
in silico Plants Vol. 3, No. 1, pp. 1–20
doi:10.1093/insilicoplants/diaa007
Advance Access publication 6 October 2020.
Original Article

•  1

Reuse of process-based models: automatic
transformation into many programming languages

and simulation platforms
Cyrille Ahmed Midingoyi1,2, Christophe Pradal2,3*, , Ioannis N. Athanasiadis4,
Marcello Donatelli5, Andreas Enders6, Davide Fumagalli7, Frédérick Garcia8,

Dean Holzworth9, Gerrit Hoogenboom10,11, Cheryl Porter11, Hélène Raynal12,
Peter Thorburn13 and Pierre Martre1*

1LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France

3LIRMM, Univ Montpellier, Inria, CNRS, Montpellier, France
4Wageningen University, Wageningen, The Netherlands

5Research Centre for Agriculture and Environment, CREA, Bologna, Italy
6Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany

7Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
8MIAT, INRAE, Castanet-Tolosan, France

9CSIRO Agriculture and Food, Toowoomba, Australia
10Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, USA
11Agricultural & Biological Engineering, University of Florida, Gainesville, FL, USA

12AGIR, INRAE, Castanet-Tolosan, France
13CSIRO Agriculture and Food, Brisbane, Australia

*Corresponding authors’ e-mail addresses: christophe.pradal@cirad.fr; pierre.martre@inrae.fr

Handling Editor: Amy Marshall-Colon

Citation: Midingoyi CA, Pradal C, Athanasiadis IN, Donatelli M, Enders A, Fumagalli D, Garcia F, Holzworth D, Hoogenboom G, Porter C, Raynal H, Thorburn
P, Martre P. 2020. Reuse of process-based models: automatic transformation into many programming languages and simulation platforms. In Silico Plants 2020:

diaa007; doi: 10.1093/insilicoplants/diaa007

A B S T R A C T
The diversity of plant and crop process-based modelling platforms in terms of implementation language, soft-

ware design and architectural constraints limits the reusability of the model components outside the platform in
which they were originally developed, making model reuse a persistent issue. To facilitate the intercomparison and
improvement of process-based models and the exchange of model components, several groups in the field joined to
create the Agricultural Model Exchange Initiative (AMEI). Agricultural Model Exchange Initiative proposes a cen-
tralized framework for exchanging and reusing model components. It provides a modular and declarative approach
to describe the specification of unit models and their composition. A model algorithm is associated with each model
specification, which implements its mathematical behaviour. This paper focuses on the expression of the model algo-
rithm independently of the platform specificities, and how the model algorithm can be seamlessly integrated into
different platforms. We define CyML, a Cython-derived language with minimum specifications to implement model
component algorithms. We also propose CyMLT, an extensible source-to-source transformation system that trans-
forms CyML source code into different target languages such as Fortran, C#, C++, Java and Python, and into different
programming paradigms. CyMLT is also able to generate model components to target modelling platforms such as
DSSAT, BioMA, Record, SIMPLACE and OpenAlea. We demonstrate our reuse approach with a simple unit model
and the capacity to extend CyMLT with other languages and platforms. The approach we present here will help to
improve the reproducibility, exchange and reuse of process-based models.

K E Y W O R D S :   Crop model; model reuse; software reuse; source transformation; transpiler.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

http://orcid.org/0000-0002-2555-761X
mailto:christophe.pradal@cirad.fr?subject=
mailto:pierre.martre@inrae.fr?subject=
http://creativecommons.org/licenses/by/4.0/

2  •  Midingoyi et al.

1 .   I N T R O D U C T I O N
Process-based crop models (PBMs) are increasingly developed for a
wide range of applications and research purposes. Even though there
are key biophysical processes in PBM such as phenology, soil water bal-
ance or biomass production, their modelling differs from one model
to another according to the biological details, influenced by the avail-
ability of input data and final use of the model. The choice of model-
ling approaches to represent processes and combine them is also one
of the main reasons which led to the development of multiple PBM
to simulate the same crops (Jones et al. 2017). They have often been
written repeatedly in several different languages with different software
architectures. For example, the WOFOST model is implemented in
Fortran in the WOFOST Control Centre (WCC) package, in Python
in the Python Crop Simulation Environment framework, in Java in the
Wageningen Integrated Systems Simulator framework (WISS), in C#
in the Biophysical Models Application (BioMA) framework and in
C++ in the Crop Growth Monitoring System (CGMS) (de Wit et al.
2019; van Kraalingen et al. 2020).

The diversity of PBM has motived the development of different
initiatives that intend to compare their performance and improve
them by integrating new scientific knowledge to target the next gen-
eration of crop models (Rosenzweig et al. 2013; Bindi et al. 2015).
Process-based crop model intercomparison studies (Palosuo et al.
2011; Rötter et al. 2011; Asseng et al. 2013; Aslam et al. 2017) have
pointed out the variability in model outputs but often without quan-
tifying the sources of uncertainty or analysing the processes involved.
These studies showed the potential and limits of PBM and highlighted
the need to evaluate them at the process level, but also to exchange
model parts (components) between models (Donatelli et al. 2014;
Muller and Martre 2019). Process-based crop models are increasingly
implemented as autonomous components describing each biophysical
process. However, there is currently little exchange and reuse of PBM
components between modelling groups despite theoretical and appli-
cation interests (Holzworth et al. 2014a). The main limitation comes
from compatibility issues between PBM platforms (frameworks)
resulting from differences in programming languages that are used and
their specificities.

The modelling frameworks used in agricultural modelling depend
on the programming language in which they have been implemented,
the software design and code conventions they use. For example, the
crop modelling frameworks APSIM Next Generation (Holzworth et al.
2018) and BioMA (Donatelli et al. 2010) are based on component-ori-
ented techniques and require models to be developed in C#. DSSAT
(Jones et al. 2003; Hoogenboom et al. 2019) and STICS (Brisson
et al. 1998) provide generic crop modules in Fortran with a proce-
dural approach that can be specialized for different species. Simplace
(Enders et al. 2010) uses the Java language, while Record (Bergez et al.
2016) uses C++; both require that their components share a built-
in interface. Therefore, model components can be reused in a given
platform but their reuse in other platforms remains difficult. Existing
solutions that couple models written in different languages are rather
technical (generation of wrappers) or low level (reading and writing
in files). We propose here an abstraction, a sharing language and a
transformation system, based on the scientific content of the model,

i.e. its algorithms. Multilanguage and integrated modelling frameworks
like OpenAlea (Pradal et al. 2008, 2015) and yggdrasil (Lang 2019)
offer a language binding approach to provide third-party developers
with a choice of languages (Villa 2001; Lang 2019). Therefore, they
overcome the difficulty of implementing algorithms efficiently in high-
level languages. However, they do not provide a solution to the reuse or
exchange of models between frameworks. In these platforms, models
are reused as black boxes and the integrated models, therefore, lack the
required transparency. Moreover, this approach requires knowledge of
the frameworks they integrate and the deployment of the core of each
framework. Domain-specific programming languages that are agnostic
to a specific programming language have also been proposed as a solu-
tion to the problem (Athanasiadis and Villa 2013; Villa et al. 2017)
aiming to support interoperability with rich semantics.

To facilitate PBM component exchange, several groups in the field
have joined forces to create the Agricultural Model Exchange Initiative
(AMEI; Martre et al. 2018). Agricultural Model Exchange Initiative
brings together some of the most widely used crop modelling and
simulation platforms, including APSIM, BioMA, DSSAT, OpenAlea,
RECORD, Simplace and other crop models such as STICS and
SiriusQuality (Martre et al. 2006) The vision of AMEI is to (i) increase
capabilities and responsiveness to model developers’ needs; (ii) use
modular modelling to share knowledge and rapidly develop opera-
tional tools; (iii) reuse model parts to leverage the expertise of third
parties; (iv) renovate legacy code; and (v) realize the benefit of sharing
and complementing different expertise.

Based on a declarative modelling approach (Athanasiadis et al.
2011), AMEI proposes a centralized framework (Crop2ML; Midingoyi
et al. 2020) to exchange and reuse model components. Crop2ML pro-
vides a meta-language based on shared concepts between crop simu-
lation platforms to describe specifications of model components and
compositions. A model algorithm describes the behaviour of the com-
ponent in terms of the sequence of inputs, successive rules or actions,
conditions or a flow of instructions from inputs to outputs including
mathematical expressions. A model algorithm is associated with each
model specification. After a modeller has represented the specifica-
tions of its model, two relevant questions remain to be answered: (i)
How can a model algorithm be described independently of the plat-
form specificities? (ii) How can it be seamlessly integrated into existing
simulation platforms?

Similar approaches have been used in the Systems Biology com-
munity where several domain-specific modelling standard languages
including SBML, CellML and NeuroML have been designed to
exchange and store models (Cuellar et al. 2006; Gleeson et al. 2010;
Hucka et al. 2015). These XML-based languages provide specific ele-
ments to describe model structure and equations using Mathematical
Markup Language (MathML; Ausbrooks et al. 2003) that describes
mathematical notations and captures both its structure and con-
tent. However, these languages are limited to specific formalisms
(e.g. chemical reactions, differential equations) and cannot be eas-
ily extended to represent crop models in their full complexity and
diversity. System Biology languages support model transformation
from one standard to another (e.g. from CellML to SBML; Schilstra
et al. 2006) and from XML to executable code. In contrast, Crop2ML

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

Reuse of process-based models  •  3

provides models as components that can be integrated into simulation
platforms. Therefore, our design choice was to introduce a general pro-
gramming language to represent complex control flow such as loops or
conditions statements.

In this paper, we present CyML, a Cython-derived language
(Behnel et al., 2011) with minimum meta-specifications to imple-
ment algorithms of Crop2ML models. This language allows encoding
the model algorithm independently of any crop modelling platform
and implementation language. We also propose CyMLT, a source-to-
source transformation system. This one-to-many transpiler transforms
CyML source code into different target languages such as Fortran, C#,
C++, Java and Python. CyMLT is also able to directly generate compo-
nents to target modelling platforms such as DSSAT, BioMA, Record,
SIMPLACE and OpenAlea. Differences between platforms are not
only due to the languages used to implement models but also to the
software architectural design choices and modelling conventions. For
instance, model components in Plant Modelling Framework (PMF)
(APSIM next generation) and BioMA are written in C# in both plat-
forms but the reuse of PMF components in BioMA (and vice versa)
can only be done at the level of binaries, and, therefore, as black boxes.
CyMLT takes into account platform requirements to generate model
components that are compliant with existing platforms. Source-to-
source transformation is a well-established solution used to address
software reuse issues (Plaisted 2013; Fernique and Pradal 2017). It
transforms source code from a high-level language to another one.
However, to the best of our knowledge, no solution exists that targets
PBM component reuse using automated source-to-source transforma-
tion. In this paper we present this issue by focusing on code reuse and
reproducibility to enhance collaboration between crop modellers and
to facilitate model coding for non-programmers, while keeping the
transparency of model constructs.

