
ABSTRACT

More and more sensor and automation data are 
available that enable animal breeders to define novel 
traits. However, sensor and automation data are often 
frequently measured differently (e.g., milk yield and 
different milk components are continuously measured 
during each milking). These differences are challeng-
ing animal breeders to define traits and use the most 
appropriate analytical models for genetic evaluation 
and breeding values. Traditionally, the process from 
raw data to breeding value estimations involves several 
steps: data curation, trait definition, variance compo-
nent estimation, genetic evaluation, and validation of 
the estimated breeding values (EBV). All these steps 
often take many iterations and several research projects 
to optimize the final genetic evaluations. To make this 
entire process—from raw data to validated EBV—more 
efficient, we combined all these steps in a cloud envi-
ronment that allows for faster processing and a faster 
data distribution time. We used real data (including 
1,782,373,113 daily milk-yield records of 1,120,550 dairy 
cows) and a real trait (a resilience trait based on the 
deviations from expected milk yields) to demonstrate 
the functioning of this cloud environment. The daily 
milk-yield records were incorporated into our cloud so-
lution, in which we have set up central binary large ob-
ject storage. Subsequent steps were all performed in the 
cloud. The data set was preprocessed in approximately 
6 h to obtain the resilience indicator for 352,871 cows in 
the first 3 lactations. Estimation of genetic parameters 
(heritabilities and genetic correlations) was performed 
by splitting the data into 5 subsets in ASReml, and pre-
diction of subsequent EBV was performed on the entire 
data set using MiXBLUP. Together with the validation 
of breeding values, this process encompassed 16.5 h. By 
combining the different steps from preprocessing sensor 
data to genetic evaluation of new traits in one cloud 

environment, we generated EBV and validation plots 
in approximately 1 working day. Moreover, our setup 
is a flexible design and can be adapted easily to test 
new, longitudinal sensor-driven traits and compare the 
performance of these new traits to previous ones.
Key words: dairy cows, sensor data, cloud solution, 
genetic evaluation

INTRODUCTION

The increasing use of sensor and automation tech-
nologies in livestock farming enables researchers to de-
fine new traits that are linked, for example, to animal 
health and welfare in cows (Smith et al., 2006; Mat-
thews et al., 2016; Ouweltjes et al., 2021). In animal 
breeding programs, the challenge lies in using these 
data sources in breeding value estimations to identify 
the best parents for the next generation. To develop 
breeding value estimations for a novel trait requires not 
only estimation of variance components and predictions 
to set up the genetic evaluation, but also it includes the 
processes ranging from loading and preprocessing data 
to optimizing the statistical model.

The initial step in generating new traits involves 
storage and handling sensor and automation data. The 
nature of these data can be both unstructured nonrela-
tional data, including camera or video images, as well 
as nonstandardized structured data, such as structured 
query language (SQL). Moreover, these data are often 
recorded in real time and can generate large volumes of 
data, particularly when recording over a long period of 
time. To accommodate these heterogeneous and often 
voluminous data, data lake storage has been shown to 
be effective (Schokker et al., 2020). A data lake is a 
structure to store, manage, access, and process large 
volumes of a wide range of structured, semistructured, 
or unstructured data sources in raw format. The adop-
tion of data lakes is often observed in the cloud en-
vironment. In addition, such cloud environments also 
contain tools to preprocess the data, such as reading 
in the data, and the following preprocessing steps such 
as filtering, transforming, joining, aggregating, and 
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writing the output (Gengler, 2019). Such preprocessing 
is necessary to prepare the raw data for subsequent 
analyses of variance component estimation and genetic 
evaluation. These analyses include steps that involve 
estimating genetic parameters for the trait of interest, 
which are in turn required for the subsequent genetic 
evaluation. Because estimating genetic parameters is 
demanding computationally, this process often includes 
generating subsets of the data for efficient analysis, as 
well as EBV and their respective reliabilities. These 
different analyses are performed with specific software 
packages, sometimes in different computing environ-
ments. In previous work, we reported on the compu-
tational time aspects of our cloud solution (Schokker 
et al., 2022). The objective of the current study was to 
develop and optimize further the cloud infrastructure 
for associated genetic software tools [ASReml (Butler et 
al., 2017) and MiXBLUP], and to test the functioning 
of the cloud infrastructure in estimating and validating 
the generated EBV using real (sensor) data from dairy 
cattle. The results of this test are used in our study to 
discuss the advantages and disadvantages of our cloud-
based approach in generating and validating EBV.

