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Abstract 
Fairly rapid environmental changes call for continuous surveillance and decision making, areas where IT technologies 

can be valuable. In the aforementioned context this work describes the application of a novel classifier, namely σ-

FLNMAP, for estimating the ozone concentration level in the atmosphere. In a series of experiments on meteorological 

and air pollutants data, the σ–FLNMAP classifier compares favorably with both back-propagation neural networks and 

the C4.5 algorithm; moreover σ–FLNMAP induces only a few rules from the data. The σ–FLNMAP classifier can be 

implemented as either a neural network or a decision tree. We also discuss the far reaching potential of σ–FLNMAP in 

IT applications due to its applicability on partially (lattice) ordered data. 

 

 

1  Introduction 
 
Air quality is typically assessed based on either expert 
meteorologist knowledge or on sophisticated “first 
principles” mathematical models. Air Quality 
Operational Centers have been established worldwide in 
areas with (potential) air pollution problems. These 
centers monitor critical atmospheric variables and they 
publish regularly their analysis results [ΚΑ99]. 
Currently, real-time decisions are made by human 
experts, whereas mathematical models are used for off-
line study and understanding of  the atmospheric 
phenomena involved. 
 
 
The goal of this work is real time assessment of air 

quality. Specific problems in real-time air quality 
assessment include: sensor malfunction, instrument 
polarization, noise, etc. Moreover, rapid environmental 
changes have rendered previous assessment methods 
obsolete [FA96]. At the same time, state regulations 
worldwide have defined stricter pollution levels. There 
is a need for new techniques for reliable real-time 
assessment of air quality based on sampled data. In this 
context Information Technology (IT) techniques 
including Machine Learning, Data Mining, Multi-Agent 
Systems, etc. are promising to assist human experts. 
 
 
2  Decision support systems for assessing air 
quality in real–time  
 
The Centre for Research and Technology - Hellas is 
currently collaborating, in the context of the Agent 
Academy project, with Investigación y Desarrollo 
Informático Eikon (IDI–EIKON), Valencia, Spain on 
the development of an agent-based decision support 
system for real-time assessment of air quality [ΑΑ00]. 
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The decision support system being developed, namely 
O3RTAA, will be installed in the Fundación Centro de 
Estudios Ambietales del Mediterráneo (CEAM), 
Valencia, Spain to assist human experts in assessing air 
quality. The system's architecture has been described in 
[MS02] and [KS02]. 
 
The O3RTAA system is currently developed as a multi-
agent decision support system. Several software agents 
co–operate in a distributed agent society, in order to 
monitor both meteorological and air–quality attributes 
in an effort to to evaluate air quality and, ultimately, to 
trigger alarms. The aforementioned multi-agent system 
architecture uses the following types of agents:  
 
1. Diagnosis agents. These are agents running on 

sensors and their goal is to monitor various air 
quality attributes including NO, NO2, NOx, O3, etc. 

 
2. Prediction agents, which are in charge of both 

pulling the data from monitoring agents and of 
verifying that the latter agents operate properly. In 
case of a sensor breakdown, prediction agents are 
in charge of predicting the missing values. 

 
3. Alarm agents, which evaluate the inputs and 

decide whether an alarm should be triggered or 
not. 

 
4. Distribution agents, which are in charge of 

triggering alarms selectively. 
 
The O3RTAA system architecture is shown in Fig.1 

The function of the prediction agent is outlined next. A 
“sensor breakdown” results in a missing air quality 
parameter value. The predictor agent is expected to 
supply an approximation of the missing value. 
Likewise, a missing air quality attribute value may 
trigger an alarm. In the latter case, a prediction agent is 
in charge of producing an approximation of the missing 
value based on the remaining attribute values. 
 
This work demonstrates real time prediction of ozone 
concentration by classification, based on meteorological 
and air quality data. More specifically, an σ–FLNMAP 
classifier has been employed here and is compared with 
both back-propagation neural networks and  decision 
trees. In the following section the classifier σ–FLNMAP 
is described in a lattice theoretic context. 
 
 
3  The σ–FLNMAP Classifier 
 
The σ–FLNMAP classifier has been introduced in 
[PK99, KP00, KP02]. It is applicable in a fuzzy lattice 
data domain including the N-dimensional Euclidean 
space ℜN. An important advantage of a “lattice data 
domain” is that disparate types of data can be dealt with 
in principle, the latter might be advantageous in 
designing IT decision support systems. The framework 
of fuzzy lattices is outlined next, followed by a 
presentation of the σ–FLNMAP algorithm for 
classification. 
 
 

 
 

Figure 1: The O3RTAA decision support system. 