Different source-to-source transformation systems are available
for different purposes, both commercial (e.g. Baxter et al. 2004) and
open source (Quan and Hui 2011). Some lessons can be learned from
these approaches. Many source-to-source transformation systems take
as input a subset of one language and transform it to a single target
language with specific transformation purposes without showing their
extensibility (Akeret et al. 2015; Bysiek et al. 2017; Misse-chanabier
et al. 2019). Few one-to-many (Plaisted 2013; Schaub and Malloy
2016) and many-to-many (Baxter et al. 2004) solutions have been pro-
posed. They usually define a subset of language features and are based
on a common intermediate representation of the languages provided
from their similarities. However, they do not consider transformation
between different programming paradigms. For instance, to our knowl-
edge, there is no system that transpiles from a procedural algorithm to
both a procedural and an object-oriented programme. To avoid los-
ing assumptions or domain knowledge such as code documentation
or variable units, a PBM source-to-source transformation should also
integrate domain-specific knowledge to generate code that is easy to
read, following developer guidelines specific to each language.

First, we present the design and implementation of CyML lan-
guage and the one-to-many transformation workflow. Then we dem-
onstrate the use of CyML and for a simple model component, which
simulates wheat shoot number and the extensibility of CyMLT to new
languages or simulation platforms. Finally, we discuss our results and

present some perspectives. This paper is not intended to provide a full
description of the language and its transformation but uses them to
demonstrate that a model algorithm can be implemented once and be
used to generate reusable and reproducible model components in dif-
ferent target languages and platforms.

2 .   M ET H O D S
2.1  Brief overview of Crop2ML

Crop2ML has been developed to offer to the crop modelling commu-
nity a common framework for crop model component development,
exchange and reuse. It provides a model component specification lan-
guage based on XML meta-language. It consists of unified concepts
and elements allowing to describe a biophysical process regardless
of the simulation platform. A Crop2ML model is an abstract model
that may be either a unit model with fine granularity or a composite
model represented as a graph of unit models connected by their inputs
and outputs to manage model complexity. Crop2ML separates model
specification from model algorithm. A model specification contains
formal descriptions of the model, the inputs, outputs, state variable
initializations, auxiliary functions and a set of parameters and unit
tests. Thus, it allows for checking that a model reproduces the expected
output values with a given precision. It supports multiple tests associ-
ated to one or multiple set of parameters’ values. However, baseline
parameter sweeps are not supported due to limited support in various
languages and unit test frameworks. The specification also contains the
algorithm written in CyML and any auxiliary functions called from the
model algorithms or in other functions. They reduce code length and,
therefore, improve readability of model algorithm by promoting reuse
and increasing abstraction. Auxiliary functions include mathematical
functions such as interpolation, and lower and upper bound functions.

All model units and composite models are then transformed into
different languages or simulation platforms to be incorporated into
modelling platforms.

The source code (https://github.com/AgriculturalModelExchange
Initiative/Crop2ML) and full documentation (https://crop2ml.
readthedocs.io/en/latest/) of Crop2ML are available on Github.

2.2  Requirements and CyML design choices
We designed the CyML language to meet the following requirements.

2.2.1 Keep compatibility with programming languages of crop simu-
lation platforms. A model can be reused if it can be separated from
its original platform and expressed using equivalent and explicit
constructs available in all supported programming languages and
platforms. Therefore, a sublanguage needs to be identified that is
minimal enough to express biophysical processes in all platforms
but expressive enough to capture the complexity of most models.
The resulting code must be removed from the technical subtleties
of the platform but it will still depend on the platform language. In
fact, most of these languages are direct descendants of the C lan-
guage from which they inherit some constructs. Thus, they provide
some similarities such as statements, the sequencing controlled
by loop and conditional constructs, and functions that foster pro-
gramme modularization (Akin 2003). This leads to the ability to

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

https://github.com/AgriculturalModelExchangeInitiative/Crop2ML
https://github.com/AgriculturalModelExchangeInitiative/Crop2ML
https://crop2ml.readthedocs.io/en/latest/
https://crop2ml.readthedocs.io/en/latest/

4  •  Midingoyi et al.

define a common language based on their common features. This
language must be chosen in such a way that all its constructs are
mapped to the constructs of the target languages, thus producing a
fully automated source-to-source transformation. It must also pro-
vide some mathematical standard functions that have their equiva-
lents in the language of the modelling platforms.

2.2.2 Link model specification and model algorithm to keep domain
knowledge. As the model specification language is separated from the
language of the algorithms in Crop2ML, it is necessary to provide and
link domain knowledge information, including the context or deci-
sions underlying the algorithm and its implementation in the language.
It is also important to reduce the coding role of modellers in the imple-
mentation of model algorithms so that they can focus on the scientific
knowledge (Brown et al. 2018). Our hypothesis is that model reuse can
be achieved if its algorithm is closely associated with its specification.
Thereby model specification can be used to generate a function signa-
ture or domain class from the description of inputs and outputs. The
specification must also allow pass through documentation within the
translated source code, but also to validate model algorithms with the
unit tests they incorporate.

2.2.3 Cover the domain of interest. The abstract language must be
sufficient to implement a biophysical process. This means that it must
include all relevant and minimal features such as data types, modular-
ity and structures to encode any model algorithm. For example, in
order to encode a model algorithm based on a set of mathematical
expressions, a simple pseudo-code described as a sequence of assign-
ment statements is suggested. Like the model specification, this lan-
guage must be modular. Model algorithms must be self-contained and
reusable within a composite model.

2.2.4 Have a gentle learning curve. An important impact of the lan-
guage is its learning curve, which must be shallow and allow modellers
to focus on the science of the model rather than on its implementation.
Thus, CyML must enable an optimal model developer experience with
a learning curve that does not intimidate new users. The algorithm

language must be expressive and enable users to write efficient source
code that is easily understandable with minimal syntax. It must also
produce readable source code within the target simulation platforms.
The translated programme must be a stand-alone programme that is
independent of the transformation system.

2.2.5 Validate correctness using unit tests. Given that CyML is built
to serve as an intermediate representation of a set of languages, its
validity is practically proved if all unit tests written in CyML succeed
in all languages after transformation. This involves testing the gener-
ated code either in a multilanguage run-time environment or in the
run-time environment of each language to ensure that the language
features are well-defined and that their emulation in other languages
is correct.

To satisfy the above requirements, we identify common patterns
often used in crop modelling simulation platforms to implement
model components. They result from the intersection of a set of mini-
mal features of different languages used by the platforms (Fig. 1, left
part). We used these features to propose a shared modelling language.
An additional design choice is to use a subset of an existing language
that can satisfy our requirements and provide the common selected
features. Python was a good candidate language to fit our design con-
siderations. It is an expressive and high-level programming language
that allows writing short source code and has a gentler learning curve
than C, C#, Java or C++ (Linge and Langtangen 2016). However,
its dynamic typing can make transformation into programming lan-
guages with static typing ambiguous. Therefore, we proposed to add
an explicit type declaration to the Python language, which led us to
choose Cython (Behnel et al. 2000). Cython is a high-level program-
ming language that combines the power of Python and C function
calling and types on variables and class attributes. It is compiled
directly in efficient C code that improves run-time speed and allows
it to interact with C, C++ and Fortran source code. However, not all
Cython syntax can be directly translated into all target languages. For
instance, the yield statement and anonymous functions are not sup-
ported by Fortran. Therefore, we defined CyML as a subset of Cython
to address the implementation of the model algorithm (Fig. 1, right

Figure 1. From the intersection of a set of languages features to a definition of an abstract language CyML, defined as a subset of
Cython. Langi corresponds to a minimal language supported by a crop simulation platform ‘i’. The number of circles (n) in the left
corresponds to the number of platforms.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

Reuse of process-based models  •  5

part). CyML does not cover some features such as class definition,
nested functions, exceptions handling, anonymous function, reading
and writing files. These features are handled by the platforms in their
programing language.

2.3  CyML language
CyML is designed as a subset of the Cython language based on a lan-
guage specialization approach. This involves removing undesirable
syntactic or/and semantic features of Cython that may not be eas-
ily transformed into many different languages or are not required to
implement PBM algorithms. The conformance to the subset of Cython
features is guaranteed through a semantic analysis. The main concepts
supported by CyML are represented in Fig. 2.

2.3.1 Declaration: basic types and collection. Unlike CyML, Cython
does not require explicit type declarations. This means that in CyML,
all variables have to be declared before they are used and the declared
type is immutable. A variable can be initialized during or after its dec-
laration. In the case of model algorithm implementation, a variable
can be either a model input, output or a local variable required for
the implementation. Explicit static typing is enforced by the seman-
tic analysis step illustrated in Fig. 2. CyML supports basic types (e.g.
integer, real, logical and string) and two sequence types (list and array)
with dynamic or fixed length. Each element of a sequence must have
the same type. Moreover, since time is an important variable in the
defintion of discrete-time process, CyML provides datetime types in
terms of year, month, day, hour, minute and second. CyML suppports
commonly used binary (numerical and boolean), unary and compari-
son operators, as well as casting operators for basic types and sequence
operators such as length or sum.

2.3.2 Statements. Statements can be either an assignment, an expres-
sion or a control structure. An assignment assigns a variable to a math-
ematical expression, another variable or a value using an assignment
operator (e.g. ‘=’). An assignment statement can, therefore, express the
relationships between model inputs–outputs when those are described
only by simple equations. An expression is commonly defined as a con-
struct made up variable, operator or function call that can be evaluated
to a value. In CyML, expression is distinguished from assignment by the
fact that, in the case of assignment construct, the evaluation result of an
expression is assigned to a variable. An expression can contain standard
mathematical functions such as exponential, maximum, minimum and
power functions. Unlike assignment, expressions have no assignment
operator. They are built-in functions called to perform an operation
(e.g. collection operations such as adding or removing an element in a
sequence). CyML supports structured control flow statements that can
be nested. Control flow statements include conditional branching (if,
elseif and else) and loops (for-in-range, for-each, iterating over several
collections and while) statement.