MATERIALS AND METHODS

No animals were used in this study, and ethical ap-
proval for the use of animals was thus deemed unneces-
sary.

Data Infrastructure

All analytical tools and software were implemented 
within the cloud environment of Microsoft Azure (https: 
/ / azure .microsoft .com/ en -us/ ), as depicted in Figure 1. 
Central binary large object (BLOB) storage was used 
and linked to Databricks (https: / / databricks .com/ 
) and customized Docker containers (https: / / www 
.docker .com/ ). Databricks is an Apache Spark-based 
analytics service designed for data science and engi-
neering (Zaharia et al., 2010). Databricks was used to 
extract, transform, and load (ETL) the raw data. We 
wrote a custom Python (v3.7.3) script and used Apache 
Spark (v3.1.1) for this ETL procedure. The entire 
aforementioned ETL procedure was performed within 
Databricks, on which we deployed a cluster. A cluster 
is a set of computation resources and configurations on 
which you run your workload. We set the cluster with 
the following specifications: the driver and workers all 
had 56 gigabytes of memory and 16 cores, and the num-
ber of workers was allowed to vary between 2 and 8. For 
the subsequent genetic analyses, we installed software 
on customized Docker containers. This involved setting 

up the first dedicated Docker container, with Linux as 
the operating system, that could communicate with the 
BLOB storage to estimate the variance components. 
This Docker had ASReml-R (v4.1.0.110) installed, 
and for calculations we used a virtual machine with 
4 central processing unit cores and 112 gigabytes of 
memory, and 2 graphics processing units (GPU). The 
second dedicated Docker container, also with Linux as 
the operating system, had MiXBLUP (v2.2) installed 
for genetic evaluation and validation of the EBV. For 
calculations, we used a virtual machine with 4 central 
processing unit cores and 16 gigabytes of memory.

Data Used

The same data set as described by Poppe et al. 
(2020) was used, containing 1,782,373,113 milk-yield 
records from 1,120,550 cows. These milk records were 
either obtained by automatic milking systems (AMS) 
or conventional milking systems (CMS). The accom-
panying pedigree data had records that went back to 
the year 1919.

Preprocessing Data and Defining  
Resilience Parameters

Based on data-editing scripts and snippets from the 
AWK (shell command) language and R developed by 
Poppe et al. (2020), we generated a custom-made Py-
thon script (as a Jupyter notebook) to preprocess the 
data by following an ETL procedure. By implementing 
these various scripts from Poppe et al. (2020) into one 
common language—in our case, Python (v3.7.3)—we 
ensured flexibility and interoperability for interacting 
with Apache Spark (v3.1.1). These newly developed 
scripts were deployed within a notebook in the Microsoft 
Azure Databricks environment. In this notebook, differ-
ent metadata were joined, including the milk records, 
pedigree, and birth dates. To easily modify the criteria 
for filtering the data, we made our scripts include sev-
eral parameters that had to be declared before running 
the script. These parameters included (1) the milking 
system (AMS or CMS), (2) parity (1, 2, > 3), (3) breed, 
and (4) breed percentage. In our demonstration case, we 
set these parameters to (1) AMS, (2) parities 1 through 
3, (3) Holstein-Friesian, and (4) breed percentage > 
75%. With these parameter settings, we performed sev-
eral filtering steps of these records and aggregated the 
data to specific traits. This ETL procedure consisted of 
4 aggregation steps: first, calculating the average milk 
yield per day; second, fitting a rolling average to the 
lactation curve, where we set the window size for the 
rolling average to –10 and +10 d; third, calculating 
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the variance of the deviations to the average milk yield 
per day; and fourth, transforming this variance with a 
natural logarithm (lnvar), which upon visual inspection 
made the trait normally distributed. Similar to Poppe 
et al. (2020), this lnvar was considered the resilience 
indicator of interest, where a cow with a high value for 
lnvar is assumed to be less resilient than a cow with 
a low value for lnvar. In addition, other parameters 
useful for the genetic statistical model were calculated: 
herd-year-season and lactation length classes. The ETL 
procedure resulted in 352,871 cows with one lnvar for 
each of 3 lactations for each cow. This ETL script is 
available at https: / / github .com/ dirkjanschokker/ 
cloudsolutionAnimalbreeding .git.