3.1  The Framework of Fuzzy Lattices 
 
A lattice L is a partially ordered set any two of whose 
elements have a greatest lower bound (or meet) denoted 
by x∧y and a least upper bound (or join) denoted by 
x∨y. A lattice L is called complete when each of its 
subsets has a least upper bound and a greatest lower 
bound in L. A non-void complete lattice has a least 
element (O) and a greatest element (I). 
 
It is important to point out that a lattice L could be the 
Cartesian product L=L1×…×LN of N lattices L1,…,LN, 
namely constituent lattices. A product lattice L 
involving disparate constituent lattices implies the 
potential of dealing either separately and/or jointly, in 
any combination, with disparate types of data such as 
vectors of real numbers, propositions, fuzzy sets, events 
in a probability space, symbols, graphs, etc. 
 
A useful function in a lattice L is a valuation function 
v: L → R defined by v(x)+v(y) = v(x∧y)+v(x∨y), x,y∈L. 
A valuation, is called positive if and only if x<y ⇒ 
v(x)<v(y). A positive valuation function implies an 
inclusion measure function (σ). Τhe latter is defined in 
the following. 
 
Definition 1 
An inclusion measure σ on a complete lattice L is a map 
σ: L×L→[0,1] such that for u,w,x∈L the following three 
axioms are satisfied: 
 
(A1) σ(x,O) = 0, x≠O. 
(A2) σ(x,x) = 1, Υx∈L. 
(A3) u √ w ⇒ σ(x,u) √ σ(x,w) – Consistency Property 
 
Note that σ(x,u) denotes the degree of inclusion of 
lattice element x in lattice element u, therefore notations 
σ(x,u) and σ(x√u) will be used interchangeably. 
 
Given a positive valuation function v in a lattice L an 
inclusion measure can be defined by the ratio 
σ(x√u) = v(u)/v(x∨u) [KP00]. It has been shown in 
[KP00] how the aforementioned tools and notions can 
be extended in the complete lattice τ(L) of intervals of 
lattice elements. 
 
It is known from [KP00] that an inclusion measure in a 
lattice L implies a fuzzy lattice, which is defined in the 
following. 
 
Definition 2 
A fuzzy lattice is a pair <L,µ>, where L is a crisp lattice 
and (L×L,µ) is a fuzzy set with membership function 
µ: L×L→[0,1] such that µ(x,y) = 1 if and only if x√y. 
 

The set of all fuzzy lattices <L,σ> has been dubbed 
framework of fuzzy lattices [PK99], [KP00]. It turns out 
that <L,σ> is a fuzzy lattice. 
 
This work deals with complete product lattice “unit 
hypercube” U= [0,1]×…×[0,1], where a constituent 
complete lattice is the closed interval [0,1] of real 
numbers. A positive valuation function in [0,1] is given 
by v(x) = x. An interval in the N-dimensional unit 
hypercube U corresponds to an N-dimensional 
hyperbox. Learning and decision making can be 
effected in U by hyperboxes as described in the 
following. 
 
 
3.2  The σ–FLNMAP algorithm for classification 
 
The σ–FLNMAP classifier is a synergy of two σ–FLN 
schemes for clustering. Critical, in the operation of 
scheme the σ–FLN is the notion size of an interval 
x=[a,b]∈τ(L). 
 
Definition 3 
Let v be a positive valuation function in a lattice L. The 
size of an interval x=[a,b]∈τ(L) is a function Z: L→R, 
given by Z([a,b])= v(b)-v(a). 
 
All constituent lattices Li, i=1,…,N involved in this 
work are complete lattices [KP00]. It follows, after 
normalization, that a positive valuation function vi(.) 
takes values in the interval [0,1]. In conclusion, the 
critical size Zcrit in algorithm σ–FLN  below equals 

ρ
)ρ1N(Zcrit

−

=
, where ρ∈[0.5,1] is called vigilance 

parameter [KP00]. 
 
Let the training data set consist of n pairs (xi, yi = g(xi)), 
i = 1,...,n, where xi is a lattice interval and g: τ(L)→D is 
a category function, where D is a finite set of category 
labels. “Learning” according to σ–FLN is described in 
the following: 
 
0. A set H={H1,…,HL} of hyperboxes is given – Note 

that set H could be empty. 
 
1. An input lattice interval x= [a,b] is presented to the 

σ–FLN. 
 
2. The degree of inclusion of x= [a,b] is calculated for 

each huperbox H1,…,HL. 
 
3. Hyperboxes H1,…,HL compete over input x = [a,b]. 

Winner is the hyperbox HJ which includes x the 
most. 

 
4. Winner hyperbox HJ is augmented tentatively to 

hyperbox HJ∨τ(L)x so as to include input x. 
 



5. If Size(HJ∨τ(L)x) is smaller than a user-defined size 
Zcrit then hyperbox HJ is replaced by HJ∨τ(L)x. 

 Otherwise, reset occurs and the next winner is 
selected among the remaining (non-reset) 
hyperboxes. 