2.3.3 Function. CyML uses the definition of a Python function to
code the model algorithm and to represent external functions with
arguments with explicit data types. A function is composed of a set
of statements in its body grouped under a def statement with a signa-
ture consisting of the name of the function, their inputs arguments and
return values. A function may call other functions that can be provided
by an import mechanism to ensure modularity. CyML also supports
recursion which means that a function can call itself in its definition.

2.3.4 Module and package. A module is a file containing a set of func-
tions that can be reused in models and functions. A package contains a

Figure 2. Main concepts supported by the CyML language. Black diamonds indicate composition (‘contains’) relationships and
white diamonds indicate a specialization (‘is-a’).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

6  •  Midingoyi et al.

set of modules and models in a set of files. These concepts allow external
dependencies to be managed.

2.4  CyMLT design
The CyMLT architecture is composed of two main parts: the front-end
and the back-end (Fig. 3).

The front-end consists of a Model Parser, a Cython Parser, and a
Semantic Analysis component.

The Model Parser checks the model specification based on the
Crop2ML grammar and generates a logical object allowing access and
manipulation of the model.

The Cython Parser provides a lexical and syntactic analysis of the
source code. It detects syntactic errors and generates an Abstract
Syntax Tree (AST). The AST is a data structure representing the syn-
tactic structure of the source code as a tree where the nodes represent
the syntactic components (e.g. FunctionDefinition, Assignment,
If-Block…) of the grammar. Figure 4 shows an example of AST gen-
erated from a square function. The design choice of CyML relies on
the legacy Cython parser. This parser uses all the syntactic compo-
nents of Cython instead of a restricted grammar. To restrict Cython
grammar, the generated Cython AST is processed to ensure that it
incorporates only syntactic components defined in CyML.

Figure 3. Design architecture of the one-to-many CyML transformer (CyMLT). It takes as input a model unit algorithm
implemented in CyML with associated model specifications and applies a transformation workflow to produce crop model
components or source code in different languages for different platforms.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

Reuse of process-based models  •  7

The AST Transformation transforms the generated AST to a self-
contained representation of the source code called Abstract Semantic
Graph (ASG), which is independent of the source language.

The Semantic Analysis operates during the AST transformation to
perform semantic checks from the AST. It consists of various checks
such as type consistency, declaration of variables before their use or
consistency of elements in a list. This analysis checks that the input and
output data types in model specifications are well-defined in relation

to the model algorithm. The semantic analysis generates error mes-
sages if the verification fails. Note that, unlike the AST, each node of
the ASG is labelled with at least its type and its pseudo-type (Fig. 4C).
The pseudo-type is the expected type of a node and strengthens code
generation reducing the number of ASG traversals. For example, in
Fig. 4C a node of type ‘Function’ follows ‘Module node’ and has a
pseudo-type [‘Function’, ‘int’, ‘int’]. This pseudo-type corresponds to
the function signature, meaning that this function takes as input one
argument of type ‘int’ and returns one value of type ‘int’. Note also that,
unlike the AST, the type of internal nodes of the ASG may be different
from non-terminal symbols of the grammar. Another type of node is
built that preserves the intention in the source code instead of the code
structure. For example, in Fig. 4B the binary operator node ‘PowNode’
is transformed in Fig. 4C by a ‘standard call’ node, which takes as argu-
ments the operands of the binary operation.

The back-end of CyMLT is responsible for Code Generation
(Fig. 3). It is independent of the front-end. It takes as input the ASG
generated by the front-end and works in relation with the Doc and
Interface Generation and Transformation Rules components.

The Code Generation component transforms the annotated ASG into
different readable source code or platform components. It consists of
two integrated subcomponents: a Language Generation and a Platform
Generation. A Language Generation emits the source code in a specific
language with a specific programming paradigm. This source code does
not contain any simulation platform features. A Platform Generation
emits a model component based on the requirements of a platform such
as its implementation language, software design and code conventions.

A Transformation Rule is a function that takes as input a node of
the ASG and generates a new node based on a specific structure of the
target language. Transformation Rules are applied on the ASG for Code
Generation. The code generation is generally described by straightfor-
ward transformations of the ASG. However, some nodes of the ASG
require non-trivial transformations to produce new nodes. For exam-
ple, the transformation of the declaration node in Fig. 4C consists of
replacing the basic type int by the Java basic type integer without the
cdef statement to reproduce Java integer variable declaration, whereas
the generation of the power call function requires applying a casting
function (int) to preserve type compatibility.

The Doc and Interface Generation component generates documen-
tation in the target language from the model specification. It embeds
all the semantics of model inputs and outputs, and then integrates the
model knowledge in the code generated.

Finally, the Notebook Generator transforms generated source code
or model components into Jupyter notebook (Kluyver et al. 2016) to
interactively test and validate the transformation.

2.5  CyMLT implementation
CyMLT proposes a unique approach to transform an ASG into
many programming languages. It is implemented around the main
classes shown in Fig. 5. A set of classes (suffixed by Generator)
generates the code for each language and platform. It means that
a subclass of PlatformGenerator and of LanguageGenerator class
have been implemented for each supported platform and lan-
guage. A PlatformGenerator class inherits attributes and properties

Figure 4. Example of AST and ASG. (A) Definition of function
‘square’ in CyML. (B) Simplified view of AST of function ‘square’
where the internal nodes in black represent Cython constructs
and the final node in blue a variable or constant. (C) Simplified
view of ASG with of function ‘square’ with the new annotated
nodes. The leaf nodes in black are non-terminal symbols of the
Cython grammar, whereas the end blue nodes are terminal
symbols, essentially variables and constants. A child node (c) can
be accessed from its parent node (p) through an attribute (𝑝 𝑐).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

8  •  Midingoyi et al.

of the LanguageGenerator class related to the language used by
the platform. For example, as BioMA uses the C# language, the
BioMAGenerator class (i.e. the class that generates BioMA compo-
nents) inherits the CsharpGenerator class that generates the source
code in C#. Each class contains a visitor method for each ASG node
type. Each visitor method name is composed of ‘visit_’ followed by
‘the type of the node’. A visitor method emits code fragments. Each
LanguageGenerator subclasses provide the same visitor method
names given that the same ASG is used. A LanguageGenerator class
also inherits two classes: CodeGenerator and LanguageRule. The
CodeGenerator class contains the factorized methods shared by
all LanguageGenerator classes including the method used for code
emitting and code formatting. This class inherits the super class
of the transformation process called NodeVisitor. CyMLT imple-
ments the Visitor design pattern (Gamma et al. 1995) to avoid a
procedural implementation approach. NodeVisitor contains a dis-
patch method that enables recursive traversal through the nodes.
During traversal, the appropriate visitor method corresponding
to the type of the current node is called in LanguageGenerator or

PlatformGenerator and the associated code fragment is emitted.
Before emitting the code fragment, some nodes undergo a trans-
formation from the LanguageRule class. This class is implemented
for each language as a mapping where keys correspond to the dif-
ferent methods, data types and operators of CyML, and values are
their emulation in target languages provided from their standard
libraries [see Supporting Information—Tables S1–S5]. Given
that the CyML language is similar to Python, it is straightforward
to yield Python code through one ASG traversal. This is not the
case for all target languages, which require more traversals to sup-
port specific features provided from the analysis of the ASG. For
example, a first traversal could detect that it is necessary to declare
other variables in the generated code. These additional opera-
tions have been implemented in the Adapter class containing some
methods to traverse the ASG and, where the conditions have been
defined, to retrieve the new features required in LanguageGenerator.
Likewise, the Model object generated by the model parser is used
in LanguageGenerator to generate the model interface with acces-
sor and mutator methods for object-oriented languages, or to add

Figure 5. Class diagram illustrating the implementation of the one-to-many CyML transformer (CyMLT).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data

Reuse of process-based models  •  9

additional semantics to variables based on platform conventions.
This separation of model specification from model algorithm
enhances CyMLT to transform a model algorithm from a proce-
dural approach to an object-oriented approach with different soft-
ware designs. Finally, LanguageGenerator and PlatformGenerator
use DocGenerator to integrate model documentation into generated
model components. DocGenerator extracts all information based on
model specification and presents it in different format according to
the language and the platform.

2.6  Case study
Phenology, the timing of crop development and the simulation of
phase durations and crop stages, is sometimes thought of as the core
for most crop growth PBMs and an essential component of most crop
modelling platforms. In order to illustrate how a model is written in
CyML and the functionalities of the language, we transformed the
BioMA phenology component (Manceau and Martre 2018) of the
wheat PBM SiriusQuality (He et al. 2012) into a Crop2ML compos-
ite model and wrote the algorithms of the model in CyML. The shoot-
number, a model unit of this component, is presented in Supporting
Information—Listing S1.

3 .   R E S U LT S
3.1  Model algorithm implemented in CyML

The shootnumber model is implemented in CyML as a function that
includes all the meta information provided by the model specifications
[see Supporting Information—Listing S2]. The model documenta-
tion is generated from the model specification and is shown in red. It
contains the name of the model, its version, its time step (in days) and
other descriptions such as the authors’ names and the reference for
the model.

The algorithm shootnumber unit model requires an external
function, Fibonacci, which is implemented outside of the model
algorithm (see Supporting Information—Listing S2, Line 35) to
make the code readable and shorter. This mathematical func-
tion allows to compute the shoot production from the number of
emerged leaves on shoots (see Supporting Information—Listing
S2, Line 22). We implement the code using conditional (if, Line
26) and loop (for, Line 29) control structures. Table 1 gives the

meaning of CyML language built-in functions that are used to
implement the shoot number model.

3.2  Transformation of CyML source code to
different languages and platforms

Currently, CyMLT supports Python, Java, C#, C++ and Fortran lan-
guages. It also has the capability of generating a model algorithm in
conformance with crop simulation platform requirements. Therefore,
it handles different programming paradigms such as procedural, func-
tional and object-oriented programming by associating model specifi-
cations to the transformation workflow.