Estimation of Genetic Parameters

A trivariate model was fitted in which lnvar in lacta-
tions 1, 2, and 3 was treated as a separate trait. This 
model included the following fixed effects: herd-year-
season, calving age in months, and lactation length 
(remaining number of days after removing the first and 
last 10 DIM) in 7 classes, each containing a range of 40 
d (50 to 90 d, 91 to 130 d, and so on). The following as-
sumptions were made about the additive genetic effects 
in the multivariate models:
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where A is the additive genetic relationship matrix, ai 
represents the vector with additive genetic effects for 
trait i, σai

2  represents the additive genetic variance of 
trait i, and σa ai j  represents the genetic covariance be-

tween traits i and j. The following assumptions were 
made about the residuals in the multivariate models:
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where I is the identity matrix, ei represents the vector 
with residuals for trait i, σei

2  is the residual variance of 
trait i, and σe ei j  represents the residual covariance be-

tween traits i and j. Estimation of variance components 
is notoriously computationally intensive; therefore, we 
split the full data set in 5 subsets. This split into 5 
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Figure 1. Schematic overview of the types of data, data ingestion, and cloud infrastructure. Within the cloud we have shown the different 
steps in clock-wise fashion.

https://github.com/dirkjanschokker/cloudsolutionAnimalbreeding.git
https://github.com/dirkjanschokker/cloudsolutionAnimalbreeding.git


Journal of Dairy Science Vol. 105 No. 12, 2022

subsets was done at the herd level, and each subset 
contained approximately 20% of the data. Furthermore, 
we pruned the pedigree file according to a custom-made 
script using the R package dplyr (v1.0.7). This pruning 
entailed, first, selecting the cows of each subset and, 
second, including 5 generations of ancestors of the se-
lected cows.

Breeding Value Estimation and Approximation  
of Reliabilities

The model we used in MiXBLUP was equivalent to 
the model used in ASReml-R. However, in contrast to 
the previous step, in which the data were divided into 5 
subsets to estimate genetic parameters, the entire data 
set was used in this step to estimate the breeding values 
and to approximate reliabilities. Variance components 
were taken as the average from the subsets. MiXB-
LUP was used to calculate the reliabilities using the 
method of Tier and Meyer (2004). The input files for 
MiXBLUP are also available at https: / / github .com/ 
dirkjanschokker/ cloudsolutionAnimalbreeding .git.

Validation Study

To assess the value of our cloud infrastructure to go 
from raw (sensor) data to EBV depends on the valida-
tion accuracy of these EBV. Therefore, we implemented 
a 5-fold leave-one-out cross-validation (LOOCV) by 
removing the cows of the earlier used 5 subsets, and we 
ran the EBV calculations separately 5 times. For each 
bull, we calculated the mean daughter yield deviations 
(DYD) and the number of DYD per bull in each of the 
5 subsets. To have informative data per bull, we only 
retained bulls that had more than 25 daughters with 
DYD in each subset, and bulls with an EBV reliability 
> 0.25 in each subset. Then, each sire had 5 DYD and 5 
breeding values estimated. For validation, we averaged 
the DYD of the 5 subsets and retained the unique bulls 
over the 5 subsets (n = 173).

RESULTS

Preprocessing and Estimation of Trait Variance  
and Covariance Components

As a starting point, we used the same data as Poppe 
et al. (2020). This data set consisted of 1,782,373,113 
milk-yield records from 1,120,550 cows. We generated 
a Python script to preprocess the data by following the 
ETL procedure. This resulted in 352,871 cows with 1, 
2, or 3 lactations with a value for lnvar. The total time 
to load and preprocess the raw data into a resilience 
trait per lactation per cow took approximately 6.5 h 

with our setup. After preprocessing, we fitted linear 
mixed models with a limited maximum probability 
for 3 parities at once for each of the 5 subsets. These 
subsets consisted of 69,841, 71,843, 69,858, 70,947, and 
70,382 cows, respectively. The total computation time 
to estimate the genetic parameters (variance and cova-
riance) for all 5 subsets together was approximately 16 
h. Parity 1 showed the largest additive genetic variance 
(0.038), error variance (0.139), and heritability (0.3214) 
of lnvar (Table 1). Strong genetic correlations were 
observed between different parities for ‘lnvar’ (Table 
2). A genetic correlation of 0.98 was observed between 
parities 2 and 3. The second highest correlation of 0.93 
was between parity 1 and parity 2, whereas the lowest 
correlation of 0.89 was between parities 1 and 3.

