
1520-9202/06/$20.00 © 2006 IEEEP u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y34 IT Pro May ❘ June 2006

An Intelligent Service
Layer Upgrades
Environmental
Information
Management

Ioannis N. Athanasiadis

S ervice-oriented architectures for software
design and implementation are gaining
the interest of software engineers and
practitioners as a natural way to build dis-

tributed, reusable, loosely-coupled systems.Using
Web services or software agent implementations,
the service-oriented approach can advance soft-
ware delivery: it allows the design and develop-
ment of modular, stand-alone software com-
ponents that can provide services in isolation or
collaboratively, by conforming to open interfaces
and to strict contracts. This versatility has great
potential to improve many types of systems; my
colleagues and I have used a service-oriented
architecture to address the shortcomings of the
typical environmental management information
system (EMIS).

In principle, environmental data belong to the
public domain and should be available to every-
one interested. However, the availability and dis-
semination of environmental data differ among
countries, and EMISs suffer from what is known
as the “environmental information vacuum”: In
developing countries, the vacuum results from the
fact that environmental data are not recorded
extensively. Developed countries, on the other
hand, have an overflow of environmental infor-

mation, but quality and availability problems cre-
ate a vacuum there as well. Whichever the case,
environmental data are generally raw and variable
in standards, noisy or incomplete, and often hid-
den in legacy systems,reports,or other nonreusable
forms. In such cases, an EMIS must intervene
between several data pools—typically in different
physical locations and diverse implementations—
to fetch relevant environmental information. We
developed a service-oriented architecture to meet
this challenge: AISLE, our adaptive intelligent
service layer for environmental information man-
agement, mediates between existing environmen-
tal data providers and actual end-user applications
that require preprocessed data streams from the
sources.

THE AISLE APPROACH
AISLE has two major objectives.The first is to

extend the capabilities of existing legacy IT sys-
tems residing in environmental monitoring cen-
ters and institutions,by targeting typical problems
that fetter their quality of service. Common inci-
dents in environmental monitoring systems—
such as sensor failure or malfunction, noise, and
polarization—often lead to poor data quality and,
consequently, poor services. AISLE’s goal is to

By interweaving and interpreting
data streams, AISLE can bring
crucial environmental information
to a wider audience.

In IT Professional, 8 (3):34-39, May-June 2006.

May ❘ June 2006 IT Pro 35

improve service reliability and
adaptability to changing envi-
ronmental conditions by equip-
ping EMISs with intelligent
modules for quality assurance
and control.

AISLE’s second objective is
to provide a loosely coupled,
extensible infrastructure for sup-
plying improved information
services—including data prepro-
cessing and management, infor-
mation dissemination, and
multiparty data distribution.

Service-oriented design
Figure 1 shows an abstract view

of an AISLE system, situated
between environmental data
pools and end-user applications.
AISLE interweaves multiple data
streams produced by (or located
within) the environmental data
pools and supplies the end-user applications with pre-
processed,ready-to-use information.The system’s data sources
could be sensor devices, remotely accessed documents (via
FTP or HTTP),or locally stored databases and files.The end-
user applications could include database systems,domain-spe-
cific software,or Web-based reporting applications.

Although both the topology and the procedure vary for
each installation, we use the generic term data streams to
describe the data perceived by sensor devices or located in
a local or remote data storage medium. These data
streams—AISLE’s inputs—inherit the critical properties
of environmental data, such as low reliability, redundancy,
and poor semantics. For most end-user applications, such
data streams are usually incomplete, incompatible,or both,
and thus cannot be used directly.Typically, some data pre-
processing or filtering is necessary.

In such an environment, AISLE must tackle the uncer-
tainty of environmental data while also serving as a proac-
tive communication mechanism connecting data pools
with user applications. In fulfilling these roles,AISLE per-
forms several services:

• Data gathering and validation. AISLE efficiently cap-
tures data streams and validates data pools’ content.

• Substitution or estimation of missing measurements
(when needed). Certain types of applications can’t han-
dle missing data properly. In these cases, AISLE uses
reasoning abilities to substitute estimates for missing or
erroneous measurements.

• Data management and preprocessing. AISLE handles
data cleaning, normalization, integration, and transfor-
mation to custom formats.