3.2.1 Structure of generated source code. Although CyML provides
a procedural mechanism to implement model algorithm, the pro-
gramming languages supported by CyMLT can be classified in
procedural and object-oriented programming paradigms. Some
languages are designed to support only the object-oriented para-
digm (C# and Java). Fortran and C are procedural languages even
though they can ‘mimic’ some object-oriented features to support
object-oriented programming style (Cary et al. 1997). Python
and C++ support both object-oriented and procedural paradigms.
CyMLT uses procedural paradigm for Python and object-oriented
for C++, as these are the most often used approaches in these lan-
guages. However, CyMLT can also be extended to generate models
in Python with an object-oriented approach and in C++ with a pro-
cedural approach.

For the C++, C# and Java languages, a model algorithm imple-
mented in CyML is transformed into a class (Listing 1) that encap-
sulates both the algorithm and the scientific knowledge related to the
model through the integrated documentation. A class, in software
engineering terms, is a data structure defining a set of common prop-
erties and methods of an object. The generated source code contains

Table 1.  Example of built-in functions within CyML language
and their meaning.

Function Description

max Largest item in a sequence
min Smallest item in a sequence
ceil Smallest integer greater than or equal to the parameter
append Add an element at the end of a dynamic array (list)
len Number of elements in a sequence (array or list)
range Generate a list of integers from a start value to a stop

value with a step
integer Update the actual state variable from its previous value

and the rate Listing 1. Structure of generated source code in Java, C#,
Fortran and C++.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data

10  •  Midingoyi et al.

methods to access and mutate model inputs and outputs, a constructor
method to create and initialize an instance of the model (object) and
a calculation method encapsulating the procedural logic of the model
algorithm. First, variables are used to access model input (Listing 2)
values before transforming the set of instructions of the model algo-
rithm into the new language. Then, mutator methods are applied to
update the model outputs (Listing 3). Model inputs and outputs are
used to build a class of objects passed in argument of the calculation
method. External functions are transformed into static methods of the
model class (Listing 1).

The current version of CyMLT supports Fortran 90. This Fortran
version presents low-level features (pointers, allocation), which
makes some transformations difficult but ensures a higher portabil-
ity. In Fortran, model algorithm corresponds to a subroutine, whereas
external functions are subroutines, functions or recursive functions.
CyMLT automatically operates this choice. In our case study, the
Fibonacci function is transformed in a recursive function, which keeps
the structure of the original code. In Python, the generated source
code has the same structure as the CyML function. However, CyMLT
can also generate Python code with an object-oriented approach.

3.2.2 Data type and variable declaration. In addition to the program-
ming paradigms, languages supported by CyMLT can be classified
by their type system, in particular their type expression (explicit or
implicit). This can affect the quality of the generated code. Although
some languages (e.g. C# and C++) allow both implicit and explicit
type expression, we chose to provide explicit typing. Basic types (inte-
ger, logical, character and real) are built-in data types in all languages.
However, other more complex types like datetime or sequence are sup-
ported but require external or standard libraries. Moreover, various
libraries exist to handle the same data structure. CyMLT’s data types
map appropriately to target languages by using their standard library
[see Supporting Information—Table S1].

Some compromises have been made for the transformation of
complex types. CyML arrays are modelled on a standard Python
list. However, the size of list data type variables is not fixed. We
propose to use the Numpy array in the next version of CyMLT. In

Fortran, CyMLT generates allocable arrays to map to CyML list
data types and provides some functions to handle it. These func-
tions are extracted from CyMLT library and integrated into the
generated code to make it independent of the library of transfor-
mation. In C++, datetime type handling is not easy. It is converted
into a string, which could be split for processing. CyML arrays with-
out a specified size in the function parameter are mapped to C++
arrays using templates (Listing 6, Line 1). In Java, there are many
standard Time APIs (e.g. Date, LocalDateTime) depending on the
version of Java. We have chosen to use the Date Library in Java and
the DateTime Library in C#.

3.2.3 Type and intent preservation. Most of the target languages
provide built-in methods matching with CyML built-in functions.
However, there may be some differences between their name or return
types. This is considered in the generated source code. As an exam-
ple, consider the statement at Listing 2 on Line 29, where the purpose
is to find the smaller integer value that is larger than or equal to the
leaf number. The method ceil in the C++ Math library corresponds to
the CyML ceil function but returns a floating-point value. In this case,
CyMLT preserves the original type (integer) by applying an explicit
type conversion (Listing 4, Line 1).

The generated code preserves the intent of the original code pro-
vided by the information on the ASG. Listing 5 illustrates this intent
preservation in the transformation of CyML For-loop construct
(Listing 4, Line 1) where the consecutive iteration is expressed into
an efficient way of representation in Fortran with the DO sequence
(Listing 5, Line 1). However, the sequence indexing is different
between CyML and Fortran. The last parameter of the CyML range
function is not contained in the CyML sequence unlike the Fortran
DO sequence. This is managed by subtracting this parameter by 1 in
the generated code, thereby providing a same length of sequence.
Likewise, arrays in Fortran are indexed from 1 by default and this is
considered during the transformation of all array operations.

3.2.4 Preservation of the scope of variables. CyMLT considers the
scope of the variables in the different target languages. The scope of
a variable refers to a region of the code where the variable is visible.
Some languages like Java, C++ and C# manage variable scope differ-
ently and this variability is handled by CyML.

Consider the transformation of a simple CyML function that calcu-
lates the sum of elements of an array x with undefined size (Listing 6).

Listing 2. Access input variables (in Java), s and s1 correspond
to two instances of the class of state variables to manage
previous and current state. CyMLT generates variables to
access the fields of these instances and uses them in the
procedural logic.

Listing 3. Update output variables in Java. s corresponds to an
instance of current state variable.

Listing 4. Type preservation in CyML transformation to C++,
int casting is applied to the result returned by ceil function.

Listing 5. From CyML for-loop to Fortran do-loop. The
subroutine Add is generated to expand leaf tiller number array.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data

Reuse of process-based models  •  11

The generated code in Fortran requires the declaration of new variable
i_cyml to map the For-loop construct. However, the generation of a
new variable in Java, C++ and C# preserves the scope of the variable
i. The scope of the iteration index on an array variable in a For-loop
construct is limited to the loop scope, whereas it is extended to all the
functions in CyML and Python. Assuming that in the original code
this iteration index is reused after the loop, it will generate a compila-
tion error in the target languages if the transformation did not handle
this scoping issue by declaring another variable.

3.2.5 Transformation to simulation platforms. The transformation
of a CyML code to target languages can generate a model compo-
nent in different ways. These transformations have been designed
to be close to the philosophy of each target language. However,
from the perspective of crop model component development, high-
level programming languages are the lowest level of abstraction

with respect to simulation platforms and frameworks. Additional
constraints in crop modelling platforms include a specific program-
ming paradigm, software design and code conventions. These dif-
ferent features give them capabilities to provide code introspection
and reflection support, which allows them to dynamically extract
and change information or knowledge about the code at runtime.
Thus, the code generation should extend language code genera-
tion by considering platform coding constraints, which are often
implicit. The design of programming languages is formalized using
grammars and is unambiguous. Platforms use design and architec-
tural patterns without the use of an explicit formalism. This implies
adapting the transformation to each platform taking into account
their specificities. The current version of CyMLT generates model
components compatible with BioMA, DSSAT, Record, OpenAlea
and Simplace platforms, which support C#, Fortran, C++, Python
and Java, respectively.

Listing 6. CyML code of a function that computes the sum of the elements of a list transformed using CyMLT in Python, C++, C#,
Java and Fortran.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

12  •  Midingoyi et al.

3.2.6 Generation of object-oriented components. An object-oriented
platform provides features such as inheritance, polymorphism and
software design used to implement models. Polymorphism allows
a model programmer to provide a generic interface to a number
of related functions, and, thus, to propose different strategies to
implement a model with different assumptions. For instance, this
provides the possibility to include new physiological processes that
are shared among different crop types. For this, object-oriented
platforms define an abstract class that specifies the interface of all
model components, which implements all the abstract methods
of the abstract class. Two different approaches are used for model
components to inherit an abstract class. Some platforms offer an
abstract class and all model components implement and extend
this class. This is the case for Simplace and Record, which provide
the FWSimComponent (Listing 7) and DiscreteTimeDyn interface,
respectively. Another approach followed by platforms is compo-
nent-based programming. A model developer creates a component
that inherits of an interface provided by the platform. Thus, model
components inherit this component interface. For example, BioMA
provides the IStrategy interface. The current version of CyMLT
generates a component interface in addition to the generation of
model components. The abstract methods depend on the platform
and include a method that encapsulates the algorithm of the model.

3.2.7 Generation of stateless and stateful unit models. A model algo-
rithm is implemented in CyML as a function. However, the CyMLT
generates both a stateless and a stateful component. A stateless com-
ponent is an immutable object whose values of fields do not change

if methods are invoked. CyMLT allows searching and extracting state
variables from a model specification to perform code generation
according to each platform.

In DSSAT and OpenAlea, a model algorithm is implemented
as a stateless functional component (declarative paradigm). The
Fortran code generated by CyMLT is compatible with DSSAT. In
this platform, the calculation of rates of change and the integration
of state processes are sometimes separated with the use of a control
variable. In CyML, we introduce two variables that define the pre-
vious and current value of a state variable that avoids a misuse of
the state variable. Although OpenAlea offers capabilities to benefit
of oriented-object features of Python, OpenAlea components can
be defined as pure Python functions, already generated by CyMLT.
However, model specifications need to be transformed into an
OpenAlea component specification for unit and composite node
(Pradal et al. 2008).

BioMA uses the strategy design pattern to create a library of simple
strategies (equivalent to Crop2ML unit models) and composite strate-
gies for model composition. The simple strategy leads to the imple-
mentation of a model unit as a stateless component. Thus, an instance
of model unit class is a stateless object since it contains only model
parameters (if any) as attributes which do not change during the simu-
lation. The method of computation is comparable to a function that
takes an object as an argument (i.e. higher-order function). Concretely,
these objects are instances of domain classes. Domain class contains
the values and the attributes for all variables defined in model specifica-
tions. To handle the change of state variables, the method of computa-
tion of each class takes as arguments two instances of state variables
domain class reproduced by CyMLT (Listing 8), one for the current
value and the other one for the previous one. This is made possible by
the fact that the previous state is emulated in the CyML function with
variable suffixed with ‘_t1’.