Prediction and Validation of Breeding Values

Before analyzing the breeding values, we performed a 
filtering step that selected only those reliabilities >0.25. 
First, we calculated the mean EBV per parity per birth 
year for both bulls and cows (Figure 2). We observed a 
genetic trend from 1995 to 2013 for bulls and from 1995 
to 2017 for cows.

To evaluate the performance of the model used on 
our data set, we implemented a 5-fold LOOCV. An 
informative data set consisting of 173 bulls was used to 
measure the performance of the model by plotting the 
predictions and the observed data (Figure 3), where we 
observed an R2 value of 0.592 for the relationship across 
the LOOCV.
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Table 1. Variance components—additive genetic variance σa
2( ), error 

variance σe
2( ), and heritabilities—from the univariate analysis of the 

trait lnvar (SE in parentheses) per parity1

Trait Parity σa
2 σe

2 h2

lnvar2 1 0.038 (0.003) 0.139 (0.003) 0.214 (0.033)
2 0.027 (0.002) 0.131 (0.002) 0.172 (0.035)
3 0.027 (0.003) 0.123 (0.003) 0.182 (0.012)

1Estimates are weighted means of trivariate analyses of 5 subsets of the 
data, with the empirical SE in parentheses. 
2Natural log-transformed variance of deviations from a lactation curve.

Table 2. Genetic correlations1 between parities 1, 2, and 3 for the 
trait lnvar

Comparison lnvar2

Parities 1 and 2 0.93 (0.03)
Parities 1 and 3 0.89 (0.05)
Parities 2 and 3 0.98 (0.02)
1Genetic correlations are weighted means of trivariate analyses of 5 
subsets of the data, with the empirical SE in parentheses. 
2Natural log-transformed variance of deviations from a lactation curve.
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DISCUSSION

The increasing use of sensor and automation data 
in the livestock sector provides large volumes of data. 
Because of the nature of these data, in terms of vol-
ume, velocity, and veracity, an alternative infrastruc-
ture was proposed and used for storage of such data: 
a data lake (Schokker et al., 2020). In previous work, 
we showed part of a working cloud infrastructure in 
which sensor data from dairy farms, pedigree data, and 
cow characteristics were incorporated, and subsequent 
genetic analyses could be performed (Schokker et al., 
2022). Here, we go into more detail and discuss the 
process from choosing the cloud platform to building 
the infrastructure and demonstrating the functioning of 
such an infrastructure by applying all the steps neces-
sary to get from raw data to the validation of breed-
ing values using real data. Selection and justification 
of the computational resources are not trivial, and in 
our process choices were made to develop a function-
ing prototype. At the time of designing and building 
our cloud solution, the main 2 reasons for choosing 
Microsoft Azure were (1) our already available in-house 
experience with this platform and (2) the support of 
the in-house information technology services offered by 
Wageningen University and Research. In hindsight, we 
acknowledge that our developed cloud solution could 
be cost-inefficient at performing certain tasks, such 
as preprocessing. Nevertheless, we also chose certain 
tools and specifications (i.e., BLOB storage and GPU) 
to be ready for other types of sensor and automation 
data, such as videos or images. BLOB storage has the 
advantage of storing any type of text or binary data, 
and therefore is considered to be very useful in housing 
unstructured data (Bao et al., 2016). The reason for 
including GPU in our cloud solution was primarily for 

anticipated future implementation of image or video 
data that can be used to assess new phenotypes for 
animal breeding. During development of the current 
cloud solution, we optimized the cloud infrastructure 
and worked with real (sensor) data. This was done to 
demonstrate to animal breeders the potential useful-
ness and value of our cloud solution in retrieving and 
validating EBV for traits based on sensor data.