• System extensibility and adaptation. Because an EMIS
can add or remove data pools or end-user applications
at runtime, AISLE services are easily configurable to
adapt to such changes.

• Information propagation. AISLE can handle data
streams pushed into the system (as with sensor net-
works), and it can also pull data streams (such as files
or databases) into the system; it subsequently delivers
both types to their final destination.

AISLE as a cluster of services
The AISLE architecture arranges the system’s services in

three distinct yet cooperative clusters that could be imple-
mented as software agents or Web services. The contribu-
tion services cluster handles data collection and validation
and estimates missing information.The management services
cluster focuses on data management and integration.Finally,
the distribution services cluster provides the appropriate
interfaces to end-user applications.Figure 2 on the next page
shows the AISLE mechanism as a synergy of clusters.
Incoming raw data streams traverse the three clusters,
arranged in a hierarchy. The system’s final output is cus-
tomized information delivered to the end users.

Our implementation of AISLE uses software agents.The
agent-oriented software-engineering primitives consider
agents service providers, capable of creating “open,”virtual
institutions (“Agent-Oriented Software Engineering:The
State of the Art,” Paolo Ciancarini and Michael
Wooldridge, Agent-Oriented Software Engineering I,
Lecture Notes in Computer Science vol. 1957, Springer,
2001,pp.1-28). In AISLE, three distinct generic agent types
are the building blocks of the system:

@
Web

Terminal
application Database

AISLE platform

Sensor FTP HTTP File
database

Data pools

Data stream

Customized
preprocessed
information

End-user
applications
and networks

Figure 1. The AISLE operational environment.

36 IT Pro May ❘ June 2006

S E R V I C E - O R I E N T E D A R C H I T E C T U R E

• Contribution agents (CAs) act as the implicit data
receptors.

• Data management agents (DMAs) handle data fusion
and preprocessing.

• Distribution agents (DAs) act as an interface to the end-
user applications.

In addition, the system includes a GUI agent, which
orchestrates all the agents and communicates with the plat-
form administrator.The system uses both inter- and intra-
cluster communication. Intracluster communication lets
AISLE agents share perceptions and knowledge within a
single cluster, while intercluster communication ensures
successful propagation of data between clusters. Figure 3
shows AISLE’s multiagent system architecture.

In the contribution layer, CAs originally acquire data in
different format types and from diverse sources,such as files
on Internet servers, databases, or sensors. Each CA reviews
and validates incoming data streams and ultimately delivers
preprocessed data to the DMAs.The CAs vary their behav-
ior in accordance with the diverse input sources, following
pull or push approaches. Input sources that push data into
the system (such as sensors) typically have no local storage,
so CAs must monitor them continuously and capture data as
they are produced—that is,they must remain online.In other

cases,CAs must pull data stored
in files or databases, querying
these mediums to extract the
appropriate data. Having cap-
tured data in the original, raw
format,CAs must then validate
them. Such a service is realized
by equipping each CA with a
reasoning engine for data vali-
dation,which the system admin-
istrator could load when instanti-
ating the CA.

In the management layer,
DMAs fuse data coming from
various CAs into a common
data scheme, creating joint pre-
sentations (views on data) and
performing other preprocessing.
Depending on the end user
requirements, DMAs prepare
presentations, files, or data out-
put streams, which the distribu-
tion layer then further dis-
seminates. AISLE administra-
tors have full control of the data
manipulation process and can
load the DMAs with prepro-
cessing functions.

In the distribution layer,
DAs deliver the processed

AISLE

Contribution
layer

Management
layer

Distribution
layer

Contribution
agent

Data
management

agent

Distribution
agent

Contribution
agent

…

Data
management

agent

…

Distribution
agent

…

GUIA agent

Email

File

File

File

FTP

File

FTP

Sensor

Handcut

GUI

System administrator

Figure 3. Multiagent system architecture.

D

M

C
AISLE

Information

Data streams

Distribution
cluster
Information
propagation
notification
services Management

cluster
Network
orchestration

Data
fusion

Contribution
cluster
Data collection
and validation

Estimation of
missing values

Figure 2. AISLE as a synergy
of three cooperative clusters.

May ❘ June 2006 IT Pro 37

information to their final destination—the end-user
applications. DAs can use several methods for diffusing
information: Web messages, e-mail, or handouts using
SMPT, FTP, or HTTP protocols.Administrators can con-
figure e-mail distribution lists and customize the diffu-
sion services.