Finally, in Record and Simplace, unlike BioMA, a model unit
class contains all state variables. In Simplace, there is no convention
to distinguish previous and current state variables. Thus, CyMLT con-
siders them as distinct fields in the generated Simplace component.
The Record platform handles variable history (time series) by suffix-
ing state variable with an operator () in the code. Thus, in this case,

Listing 7. Structure of ShootNumber component in Simplace.
A model unit in Simplace implements and extends an abstract
class called FWSimComponent. Then, a model component
overrides its abstract methods including init (model
initialization), clone (deep clone of the model) and process
(model algorithm). The structure of the abstract class is used
to define a model skeleton in CyMLT to generate a model
conforms to platform requirement.

Listing 8. Fragments of code in C# with BioMA guidelines
generated with CyMLT. s1 is an instance of state domain class
used for previous time, s is an instance of state domain class used
for current time. This shows that leaf number has been calculated
by another model at the current time step, whereas the other
variables are those calculated at the previous time step.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

Reuse of process-based models  •  13

CyMLT generates current state variables with the suffix () and previ-
ous state variables with (-1).

3.2.8 Generation of platform-specific types and data structures.
Some platforms define their own types by providing a generic class to
handle model variables and parameters. A generic class is either a class
or an interface that can be parameterized over the language data types.
It contains a specific number of methods including methods to access
or update variables. In this case, CyML data types map the framework
generic types.

Unlike BioMA, where inputs and outputs are C# data types
extended with the generation of accessors and mutators, Simplace and
Record provide their own class or interface to declare model inputs and
outputs. To generate a Simplace component, the process of transfor-
mation consists of declaring model variables with the specialized class
FWSimVariable. Then, CyMLT generates other variables declared with
Java data types, which are used to access values of the FWSimVariable
instances (Listing 9). This allows expressing the model algorithm with
a pure Java but requires the use of a mutator method of the generic
class to update output (Listing 10). Likewise, the generated Record
component implements the DiscreteTimeDyn class provided by the vle
package of Record to encode discrete-time models algorithms.

3.3  Extensibility
The number of languages and platforms that CyMLT supports can
be extended due to its modular structure. The explicit separation
between the production of the annotated ASG and its transforma-
tion into a readable source code of the target languages and plat-
forms provides a great flexibility to add new target languages. The
addition of a new language requires only a mapping of this interme-
diate representation into a set of compatible instructions based on
the standard library of the language. The generated code must be
independent of the transformer, clear and easy to read while pre-
serving the knowledge expressed in the original code. We present
the steps for the extension of CYMLT with R language (R Core
Team 2017) and the PMF.

3.3.1 Supporting a new language: R. R is a popular language used
for statistical analyses and data visualization. Many modellers use R to
start the development of their model (Zhao et al. 2019). Thus, with
this extension, modellers can in the same environment conduct the

first steps for model development and the implementation in a simula-
tion platform, and analyse model outputs. The extension of CyMLT for
R relies on the implementation of RGenerator and RRules classes that
emit fragments of code in R and define transformation rules between
CyML and the desired R constructs, respectively.

3.3.2 Implementation of transformation rules for R. Transformation
rules define the mapping of CyML operators, built-in functions and
methods to their equivalent in R. R is a dynamic typed language and,
as with Python, the type of variables is ignored.
Operators mapping. Listing 11 declares the mapping between CyML
and R operators. Only the difference operators are shown between
CyML and R. During the ASG traversal, the visit method considers
these mappings to emit code fragments.
Adapting standard functions. CyML defines three standard libraries (i.e.
math, system and io) to provide mathematical, system and file man-
agement functions in the different languages. A mapping is needed to
link these functions to native R ones for each library. Some functions
are identical between CyML and R, like min or max. Others require a
transformation to another type of node. It is useful for model develop-
ers to observe the generated ASG of each CyML construct in order to
define the equivalent of the construct. For example, the construct of a
modulo binary operation in CyML is a standard_call node in the ASG
whose namespace is system, the function is modulo and the arguments
are the two operands. This node is transformed into a binary_op node
(binary operation) with the function ‘translateModulo’ (Listing 12).
The new node is visited to produce R fragment code.
Standard methods mapping. Standard methods are functions applied
to a particular data type of CyML language (Listing 13). Thus, a set
of methods is provided for each CyML data type. Their equivalents in
R language are defined using the same mapping mechanism used for
standard functions. In Listing 13 at Line 9 the append method applied
to a list is transformed to an assignment node whose value is a function
c that takes as arguments the name of the variable of type list (receiver)
and the argument of the append method (args). The definition of these
rules limits the use of conditional statements in the implementation of
the visit methods and facilitates the extension of CyMLT.

3.3.3 Implementation of a R code generator. The RGenerator class
inherits the RRules class. It implements a family of visit methods like
visit_assignment, visit_bool related to all types of nodes provided by
the ASG. These methods emit fragments of code, which will be joined
to produce a formatted source code in R. The properties that enable
write and format functions for these fragments are implemented in

Listing 10. Update of the variables of the shootnumber unit
model generated by CyMLT following Simplace specifications. Listing 11. Operators mapping.

Listing 9. Generation of other variables to access Simplace
component variables. These variables are prefixed by t.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

14  •  Midingoyi et al.

a class named CodeGenerator inherited by RGenerator. Additionally,
CodeGenerator abstracts the common behaviour of these languages
by providing other properties and visit methods common to all the
target languages. Some methods are redefined in the language gen-
erator when it has particular features. The developer of the R code
generator implemented the different visit methods without bother-
ing with the dispatching mechanism provided by the NodeVisitor
class. A visit() method is called for all composite child nodes while
a write() method is invoked for the terminal or single node to emit
the code fragment. For example, a boolean value is a terminal node.
Thus, the visit_bool method allowing generation of the correspond-
ing boolean value in R will only consist in uppercase CyML logical
value (Listing 14).

The assignment node is a composite node that contains a tar-
get node and a value node. These two nodes could be a composite
node. So, they will all be visited by the visit_assignment() method
(Listing 15).

All target language generators share the principle of implement-
ing a visitor method for standard functions or standard methods call
nodes, and, it is, therefore, implemented in the CodeGenerator class.
The properties of the node are used to access to the function equiva-
lent in the dictionary of functions in the transformation rules class.

Listing 16 shows the implementation of the standard function call
node where its properties such as namespace and function are used to
access the equivalent function.

This implementation approach is followed for all types of nodes
and could be gradually done according to the expected R constructs.
Given that it has several possibilities to implement an algorithm, it
is the responsibility of the extension developer to provide the corre-
sponding semantic for each particular node of the ASG and to validate
the transformation with unit tests.

3.3.4 Supporting a new simulation platform: APSIM-PMF.
APSIM (Holzworth et al. 2014a) is one of the most widely used
PBM platforms for simulating the performance of a wide range of
cropping systems. It has undergone a major evolution by providing
the PMF (Brown et al. 2014). Plant Modelling Framework is used to
build models that represent plant components of a crop composed
by identical plants. It is based on the structure of a generic plant
and a wide range of processes involved in plant growth and devel-
opment. However, the composition and parameterization to build a
particular crop model is not specified and is left to model develop-
ers. Plant Modelling Framework, therefore, allows great flexibility
in its approach for implementing biophysical processes by separat-
ing model set-up and assembly. The PMF concepts and processes
are implemented as generic classes at different organizational levels
(Brown et al. 2014).

 The extension of CyMLT to PMF consists in adding the capacity
to generate a model component in C# that fulfils PMF requirements.
The developer implements a PMF generator class that extends the C#
generator class. This class contains some PMF requirements: (i) the
generated model component is a C# class that inherits the Model class,
and (ii) it contains the getter and setter methods of all model variables
and parameters with the algorithm implemented in C#.

Listing 13. Standard methods mapping.

Listing 12. Standard functions mapping.

Listing 14. Implementation of logical value transformation.

Listing 15. Implementation of assignment transformation.

Listing 16. Implementation of standard function call.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

Reuse of process-based models  •  15

4 .   D I S C U S S I O N
The CyML language provides a relatively simple structure with few spec-
ifications that can express the algorithm of a biophysical process involved
in crop growth and development. The real interest of this language is to
provide a common method to describe a process with the capacity to be
integrated automatically in various platforms. CyMLT provides export
capabilities in many languages and platforms, enabling users to focus on
the scientific aspect of their model rather than on the internal knowledge
of platforms’ specificities. A model component can be reused, improved,
integrated and simulated in various platforms. This improves the dif-
fusion of models, sharing them as a software and scientific artefacts,
and thus, enhancing transparency and reproducibility of crop models.
Moreover, with CyML, the model development may become a collabo-
rative task of different groups of model builders with the possibility to
compose different model units provided by different platforms.

For crop modellers, learning a new language with its own learn-
ing curve adds a level of complexity to an existing complex landscape
of languages and tools. We designed CyML to minimize this added
complexity by choosing a language that is very close to existing lan-
guages. The main source of complexity is in the model specification.
The modeller has to specify the type of inputs and outputs, the docu-
mentation and unit tests. While this increases the complexity of the
design of a new model, it provides an explicit and rigorous specifica-
tion and enhances the transparency of the model and its reproduc-
ibility and reusability in different contexts. A transformation system
embeds platform specificities to automatically generate model com-
ponents conform to specific platforms. This makes the complexity of
component integration in different platforms identical with a wide
availability.

Several approaches and solutions exist to transform source code
from one language to many higher-level programming languages
(Baxter et al. 2004; Plaisted 2013; Schaub and Malloy 2016). They
demonstrate the usefulness of source-to-source transformation sys-
tems in the development of reusable software libraries. For instance,
Nunnari and Heloir (2018) allow for the implementation of motion
controllers of virtual humans, which are reused in multiple game
engines. Their system is based on Haxe, a language that offers the
capability to transform Haxe code into many programming languages.
However, like most available code transformation systems, the gener-
ated code depends on the transformation system. Likewise, Cython
generates code into the C and C++ languages that have a high perfor-
mance but the generated code has a low readability, therefore, making it
difficult to understand and to maintain. To our knowledge, no solution
exists to transform PBM algorithms in different languages considering
the specificities of different modelling platforms. This transformation
is useful in the sense that model components are not just code but
embed scientific knowledge that should be preserved. In this work,
we also propose a system that includes algorithm error checking with
explicit error messages to guide developers. CyML addresses several
issues encountered in current PBM frameworks, namely:

- � reproducibility: a crop model or algorithm can be written once
and automatically made available in different languages and
platforms;

- � reusability: a model can be reused and composed with other
models of a specific platform;

- � transparency: model algorithms are implemented using
a common approach regardless of the crop simulation
platform, and maintain the biophysical process knowledge.