 
6. If all the hyperboxes have been reset then input 

x = [a,b] is learned as a new hyperbox. 
 
Two σ–FLN schemes for clustering, namely σ–FLNa and 
σ–FLNb, are employed synergistically to produce a σ–
FLNMAP classifier. In particular, the σ–FLNa clusters 
the input data, σ–FLNb clusters the corresponding 
“category” data, whereas an intermediate MAP field is 
used to associate clusters in σ–FLNa with clusters in σ–
FLNb as detailed in [KP00]. In conclusion, the MAP 
field assigns a category label (in σ–FLNb) to a data 
cluster (in σ–FLNa). 
 
The σ–FLNMAP classifier learns in “one-pass” through 

the training data. The vigilance parameter ρ∈[0,1] 
specifies the σ–FLNMAP’s sensitivity. As ρ increases, 
the calculated hyperboxes’ size decreases. At the end of 
“learning”, there exist M hyperboxes partitioned in K 
classes, where K is the cardinality of the finite set D of 
category labels. As soon as “learning” is complete, the 
set of calculated hyperboxes can be implemented as 
either a decision tree or as a neural network [PK99, 
KP00]. 
 
Figure 2 shows three hyperboxes H1, H2 and H3 
representing two different classes A and B. Let a lattice 
interval x lie outside both classes A and B. Based on the 
calculated inclusion measure values σ(x√H1), σ(x√H2) 
and σ(x√H3), input x is assigned to the class whose label 
is attached to the hyperbox in which x is included most.  
 
A Fuzzy Lattice can be represented using its least 
element (O) and its greatest element (I). A product 
lattice is defined using the least element and greatest 
element for each one of the constituent lattices. For 
example, in Figure 2, Hyperbox H3 can be defined as:  
H3 = L1×L2 = [0.65,1] ×[0.7,1], where L1 and L2 are the 
constituent lattices in the two-dimensions. 
 
In the following section experimental results on real 
world data are presented and compared. 
 
 
4 Experiments on Environmental Data 
 
4.1  Data Preprocessing 
 
The σ–FLNMAP classifier was applied on a dataset of 
meteorological and air-pollutants measurements for 
estimating ozone concentration levels. The dataset, 
labeled C2ONDA01 and supplied by CEAM, contained 
data from a meteorological station in the district of 
Valencia, Spain. More specifically, several 

 
 

 
 

Figure 2: Learning in the FLN framework 

Table 1: Dataset attributes and various statistics 
 

 data Training Data Set Testing Data Set 
attribute  type mean std.dev. mean std.dev. 
SO2 (Sulfur dioxide) real 5.08  4.66 5.87 5.84 
NO (Nitrogen oxide) real 5.09 4.54 6.49 7.55 
NO2 (Nitrogen dioxide) real 9.55 7.74 6.98 5.80 
NOx (Nitrogen oxides) real 17.09 12.61 15.83 13.97 
VEL (Wind velocity) real 2.19 1.56 1.91 1.25 
TEM (Temperature) real 18.34 6.77 23.41 7.60 
HR (Relative humidity) real 60.23 22.93 82.59 17.54 
O3 (ozone level) ‘low’ 6,265 records 12,255 records 
O3 (ozone level) ‘med’ 4,761 records 5,138 records 

 



meteorological attributes and air-pollutants values were 
recorded on a quarter-hourly basis during the year 2001. 
 
There are approximately 35,000 records, with seven 
attributes per record plus a class attribute. After 
removing records with missing values, the data set was 
split into two subsets: one subset for training and 
another subset for testing containing around 40% of the 
data and around 60% of the data, respectively. 
Attributes as well as various statistics for both the 
training data set and the testing data set are shown in 
Table 1. 
 
A prediction model, be it a Neural Network, an Expert 
System, or a Decision Tree, is to be embedded in the 
Prediction Agent in order for the latter agent to produce 
accurate estimates of the ozone concentration level in 
the atmosphere from other pollutants and 
meteorological measurements, even in case the ozone 
sensor is out of order. Ozone level is characterized as 
either ‘low’ or ‘medium’, respectively, for values in the 
ranges 0 - 60µg/m3 and 60 - 100 µg/m3. 
 
 
4.2  Experimental Results 
 
Real time estimation of ozone concentration level from 
other environmental and meteorological attributes, was 
attained using three different classifiers: 
 

1. The C4.5 classification algorithm; 
 
2. Back-propagation neural networks; and 
 
3. The σ–FLNMAP classifier. 
 

The above classifiers have been selected among others 
because they can be easily embedded into artificial 
agents [MS02]. The prediction accuracy achieved using 
the three algorithms is presented comparatively in Table 
2. In this table, the Confusion Matrix for each one of the 
algorithms is presented along with the percentage of the 
correctly classified records. 
 