Preparation of the Infrastructure and Implementation 
of a Novel, Sensor-Based Trait

Defining a novel trait for breeding can be laborious; 
it encompasses several steps from raw (sensor) data to 
validating the trait of interest. These steps include data 
curation, data selection, trait definition, variance com-
ponent estimation, genetic evaluation, and validation of 
the EBV. By combining all these steps and parameter 
settings in one (cloud) environment by using digital 
(Jupyter) notebooks, we increased flexibility. By “flex-
ibility,” we mean the ability to switch easily from run-
ning routine genetic evaluations to running new genetic 
evaluations for new traits based on new sources of in-
formation: sensor and automation data. An important 
step in designing such new evaluations is developing 
appropriate statistical models. In our study, we used a 
trait for which the statistical model already had been 
developed (Poppe et al., 2020, 2021). By implement-
ing an existing statistical model, we could experience 
and demonstrate the benefits of a cloud solution in 
the generation of EBV. Benefits of this cloud solution 
include (1) the possibility for all collaborators (e.g., 
animal breeders) to upload their raw data in the cloud 
platform (data lake storage), and (2) the scalability and 
flexibility of computing power for preprocessing data or 
running statistical analyses. An example of the scalabil-
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Figure 2. Genetic trend of the mean EBV per year. The x-axis depicts the animal’s birth year, whereas the y-axis denotes the mean EBV. 
Colors indicate the parity, where red is parity 1, green is parity 2, and blue is parity 3. The left panel shows the genetic trend for bulls with an 
EBV reliability >0.25 and when >500 bulls were present per year. The right panel shows the genetic trend for cows with an EBV reliability 
>0.25 and when >15,000 cows were present per year.
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ity is the option to run data preprocessing on several 
clusters, where small but relevant changes in the script 
can change the outcome of the trait of interest. An 
example of flexibility includes the option to specify the 
number of parities to include, the particular genotype 
on which to focus, or the time period to use (e.g., 1990 
through 2000 or 2000 through 2020). Similarly, running 
downstream analyses simultaneously, such as deriving 
breeding value estimations with different statistical 
models, calculating the approximations of reliabilities, 
and determining yield deviations, are forms of flexibility 
offered by our cloud solution. To validate whether our 
developed cloud solution produces EBV comparable to 
those developed using the more traditional approach, 
we compared the EBV resulting from our cloud solu-
tion with that of prior work, as described next.

Benchmarking of the Results Generated  
by Our Cloud Solution

Here we discuss the performance of our cloud so-
lution with respect to the statistical models used to 
generate and validate the EBV with regard to the 
results of the statistical models. Despite the fact that 
previous research showed greater genetic improvement 
of udder health based on polynomial quantile regres-
sion when selected on the resilience trait lnvar (Poppe 
et al., 2020), we chose to include a moving average 
in our regression model because the moving average 
showed the highest heritabilities for health, longevity, 
and fertility traits (Poppe et al., 2020). The additive 
genetic variance observed in our study was 0.038; the 
error variance was 0.139. These values are less than the 
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Figure 3. Scatterplots of mean estimated breeding values and mean daughter yield deviations. The x-axis depicts the mean estimated breed-
ing values, whereas the y-axis denotes the mean daughter yield deviations for bulls (n = 173). The resulting R2 value is 0.592.
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0.062 (for additive genetic variance) and the 0.192 (for 
the error variance) reported by Poppe et al. (2020). 
These differences in values in the variance components 
could be a result of the optimized scripts used in our 
study, in which we developed a more detailed equa-
tion to calculate the daily milk production per cow 
by excluding more outliers. The resulting heritability 
of lnvar of 0.214 in our study was comparable to the 
0.244 reported previously by Poppe et al. (2020). Also, 
the resulting genetic correlations in our study were 
comparable to those reported by Poppe et al. (2020). 
These comparable results provide strong support that 
the implementation of the statistical models in our 
cloud solution was performed correctly. The validation 
of novel traits by implementing sensor and automation 
data has already been performed for traits such as milk 
yield, weight, mid-infrared spectroscopy (Shetty et al., 
2017), ruminating time (Leso et al., 2021), and dry 
matter intake (Lahart et al., 2019, Martin et al., 2021). 
The r2 value observed in our study for lnvar was 0.59, 
which is in line with the range of values (0.42 to 0.82) 
for new traits reported in the aforementioned studies 
(Shetty et al., 2017, Lahart et al., 2019, Leso et al., 
2021, Martin et al., 2021).

CONCLUSIONS

We implemented an approach to processing sensor 
and automation data for defining (novel) traits for ani-
mal breeding in which all the required steps to go from 
raw (sensor or automation) data to EBV are imple-
mented in the cloud. Moreover, our described approach 
to the exploration and preprocess handling of large 
volumes of data can be applied to other data and novel 
traits by modifying our scripts.
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