Our approach and strategy should greatly reduce the implementation
errors and improve model reproducibility. However, neither the defini-
tion of a language nor its transformation is approached without certain
constraints, essentially due to the trade-offs between generality and
abstraction.

4.1  CyML transformation challenges
We provide a new language with a transformation system to produce
code correctness. However, some inconsistencies or complexities
could appear depending on the target language. First, the current ver-
sion of CyML does not handle the type overflow. It means that errors
related to overflow could not be detected at the CyML system level.
For example, the generation of the Fibonacci recursive function in
Python by just removing declaration types could lead to the crash of
the system due to the Python recursion limit, whereas the generated
code will not produce any error in Java but the result will rapidly over-
flow. A method to detect overflow can be implemented to avoid this
type of error at run-time level. Moreover, CyML can be extended to
support 64-bit C double type. Second, CyML provides primitive types
whose equivalence in some platforms are objects with some proper-
ties. This means that coding an existing model algorithm in CyML
could require an additional CyML external function to emulate the
properties of these objects. Third, CyML has some limitations with
data type conversion. For example, Datetime type is not supported in
Fortran or C++. In this case, CyML converts it into strings. However,
the translator could be extended to depend on specific libraries used
by simulation platforms to perform the transformation. Finally, some
platforms are close to the philosophy of their underlying language (e.g.
DSSAT, BioMA, OpenAlea), whereas others extend their language
with a high-level specificity (Record, Simplace) that requires a com-
plex transformation.

4.2  Lower the barrier of crop simulation platforms
The main barrier to exchange and reuse of model components between
simulation platforms is the specificities embedded in the algorithm
implementation. CyML intends to lower the barrier of platform spe-
cificities. Our analysis of several platforms showed that each platform
adopts a standard to implement model algorithms that does not vary
from one implementation to another. The knowledge of platform
requirements offers the possibility to integrate them into CyMLT in
order to make their components available to many modelling plat-
forms. We did not conduct a performance analysis but the cost of
implementation is reduced by an order of magnitude compared to the
time used to manually re-encode the same model into each platform
without considering the inherent errors added during the process.
CyML supports not only the transformation of the algorithm of unit
models, but it also provides the evaluation of composite models by
calling in sequential order models that are encapsulated into it. It also

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

16  •  Midingoyi et al.

proposes a way to produce unit tests for each unit model algorithm in
different languages based on the specifications of the inputs, outputs
and parameter values. It checks the validity of the generated source
code ensuring that all transformation results give the same results. It
should be noted that CyML adds unit test functionality to platforms
that do not use test-driven development.

4.3  CyML for model reuse and reproducibility
CyML implements PBM components with a functional and procedural
approach. A component describing a biophysical process (e.g. phenol-
ogy, soil water balance, photosynthesis) can be decomposed into inde-
pendent components, which can be implemented and composed in
CyML. Components implemented at a high granularity embed more
scientific knowledge, but the component becomes less reusable. The
implementation of a component into small functions (unit models)
enhances its readability, reduces the distance between its expression
as equations or mathematical expressions and its implementation, and
reduces its maintenance cost. CyML is designed to tackle the repro-
ducibility of PBM components. Although PBMs are described in sci-
entific publications and their code are increasingly publicly accessible,
the reproducibility of the results remains a fundamental issue. Their
implementation requires a procedural or functional language that is
shared between simulation platforms to ensure their reproducibility. It
is, therefore, useful to propose code in the language and that follow the
specifications of the target platforms. The automatic transformation of
model algorithms into different languages and simulation platforms is
essential for interoperability and code reuse. CyML users can imple-
ment a model in CyML and transform the algorithms into various
targets by using CyMLT. Hence, CyML aims at promoting PBM reusa-
bility and interoperability through a transformation system that parses
model specifications and knowledge needed to transform algorithms.

4.4  Scope of CyML language
CyML is a subset of the Cython language. Thus, it does not include
many features found in general-purpose programming languages.
This choice of language limitation has its strengths and weak-
nesses. The method presented herein differs from existing model
interchange platforms in that it generates source code with differ-
ent programming paradigms and it associates model specifications
to algorithms to enhance code analysis. It allows a common imple-
mentation of the dynamics of biophysical processes by removing the
specificities of the languages and platforms. It improves the read-
ability of the code since the structure of the code and the charac-
teristics of languages are shared by modelling platforms. It ensures
the mapping of the abstract representation to other languages or
platforms. Indeed, this language limitation reduces ambiguity in the
language transformation since the base language (Cython) has some
features that cannot be transformed into some target languages.
With CyML, different processes provided by different platforms can
be represented and composed regardless of the platforms, which
enables to define a new white-box component reusable by other
platforms. CyMLT provides a reuse approach that is opposite to a
black-box approach where the composition of model components is
bound to the execution platform targeted by its modules (Van Evert
et al. 2005).

CyML does not interact with the simulation paradigms of the plat-
forms. Its sole concern is to represent and transform the process mod-
els. Its evaluation capabilities are only used to check the correctness of
the transformation. Moreover, CyML does not provide a formalism to
link model components with data to build a modelling solution. Thus,
the processes to read inputs, parameter values and write output values
in a file are separated from the algorithm implementation given that it
reduces reusability.

Although CyML focuses on the implementation and reuse of bio-
physical models, it could be used in general purpose. Thus, any code
that can be implemented with CyML features can be transformed into
different languages without associating specifications files.

4.5  Towards a standard language
The development of CyML and its transformation system addresses
the need of the plant and crop modelling community to enhance
research collaboration by improving the capacity to exchange and
reuse PBM components. The theoretical interest to provide a com-
mon approach to implement model response has been demonstrated
(Holzworth et al. 2014b). However, despite the success of simulation
platforms around which different communities are built, and some
proposal of declarative language implementation, the lack of a shared
standard limits model reusability. This issue limits the performance of
the activity of PBM intercomparison and improvement. The availabil-
ity of CyMLT through AMEI will allow building a large community
around this system and can make CyML a standard language providing
a means to seamlessly compare independent biophysical processes or
promote alternatives approaches.

4.6  Future developments
Several modellers have expressed their interest to extend CyMLT with
other languages used by the plant and crop modelling community. The
use of a well-annotated ASG with model specifications provides an
intuitive representation of the model algorithms. This abstraction set
up various analysis of the source code by generating different source
code based on the target language features, software design and code
conventions. With this flexibility offered by the ASG, future work can
explore the extension of CyMLT with other imperative programming
languages such as Matlab, Julia, JavaScript or other modelling plat-
forms that use imperative languages.

Reuse of legacy PBM model components without the need to
encode them into CyML could reduce the investment in model
exchange and could increase the interest of the platforms. Therefore,
the next step would be to provide a transpiler that transforms legacy
model components from various languages and simulation platforms
into CyML code automatically. Such a many-to-many transformer
would provide a complete system of interoperability of languages and
simulation platforms.

CyMLT aims to enable the exchange and reuse of components
between modelling platforms, notably between PBM and functional-
structural plant modelling (FSPM) platforms. While crop growth
models simulate plant growth and development at the scale of the
canopy (m2) or average plant level, FSPMs are individual-based mod-
els at the scale of the organ. The exchange (sharing) of model com-
ponents between PBM and FSPMs would allow an efficient coupling

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

Reuse of process-based models  •  17

of these two modelling approaches to model crop species or variety
mixtures by capturing spatial heterogeneities and quantifying plant
traits involved in crop mixture performance (Gaudio et al. 2019).
Another application is the use of FSPMs in a model-driven phenotyp-
ing approach, where plant structural traits are estimated by reverse
engineering a FSPM (Liu et al. 2019) and are then used as crop model
input parameters to simulate the behaviour of genotypes in target agro-
climatic scenarios. Currently, CyML only allows for the representation
of processes as functions and does not consider the plant’s structure.
To extend CyML to the FSPM community will require to extend
CyML language and CyMLT to support complex data structures such
as 3D geometry and topology.

The convergence of our approach of model reuse and reproduc-
ibility approach with other collaborations, like the Crops in Silico
collaboration (Marshall-Colon et al. 2017), would greatly acceler-
ate the development of the next generation of PBMs. The Crops in
Silico collaboration aims at integrating model frameworks to build a
complete crop in silico from the level of the genes to the level of the
field or ecosystem using a software package, Yggdrasil (Lang 2019).
Yggdrasil connects PBMs across programming languages by running
asynchronously models in parallel. It requires to write wrappers
in the different languages to process the asynchronous messages
to manage model inputs and outputs. CyMLT may interact with
Yggdrasil (i) to make available model components into the lan-
guages supported by Yggdrasil with their wrappers; (ii) to produce
efficient components source code in various languages in order to
improve the performance of the simulation in Yggdrasil; and (iii) by
validating each component with unit tests before their integration.
The interaction between CyML and Yggdrasil could enhance the
integration of PBMs across different languages and scales. A com-
plementary approach to the one presented here was demonstrated
for the automated transformation of input files of four agricultural
models (Samourkasidis and Athanasiadis 2020) enabling the dis-
covery and reuse of data across modelling solutions. Together with
AMEI they could ensure that a complete model implementation and
accompanied data can be transformed between modelling solutions.

5 .   C O N C LU S I O N S
In this study, we defined a minimal language based on the Cython lan-
guage to implement biophysical processes involved in plant and crop
growth and development. We designed a system that transforms CyML
source code to many target languages and simulation platforms. The
association of model specifications in XML-based format with the
description of model algorithm based on CyML specifications allows to
annotate each variable used in the algorithm. With this approach we can
produce code with different programming paradigms including object-
oriented approach and with different software designs. We showed that
this language is sufficient to express biophysical processes and to trans-
form them in different target languages and simulation platforms. We
argue that the abstract language offers some trade-off between gener-
ality due to the convergence of the platforms and the complexity hid-
den in each platform. Crop modellers should have some programming
skill to implement a model in CyML but no other skills are needed
to produce automatically a model component source code in various
languages and platforms. This reuse approach will help modellers to

improve the reproducibility of their models and their reuse and should
enhance research collaborations and model improvement and use.