The C4.5 algorithm for classification produced a 
decision tree whose nodes specify inequalities for the 
values of environmental attributes and the tree leaves 
specify an output class. After several training sessions 
for various values of the C4.5 algorithm parameters, the 
“best” pruned decision tree included 66 leaves and and 

had a size of 131. The classification performance on the 
testing data set was 73.65%. The corresponding 
confusion matrix for the testing data set, is shown in 
Table 2.  
 
Back-propagation neural networks were employed next. 
Various network architectures were tested characterized 
by different activation functions and different numbers 
of hidden neurons. The best performance was obtained 
by a neural network with 11 hidden neurons, linear 
transfer functions for the hidden layer neurons, sigmoid 
transfer functions for the output layer neurons, and the 
resilient backpropagation algorithm. The corresponding 
classification success was 82.05% on testing data.  
 
Learning with the σ–FLNMAP classifier was rather 
simple and fast, compared to back propagation training, 
as the σ–FLNMAP learns in one pass through the 
training data. Furthemore, there is only one parameter to 
be tuned (the vigilance parameter ρ). Vigilance ρ was 
given several values. The best results were obtained for 
ρ = 0.59. The corresponding confusion matrix is shown 
in Table 2. The classification performance on the testing 
data set was 83.14%.  
 
The rules extracted with σ–FLNMAP are represented as 
hyperboxes. There were only three rules induced 

Table 2: Confusion Matrices for three classifiers
 

σ-FLNMAP classifier 
Records classified as:  ‘low’ ‘med’ 
No. records in class ‘low’:  11,243 1,012 
No. records in class ‘med’: 1,904 3,234 
Correctly classified records: 83.14% 
 
C4.5 algorithm for classification 
Records classified as:  ‘low’ ‘med’ 
No. records in class ‘low’:  8,487 3,769 
No. records in class ‘med’: 798 4,340 
Correctly classified records: 73.69% 
 
Backpropagation Neural Networks 
Records classified as:  ‘low’ ‘med’ 
No. records in class ‘low’:  9,905 2,351 
No. records in class ‘med’: 752 4,384 
Correctly classified records: 82.05% 

 

Table 3: Rules induced empirically from the training data by the σ-FLNMAP classifier 
 

Rule# SO2 NO NO2 NOx VEL TEM HR O3 Class 
0 IF [3.0, 87.0] & [2.0, 74.0] & [4.0, 57.0] & [6.0, 151.0] & [0.1,   9.4] & [4.0, 28.6] & [  8.0, 99.0] THEN ‘low’
1 IF [3.0, 47.0] & [2.0, 24.0] & [4.0, 36.0] & [6.0,  54.0] & [0.1, 11.1] & [5.0, 35.0] & [  8.0, 99.0] THEN ‘med’
2 IF [3.0, 52.0] & [2.0, 89.0] & [4.0, 65.0] & [6.0,176.0] & [0.1,   7.5] & [9.0, 35.0] & [24.0, 99.0] THEN ‘low’



empirically from the training data set and they are 
shown in Table 3. The extracted rules can be also 
expressed as “if-then” statements. Rule#0 as an “if-then 
statement” is shown in Figure 3.   
 
 

IF SO2 is in range [3.0,87.0]
AND NO is in range [2.0,74.0]
AND …
AND HR is in range [8.0,99.0]
THEN O3 IS CLASSIFIED IN Class ‘Low’ 

 
Figure 3: Rule#0 represented as an “if then” 

statement. 
 
4.3  Discussion 
 
Even though the classification results by σ–FLNMAP 
are marginally better than those by Backpropagation, 
and they clearly outperform the classification results by 
C4.5, additional advantages of the σ–FLNMAP classifier 
include faster training in one pass through the data. 
Also, very few rules/hypercubes (only 3) were induced 
from the training data. Note that rules represented as 
hyperboxes, can be easily comprehended by human 
experts, whereas conventional backpropagation neural 
networks are “black boxes” whose answers are not 
easily deciphered. 
 
5  Conclusion - Future Work 
 
In this work the problem of air quality assessment was 
addressed in real-time as a classification problem with 
satisfactory results. The σ–FLNMAP classifier resulted 
in comparatively good results. Furthermore, rules 
extracted by σ–FLNMAP in the form of hypercubes are 
easily understood by humans and can be embedded on 
software agents in order to support and generalize air 
quality assessment. 
 
Future work will focus in two directions. First, the 
decision support system O3RTAA for assessing air 
quality in real time will be further developed. Second, 
the applicability of classifier σ–FLNMAP on other types 
of agents beyond the O3RTAA system will be studied. 
Note that the applicability of σ–FLNMAP on partially 
(lattice) ordered data is expected to be useful in various 
IT applications. 
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