J.A., Cotos, J.M.: Virtual integration
of sensor observation data. Comput. Geosci. 81, 12-19 (2015). http://dx.doi.org/
10.1016/j.cageo.2015.04.006

https://doi.org/10.1016/j.cageo.2015.04.001
https://doi.org/10.1016/j.cageo.2015.04.001
http://dx.doi.org/10.1080/17538947.2011.614698
http://dx.doi.org/10.3390/s150924343
http://dx.doi.org/10.1111/j.1467-9671.2012.01324.x
http://dx.doi.org/10.1111/j.1467-9671.2012.01324.x
http://doi.acm.org/10.1145/379437.379449
http://doi.acm.org/10.1145/379437.379449
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1109/WSC.2009.5429290
http://dx.doi.org/10.1109/WSC.2009.5429290
https://doi.org/10.1145/944217.944233
https://doi.org/10.1002/ett.2704
https://doi.org/10.1109/Kaleidoscope.2015.7383625
https://doi.org/10.1109/Kaleidoscope.2015.7383625
http://dx.doi.org/10.1016/j.cageo.2015.04.006
http://dx.doi.org/10.1016/j.cageo.2015.04.006

34.

35.

36.

37.

38.

39.

A Sensor Observation Service Extension for Internet of Things 71

Reitz, K.: Requests: HT'TP for humans (2017). http://docs.python-requests.org/
en/master/. Accessed 22 Jan 2017

Rouached, M., Baccar, S., Abid, M.: RESTful sensor web enablement services for
wireless sensor networks. In: IEEE Eighth World Congress on Services, pp. 65-72.
IEEE, June 2012. https://doi.org/10.1109/SERVICES.2012.48

Samourkasidis, A., Athanasiadis, I.N.: A miniature data repository on a Raspberry
Pi. Electronics 6(1) (2017). http://dx.doi.org/10.3390/electronics6010001

The Python standard library: random - Generate pseudo-random numbers. (2017).
https://docs.python.org/2/library /random.html. Accessed 22 Jan 2017

The Python standard library: time - time access and conversions (2017). Accessed
22 Jan 2017. https://docs.python.org/2/library /sqlite3.html

Yazar, D., Dunkels, A.: Efficient application integration in IP-based Sensor net-
works. In: Proceedings of 1st ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings, BuildSys 2009, pp. 43-48. ACM, New York (2009).
http://doi.acm.org/10.1145/1810279.1810289

http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
https://doi.org/10.1109/SERVICES.2012.48
http://dx.doi.org/10.3390/electronics6010001
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/sqlite3.html
http://doi.acm.org/10.1145/1810279.1810289

	A Sensor Observation Service Extension for Internet of Things
	1 Introduction
	2 Related Work
	2.1 Service Orientation and Interoperability in Sensor networks
	2.2 The Sensor Observation Service
	2.3 Challenges in Sharing Sensor Observations in IoT

	3 Methods
	3.1 SOS Service Interface Design Issues
	3.2 The Resumption Token Technique and Open Archives Initiative
	3.3 A Pagination Extension for SOS
	3.4 Expected (by Design) Benefits

	4 Demonstration and Implementation
	4.1 Setup
	4.2 Implementation and Synthetic Datasets
	4.3 Experimental Setup and Metrics
	4.4 Experimental Results

	5 Discussion and Conclusions
	References