S U P P O RT I N G I N F O R M AT I O N
The following additional information is available in the online version
of this article—
Table S1. Mapping of basic data types between CyML and the lan-
guages supported by CyMLT.
Table S2. Mapping of arithmetic operators between CyML and the
languages supported by CyMLT.
Table S3. Precedence pecking order in CyML language and the lan-
guages currently supported by CyMLT.
Table S4. Mapping of built-in functions between CyML and the lan-
guages supported by CyMLT.
Table S5. Mapping of flow control statements between CyML and the
languages supported by CyMLT.
Listing S1. A Crop2ML model specification for the shoot
number model.
Listing S2. CyML code of the shootnumber unit model of the
WheatPhenology composite model.

A C K N O W L E D G E M E N T S
C.A.M. acknowledges the support of INRAE Division AgroEcoSystem
and NUM. P.M. acknowledges the support of INRAE Division
AgroEcoSystem.

D ATA AVA I L A B I L I T Y
The CyMLT source code are available publicly on Github at https://
github.com/AgriculturalModelExchangeInitiative/PyCrop2ML.
Full documentation for CyML and CYMLT can be found at https://
pycrop2ml.readthedocs.io.

S O U R C E O F F U N D I N G
C.A.M. was supported through a PhD scholarship from the French
National Research Agency under the Investments for the Future
Program, referred as ANR-16-CONV-0004. C.P. was partially sup-
ported by the H2020 IPM Decision #817617. I.N.A. was partially sup-
ported by the European Union Horizon 2020 Research and Innovation
program (grant #810775, DRAGON). The work of CREA was carried
out in the frame of the project AGRIDIGIT – Digital Agriculture,
funded by the Italian Ministry of Agriculture.

C O N F L I C T O F I N T E R E S T
None declared.

C O N T R I B U T I O N S B Y T H E AU T H O R S
C.A.M (Methodology; Investigation; Software; Writing – original draft).
C.P. (Conceptualization; Software; Supervision; Writing - Original
draft; Writing – review & editing). I.N.A. (Conceptualization; Writing
– review & editing). M.D. (Conceptualization; Writing – review & edit-
ing). A.E. (Conceptualization; Software; Writing – review & editing).
D.F. (Conceptualization; Software; Writing – review & editing). F.G.
(Supervision; Writing – review & editing). D.H. (Conceptualization;
Software; Writing – review & editing). G.H. (Conceptualization;

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diaa007#supplementary-data
https://github.com/AgriculturalModelExchangeInitiative/PyCrop2ML
https://github.com/AgriculturalModelExchangeInitiative/PyCrop2ML
https://pycrop2ml.readthedocs.io
https://pycrop2ml.readthedocs.io

18  •  Midingoyi et al.

Writing – review & editing). C.P. (Conceptualization; Software;
Writing – review & editing). H.R. (Conceptualization; Software;
Writing – review & editing). P.T. (Conceptualization; Writing – review
& editing). P.M. (Conceptualization; Supervision; Project administra-
tion; Writing - Original draft; Writing – review & editing).

L I T E R AT U R E C I T E D

Akeret J, Gamper A, Amara A, Refregier A. 2015. HOPE: a Python
just-in-time compiler for astrophysical computations. Astronomy
and Computing 10:1–8. doi:10.1016/j.ascom.2014.12.001.

Akin E. 2003. Object-oriented programming via Fortran 90/95, Vol. 1.
Cambridge University Press.

Aslam MA, Ahmed M, Stöckle CO, Higgins SS, Hassan F, Hayat R.
2017. Can growing degree days and photoperiod predict spring
wheat phenology? Frontiers in Environmental Science 5: 57.
doi:10.3389/fenvs.2017.00057

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC,
Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Brisson N,
Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C,
Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L,
Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC,
Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE,
Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA,
Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I,
Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR,
Wolf J. 2013. Uncertainty in simulating wheat yields under cli-
mate change. Nature Climate Change 3:827–832. doi:10.1038/
nclimate1916.

Athanasiadis IN, Andrea ER, Marcello D, Laura C. 2011. Enriching
environmental software model interfaces through ontology-based
tools. International Journal of Applied Systemic Studies 4:94–105.
doi:10.1504/IJASS.2011.042205.

Athanasiadis IN, Villa F. 2013. A roadmap to domain specific program-
ming languages for environmental modeling: key requirements
and concepts. In: DSM 2013 - Proceedings of the 2013 ACM
Workshop on Domain-Specific Modeling, 27–32.

Ausbrooks R, Buswell S, Carlisle D, Dalmas S, Devitt S, Diaz A,
Froumentin M, Hunter R, Ion P, Kohlhase M, Miner R, Poppelier N,
Smith B, Soiffer N, Sutor R, Watt S. 2003. Mathematical Markup
Language (MathML) version 2.0, 2nd edn. http://www.w3.org/
TR/MathML2/ (28 October 2020).

Baxter ID, Pidgeon C, Mehlich M. 2004. DMS®: program
transformations for practical scalable software evolution.
Proceedings - International Conference on Software Engineering
26:625–634.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K.
2011. Cython: the best of both worlds. Computing in Science &
Engineering 13:31–39.

Behnel S, Bradshaw R, Seljebotn S. 2000. Cython: the best of both
worlds Stefan. Rehab Management: The Interdisciplinary Journal of
Rehabilitation 13:32–36.

Bergez JE, Raynal H, Joannon A, Casellas E, Chabrier P, Justes E,
Quesnel G, and Véricel G. 2016. A new plug-in under RECORD
to link biophysical and decision models for crop management.
Agronomy for Sustainable Development 36:1–8.

Bindi M, Palosuo T, Trnka M, Semenov M. 2015. Modelling climate
change impacts on crop production for food security. Climate
Research 65:3–5.

Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B,
Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G.
1998. STICS: a generic model for the simulation of crops and
their water and nitrogen balances. I. Theory and parameteriza-
tion applied to wheat and corn. Agronomie 18:311–346.

Brown HE, Huth NI, Holzworth DP, Teixeira EI, Zyskowski RF,
Hargreaves JN, Moot DJ. 2014. Plant Modelling Framework: soft-
ware for building and running crop models on the APSIM plat-
form. Environmental Modelling and Software 62:385–398.

Brown H, Huth N, Holzworth D. 2018. Crop model improvement in
APSIM: using wheat as a case study. European Journal of Agronomy
100:141–150.

Bysiek M, Drozd A, Matsuoka S. 2017. Migrating legacy Fortran to
Python while retaining Fortran-level performance through transpila-
tion and type hints. In: Proceedings of PyHPC 2016: 6th Workshop on
Python for High-Performance and Scientific Computing - Held in con-
junction with SC16: The International Conference for High Performance
Computing, Networking, Storage and Analysis, 9–18.

Cary JR, Shasharina SG, Cummings JC, Reynders JV, Hinker PJ. 1997.
Comparison of C++ and Fortran 90 for object-oriented scientific
programming. Computer Physics Communications 105:20–36.

Cuellar A, Nielsen P, Halstead M, Bullivant D, Nickerso D, Hedley W,
Nelson M, Lloyd C. 2006. CellML 1.1 specification. https://www.
cellml.org/specifications/cellml_1.1/index_html (20 February
2018).

de Wit A, Boogaard H, Fumagalli D, Janssen S, Knapen R,
van Kraalingen D, Supit I, van der Wijngaart R, van Diepen K. 2019.
25 years of the WOFOST cropping systems model. Agricultural
Systems 168:154–167. doi:10.1016/j.agsy.2018.06.018.

Donatelli M, Russell G, Rizzoli AE, Acutis M, Adam M, Athanasiadis IN,
Balderacchi M, Bechini L, Belhouchette H, Bellocchi G, Bergez JE.
2010. A component-based framework for simulating agricultural
production and externalities. In: Brouwer FM, Ittersum MK, eds.
Environmental and agricultural modeling. Dordrecht: Springer
Netherlands, 63–108.

Donatelli M, Bregaglio S, Confalonieri R, De Mascellis R, Acutis M.
2014. A generic framework for evaluating hybrid models by reuse
and composition - a case study on soil temperature simulation.
Environmental Modelling and Software 62:478–486.

Enders A, Diekkrüger B, Laudien R, Gaiser T, Bareth G. 2010.
The IMPETUS spatial decision support systems. In: Speth P,
Christoph M, Diekkrüger B, eds. Impacts of global change on the
hydrological cycle in west and northwest Africa. Berlin, Heidelberg:
Springer. doi:10.1007/978-3-642-12957-5_11

Fernique P, Pradal C. 2018. AutoWIG: automatic generation of
python bindings for C++ libraries. PeerJ Computer Science 4: e149.
doi:10.7717/peerj-cs.149

Gamma E, Helm R, Johnson R, Vlissides J. 1995. Design patterns: ele-
ments of reusable object-oriented software. United States: Addison-
Wesley Longman Publishing Co., Inc.

Gaudio N, Escobar-Gutiérrez AJ, Casadebaig P, Evers JB, Gérard F,
Louarn G, Colbach N, Munz S, Launay M, Marrou H, Barillot R,
Hinsinger P, Bergez J-E, Combes D, Durand J-L, Frak E, Pagès L,
Pradal C, Saint-Jean S, Van Der Werf W, Justes E. 2019. Current

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

https://doi.org/10.1016/j.ascom.2014.12.001
https://doi.org/10.3389/fenvs.2017.00057
https://doi.org/10.1038/nclimate1916
https://doi.org/10.1038/nclimate1916
https://doi.org/10.1504/IJASS.2011.042205
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML2/
https://www.cellml.org/specifications/cellml_1.1/index_html
https://www.cellml.org/specifications/cellml_1.1/index_html
https://doi.org/10.1016/j.agsy.2018.06.018
https://doi.org/10.1007/978-3-642-12957-5_11
https://doi.org/10.7717/peerj-cs.149

Reuse of process-based models  •  19

knowledge and future research opportunities for modeling annual
crop mixtures. A review. Agronomy for Sustainable Development
39:20. doi:10.1007/s13593-019-0562-6.

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO,
Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR,
Dimitrova YD, Silver RA. 2010. NeuroML: a language for describ-
ing data driven models of neurons and networks with a high degree
of biological detail. PLoS Computational Biology 6:e1000815.