At start up, only the GUI agent is active.Then the GUI
agent launches the system’s user interface, fetches the sys-
tem configuration parameters, launches all CAs, DMAs,
and DAs at runtime, and, ultimately, starts the system
process.The administrator can fully customize agent com-
munication channels and more precisely define agents’
functionality parameters—decision structures, data pro-
cessing functions, and distribution customizations.

Development
We developed AISLE using JADE, the Java Agent

Development Environment, which supports seamless
agent-based development in Java (“JADE—A White
Paper,” Fabio Bellifemine et al., EXP in Search of
Innovation, Sept. 2003, pp. 6-19). An agent system imple-
mented with JADE can be distributed across several
machines, and administrators can even change the config-
uration at runtime by moving agents from one machine to
another, as and when required.

In addition, we used Protégé-2000 to develop an ontol-
ogy for describing all AISLE agent concepts and the pred-
icates used to create the communication contracts for the
services.

AISLE’s implementation conforms to the FIPA specifi-
cations for agent development and
communication (ACL Message
Structure Specification, document
no. SC00061 G, Foundation of
Physical Intelligent Agents, 2002).
Figure 4 presents a typical message
communicated by AISLE agents
for exchanging environmental
information, structured using
FIPA’s Agent Communication
Language. Figure 5 depicts the sys-
tem’s GUI, through which the user
can extend the provided services by
adding new agents, customize serv-
ice provision,or terminate services.

Although we’ve used software
agents, we could realize the same
architecture through Web services.
The major difference is that instead
of using SOAP and WSDL, our
JADE implementation relies on the
FIPA-HTTP protocol and the data
facilitator agent. We chose agents
because they are generally more
proactive, they can move from

machine to machine, and they can take the initiative when
necessary or have internal beliefs about their environment,
as in the case of CAs that operate in a pull fashion.

TEST CASE: AIR-QUALITY ASSESSMENT
DEMONSTRATION

We evaluated the AISLE architecture by applying it to
an ambient air-quality monitoring and assessment system.
The typical installation of such a system involves a sensor
network measuring air-quality data, including pollutant
distributions and meteoro- logical conditions.Usually such

(inform
:sender (agent-identifier :CA1)
:receiver (set (agent-identifier :DMA1))
:content

“((SendCADataToDMAMessage
(CADataToDMA

:TypeOfData Sensor
:Data <value>28.0</value>

<validationTag>VALID</validationTag>
<level>Low</level>
<variability>increasing</variability>“)))

:language fipa-sl
:ontology AISLE

Figure 4. A typical agent
message communicated by

a contribution agent to
a data management agent.

Figure 5. AISLE’s graphical user interface.

38 IT Pro May ❘ June 2006

S E R V I C E - O R I E N T E D A R C H I T E C T U R E

systems post their measurements into a database, and the
actual end users—human experts—postprocess the sensed
measurements for offline study and analysis of the atmos-
pheric phenomena.

However, identifying environmental incidents at the
time they occur could yield more immediate benefits. For
example, distributing air-quality indicators in urban areas
to asthma patients could improve their quality of life by
enabling them to take prevention measures when appro-
priate. In this respect, this technology lets us broaden the
goals of air-quality monitoring and assessment systems.
Trustworthy information should be disseminated on time
to distinct stakeholders that have dissimilar needs and
require different levels of access to information.

To demonstrate how this could work,we
implemented an air-quality assessment sys-
tem whose data sources are a network of
three stations that monitor several mete-
orological and air-pollutant attributes.(The
test-case system is similar to one described
in a previous work, “An Agent-Based
Intelligent Environmental Monitoring
System,”Ioannis Athanasiadis and Pericles
Mitkas, Management of Environmental
Quality, Mar. 2004, pp. 238-249.) The test
case system employs AISLE to review the
original data, calculate air-quality indexes
based on ozone concentrations,and update
a local database.(Ozone is a secondary pol-
lutant widely used as an overall indicator
of air quality.)