He J, Le Gouis J, Stratonovitch P, Allard V, Gaju O, Heumez E,
Orford S, Griffiths S, Snape JW, Foulkes MJ, Semenov MA. 2012.
Simulation of environmental and genotypic variations of final leaf
number and anthesis date for wheat. European Journal of Agronomy
42: 22–33. doi:10.1016/j.eja.2011.11.002

Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R,
Verrall S, Herrmann NI, Zheng B, Snow V. 2018. APSIM next gen-
eration: overcoming challenges in modernising a farming systems
model. Environmental Modelling & Software 103:43–51.

Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI,
McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C,
Moore AD. 2014a. APSIM - evolution towards a new generation
of agricultural systems simulation. Environmental Modelling and
Software 62:327–350.

Holzworth DP, Snow V, Janssen S, Athanasiadis IN, Donatelli M,
Hoogenboom G, White JW, Thorburn P. 2014b. Agricultural pro-
duction systems modelling and software: current status and future
prospects. Environmental Modelling and Software 72:276–286.

Hoogenboom G, Porter CH, Boote KJ, Shelia V, Wilkens PW, Singh U,
White JW, Asseng S, Lizaso JI, Moreno LP, Pavan W. 2019. The
DSSAT crop modeling ecosystem. Advances in Crop Modelling for a
Sustainable Agriculture 173–216. doi:10.19103/AS.2019.0061.10

Hucka M, Nickerson DP, Bader GD, Bergmann FT, Cooper J,
Demir E, Garny A, Golebiewski M, Myers CJ, Schreiber F,
Waltemath D, Le Novère N. 2015. Promoting coordinated devel-
opment of community-based information standards for modeling
in biology: the COMBINE initiative. Frontiers in Bioengineering
and Biotechnology 3:19.

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA,
Wilkens PW, Singh U, Gijsman AJ, Ritchie JT. 2003. The DSSAT crop-
ping system model. European Journal of Agronomy 18: 235–65.

Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I,
Godfray HC, Herrero M, Howitt RE, Janssen S, Keating BA. 2017.
Brief history of agricultural systems modeling. Agricultural Systems
155:240–254.

Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M,
Frederic J, Kelley K, Hamrick JB, Grout J, Corlay S, Ivanov P. 2016.
Jupyter Notebooks—a publishing format for reproducible compu-
tational workflows. Positioning and Power in Academic Publishing:
Players, Agents and Agendas, 87–90.

Lang M. 2019. yggdrasil: a Python package for integrating computa-
tional models across languages and scales. In Silico Plants 2019:
diz001; doi: 10.1093/insilicoplants/diz001

Linge S, Langtangen HP. 2016. Programming for computations - Python.
Cham: Springer International Publishing (Texts in Computational
Science and Engineering).

Liu S, Martre P, Buis S, Abichou M, Andrieu B, Baret F. 2019.
Estimation of plant and canopy architectural traits using the digital
plant phenotyping platform. Plant Physiology 181:881–890.

Manceau L, Martre P. 2018. SiriusQuality-BioMa-Phenology-Component
(Version v1.0.0). Zenodo. doi:10.5281/zenodo.2478791.

Marshall-Colon A, Long SP, Allen DK, Allen G, Beard DA, Benes B,
von Caemmerer S, Christensen AJ, Cox DJ, Hart JC, Hirst PM,
Kannan K, Katz DS, Lynch JP, Millar AJ, Panneerselvam B,
Price ND, Prusinkiewicz P, Raila D, Shekar RG, Shrivastava S,
Shukla D, Srinivasan V, Stitt M, Turk MJ, Voit EO, Wang Y, Yin X,
Zhu XG. 2017. Crops in silico: generating virtual crops using an
integrative and multi-scale modeling platform. Frontiers in Plant
Science 8:786.

Martre P, Jamieson PD, Semenov MA, Zyskowski RF, Porter JR,
Triboi E. 2006. Modelling protein content and composition in
relation to crop nitrogen dynamics for wheat. European Journal of
Agronomy 25:138–154.

Martre P, Donatelli M, Pradal C, Enders A, Ahmed Midingoyi C,
Athanasiadis I, Fumagalli D, Holzworth D, Hoogenboom G,
Porter C, Raynal H. 2018. The agricultural model exchange initia-
tive. In: IICA, ed. 7th AgMIP Global Workshop, San José, Costa
Rica.

Midingoyi CA, Pradal C, Enders A, Donatelli M, Fumagalli D,
Athanasiadis I, Garcia F, Holzworth D, Hoogenboom G, Porter C,
Raynal H, Thorburn P, Martre P. 2020. Crop2ML: the central-
ized framework for crop model component exchange and reuse
(Version v1.0.0). Zenodo. doi:10.5281/zenodo.3911713

Misse-Chanabier P, Aranega V, Polito G. 2019. Illicium A modular
transpilation toolchain from Pharo to C. IWST19 —International
Workshop on Smalltalk Technologies, Aug 2019, Köln, Germany.

Muller B, Martre P. 2019. Plant and crop simulation models: power-
ful tools to link physiology, genetics, and phenomics. Journal of
Experimental Botany 70:2339–2344.

Nunnari F, Heloir A. 2018. Write-once, transpile-everywhere:
re-using motion controllers of virtual humans across multi-
ple game engines. In: De Paolis L, Bourdot P, eds. Augmented
reality, virtual reality, and computer graphics, Vol. 10850. AVR
2018. Lecture Notes in Computer Science. Cham: Springer.
doi:10.1007/978-3-319-95270-3_37.

Palosuo T, Kersebaum KC, Angulo C, Hlavinka P, Moriondo M,
Olesen JE, Patil RH, Ruget F, Rumbaur C, Takáč J, Trnka M.
2011. Simulation of winter wheat yield and its variability in differ-
ent climates of Europe: a comparison of eight crop growth mod-
els. European Journal of Agronomy 35:103–114. doi:10.1016/j.
eja.2011.05.001.

Plaisted DA. 2013. Source-to-source translation and software engi-
neering. Journal of Software Engineering and Applications 6:30–40.

Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, and Godin C.
2008. OpenAlea: a visual programming and component-based
software platform for plant modelling. Functional Plant Biology
35:751–760.

Pradal C, Fournier C, Valduriez P, Cohen-Boulakia S. 2015. OpenAlea:
scientific workflows combining data analysis and simulation. In:
Proceedings of the 27th International Conference on Scientific and
Statistical Database Management (SSDBM ‘15). Association for
Computing Machinery, New York, NY, USA, Article 11, 1–6.
doi:10.1145/2791347.2791365

Quan S, Hui T. 2011. The ROSE source-to-source compiler infrastruc-
ture. In Cetus Users and Compiler Infrastructure Workshop, in conjunc-
tion with PACT, Galveston Island, Texas, USA, October 2011. https://

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

https://doi.org/10.1007/s13593-019-0562-6
https://doi.org/10.1016/j.eja.2011.11.002
https://doi.org/10.19103/AS.2019.0061.10
https://doi.org/10.1093/insilicoplants/diz001
https://doi.org/10.5281/zenodo.2478791
https://doi.org/10.5281/zenodo.3911713
https://doi.org/10.1007/978-3-319-95270-3_37
https://doi.org/10.1016/j.eja.2011.05.001
https://doi.org/10.1016/j.eja.2011.05.001
https://doi.org/10.1145/2791347.2791365
https://scholar.google.com/scholar?as_q=The+ROSE+source-to-source+compiler+infrastructure&as_occt=title&hl=en&as_sdt=0%2C31

20  •  Midingoyi et al.

scholar.google.com/scholar?as_q=The+ROSE+source-to-source+
compiler+infrastructure&as_occt=title&hl=en&as_sdt=0%2C31

R Core Team. 2017. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/ accessed 28 october 2020.

Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P,
Antle JM, Nelson GC, Porter C, Janssen S, Asseng S. 2013. The agricul-
tural model intercomparison and improvement project (AgMIP): proto-
cols and pilot studies. Agricultural and Forest Meteorology 170:166–182.

Rötter RP, Timothy RC, Jørgen EO, John RP. 2011. Crop-climate mod-
els need an overhaul. Nature Climate Change 1:175–177.

Samourkasidis A, Athanasiadis IN. 2020. A semantic approach for
timeseries data fusion. Computers and Electronics in Agriculture
169:105171.

Schaub S, Malloy BA. 2016. The design and evaluation of an interoper-
able translation system for object-oriented software reuse. Journal
of Object Technology 15:1–33.

Schilstra MJ, Li L, Matthews J, Finney A, Hucka M, Le Novère N. 2006.
CellML2SBML: conversion of CellML into SBML. Bioinformatics
22:1018–1020.

van Evert F, Holzworth D, Muetzelfeldt RM, Rizzoli AE, Villa F. 2005.
Convergence in integrated modeling frameworks. In: Proceedings
of the MODSIM 2005 International Congress on Modelling and
Simulation. Melbourne, December, 2005 (pp. 745–750).

van Kraalingen DWG, Knapen MJR, de Wit A, Boogaard HL. 2020.
WISS a Java continuous simulation framework for agro-ecological
modelling. In: Athanasiadis I, Frysinger S, Schimak G, Knibbe W,
eds. Environmental software systems. Data science in action, Vol. 554.
ISESS 2020. IFIP Advances in Information and Communication
Technology. Cham: Springer. doi:10.1007/978-3-030-39815-6_23

Villa F. 2001. Integrating modelling architecture: a declarative frame-
work for multi-paradigm, multi-scale ecological modelling.
Ecological Modelling 137:23–42.

Villa F, Balbi S, Athanasiadis IN, Caracciolo C. 2017. Semantics for
interoperability of distributed data and models: foundations for
better-connected information. F1000Research 6:686.

Zhao C, Liu B, Xiao L, Hoogenboom G, Boote KJ, Kassie BT, Pavan W,
Shelia V, Kim KS, Hernandez-Ochoa IM, Wallach D, Porter CH,
Stockle CO, Zhu Y, Asseng S. 2019. A SIMPLE crop model.
European Journal of Agronomy 104:97–106.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa007/5918454 by guest on 06 January 2021

https://scholar.google.com/scholar?as_q=The+ROSE+source-to-source+compiler+infrastructure&as_occt=title&hl=en&as_sdt=0%2C31
https://scholar.google.com/scholar?as_q=The+ROSE+source-to-source+compiler+infrastructure&as_occt=title&hl=en&as_sdt=0%2C31
https://www.R-project.org/﻿
https://doi.org/10.1007/978-3-030-39815-6_23