To ensure data flow into the system, we
set up three CAs on top of the data pools
residing at each meteorological station.
We extracted data-driven models and used
them to implement engines for validating
incoming data and estimating missing
measurements. The system employs two
DMAs: one integrates data tuples for the
database, and the second implements an
air-quality indicator alert service,based on
ozone indexes, using a deterministic rea-
soning module. This second DMA’s rea-
soning module incorporates thresholds for
ambient ozone concentration, defining
several alarm types. Finally, the system
includes two DAs in the distribution clus-
ter. One acts as an interface to the data-
base (DB-DA),while the other posts data
measurements and ozone alerts to the
final users over the Internet (Web-DA).

We tested this system on real air-quality
data recorded every quarter hour at three
monitoring stations for a three-year
period. AISLE managed a massive flow

of data and ultimately provided on-time, reliable infor-
mation to its end users, over the Internet.

Figure 6, showing the voyage of a single ozone meas-
urement to the final user, gives an example of the way the
AISLE mechanism integrates and enriches data coming
from the sensors, while providing efficient information
services to its final users. Suppose that sensors at Station A
measure an ozone concentration value.Contribution agent
1 captures and processes it accordingly: First, CA1’s data-
validation reasoning engine examines it for quality, and,
based on the result, replaces missing or erroneous values.
CA1 enriches the captured measurement with additional
qualitative information such as the validation and vari-
ability tags shown in Figure 6, and then forwards the data

End-user
applications

Webpage

@

html>

...

<tr>

<td>08:00-09:00</td>

<td> Air quality is

 normal...</td>

<td><img src="normal.gif"

 alt="No incident"/>

</tr>

...

</html>

01/06/2005 08:30 53.00

Content:

((sendAlarm

 (TimePeriod:date 01/06/2005

 :timeFrom 08:00)

 :timeTo 09:00

 (Alarm :status regular

 :color green)

...

))

Distribution

Web
distribution

agent

Management

Alarm
Data

management
agent

From other CAs

Content:

((sendMeasurement

 (TimeStamp :date 01/06/2005

 :time 08:30)

 (O3: value 53.00

 :unit ug/m3

 :level low

 :variability increasing)

 (Validation: measurement VALID)

))

Contribution

Contribution
agent

1

Data pool

Station A

Figure 6. How information flows through
the system (partial view).

May ❘ June 2006 IT Pro 39

to the DMA agents.The ozone alarm DMA receives mes-
sages from all CAs containing validated ozone measure-
ments. Having gathered all the required information, it
uses its ozone-alert reasoning engine to decide on an ozone
status, ultimately assessing air quality. Figure 6 shows the
outcome in this particular case—current status of ozone
concentration, regular; alarm state, green. Finally, the
ozone-alert DMA communicates to the Web-DA, which
updates the content of the published Web page. Current
lab experiments have shown very fast response times for
alarm delivery.

O ur work on AISLE provides a proof of concept of
how it is possible to provide useful public services
based on environmental data residing in legacy IT

systems or sensor networks. The architecture uses agent-
oriented software engineering with service-oriented prim-
itives to deliver on-time, enriched information to its end
users without human intervention. Because all agents are
loosely coupled, the present AISLE architecture—and the
implemented system—are fully extensible.We focused par-

ticularly on making the services provided by the agents
self-sufficient. The design considered exit strategies and
extreme event handling for both the individual agents and
the communication channels among them. New services
can be added to all three clusters without changing the
existing services. Our future research will focus on scaling
up and extending the current implementation.

The AISLE approach paves the way for environmental
institutes to incorporate dissemination services. It also
shows the potential of service-oriented architectures in
operational decision making, data fusion, and dissemina-
tion of environmental information. ■

Acknowledgments
Thanks go to Andreas Solsbach, of Technical University

of Clausthal, and Pericles Mitkas, of Aristotle University
of Thessaloniki, for their cooperation and assistance.

Ioannis N. Athanasiadis is a researcher at Istituto Dalle
Molle di Studi sull’Intelligenza Artificiale in Lugano,
Switzerland. Contact him at ioannis@idsia.ch; www.
athanasiadis.info.

By Steven L. Tanimoto
University of Washington

Python, an increasingly popular
general-purpose programming
language, offers a variety of
features that make it especially
well-suited for artificial intelli-
gence applications. This
ReadyNote will help professional
programmers pick up new skills
in AI prototyping and will
introduce students to Python's AI
capabilities. $19
www.computer.org/ReadyNotes

Here Now!
Introduction to Python for Artificial Intelligence

IEEE ReadyNotes

