
Supporting the Decision-Making Process  
in Environmental Monitoring Systems  
with Knowledge Discovery Techniques  

Ioannis N. Athanasiadis and Pericles A. Mitkas 

Informatics and Telematics Institute, Centre for Research and Technology Hellas  
and 

Electrical and Computer Engineering Department, Aristotle University of Thessaloniki,  
Thessaloniki, Greece 

ionathan@ee.auth.gr, mitkas@eng.auth.gr 

Abstract. In this paper an empirical approach for supporting the decision 
making process involved in an Environmental Management System (EMS) that 
monitors air quality and triggers air quality alerts is presented. Data uncertainty 
problems associated with an air quality monitoring network, such as 
measurement validation and estimation of missing or erroneous values, are 
addressed through the exploitation of data mining techniques. Exhaustive 
experiments with real world data have produced trustworthy predictive models, 
capable of supporting the decision-making process. The outstanding 
performance of the induced predictive models indicate the added value of this 
approach for supporting the decision making process in an EMS.  

1. Introduction 

1.1. Environmental monitoring 

Environmental monitoring networks have been established worldwide in order to 
observe the conditions of the natural environment. Such networks generate vast 
volumes of raw data, while information systems, called Environmental Management 
Systems (EMS), have been occupied with integrating all recorded data-streams. A 
typical EMS installation involves the fusion into a central database of all data sensed 
at distributed locations. Until lately, all recorded data were meant for environmental 
scientists engaged in off-line studies and post-processing activities in their effort to 
better understand the natural phenomena involved and forecast potentially harmful 
incidents.  

However, during the last few years there has been a transition in environmental 
monitoring systems. Growing public interest in environmental protection and 
sustainable development has emerged the need for the diffusion of environmental 
information to all social parties. It is evident that public awareness affects the 
response of the involved stakeholders and the effectiveness of prevention measures. 
Thus, legislative acts in Europe and the US have deliberated environmental quality 
indicators, which need to be communicated to the public on-time, i.e. at the time 
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incidents occur. As a consequence, near-real–time (NRT) environmental assessment, 
incident identification and reporting services have to be incorporated in EMS. Such 
services require decision making at 'near real time'. The NRT constraint reveals two 
critical problems in delivering such tasks: (a) the low quality or absence of data, and 
(b) the changing conditions over a long period of time. As a result, the critical 
properties of an automated decision-making system are its ability to validate incoming 
measurements and its ability to adapt to an ever-changing environment. In this 
context, quantitative data-driven decision support models are challenged by the 
difficulties in handling dynamic and uncertain features of real-world environmental 
systems. Conditions for environmental management keep changing with time, 
demanding periodically updated decision support [14]. These properties can be 
realized by learning from data, using knowledge discovery techniques. 

1.2. Predictive models induced from environmental monitoring data 

Earlier research work has dealt with EMS using knowledge discovery techniques 
mainly for incident forecasting. Several models have been built for predicting 
incidents that may occur in the near future. For instance, conventional statistical 
regression models [7,15,17] and time-series analysis have been applied to predict 
ozone levels [8]. Neural networks have been used for short-term ozone prediction 
[22,26], while case-based reasoning [19] and classification and regression trees [16] 
have been employed for predicting air pollutant concentrations. Another example is 
the system developed for generating coral bleaching alerts, which is an indicator of 
harsh environmental conditions in an aquatic ecosystem, using a data-driven expert 
system [13]. In all aforementioned approaches, the decision making process related to 
incident forecasting has been successfully supported through the use of knowledge 
discovery techniques, such as statistical models, knowledge bases, case-based 
reasoning, classification trees, or artificial neural networks.  

In this work, knowledge discovery techniques have been applied for supporting 
decision making processes involved in an EMS, from a different perspective: Our 
main goal is not to forecast oncoming incidents, rather is to assess on-time, the 
monitored environmental conditions. This diversion in the point of view is a 
consequence of the emerging requirements of real-time and NRT reporting systems. 
Decision support is also necessary for distributing trustworthy information with 
minimal human intervention at the time incidents occur. In this paper, we present our 
work conducted for the development of data-driven decision strategies for 
successfully assessing ambient air quality at 'near real time', through the exploitation 
of machine learning techniques.  

2. Ambient air quality assessment 

2.1. Domain background 

Air quality depreciates in many cities, as a result of industrial activities and traffic 
emissions. For this reason, Air Quality Operational Centers have established 
monitoring networks in areas with (potential) air pollution problems. These networks 
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sense atmospheric conditions and trace related measurements, such as meteorological 
attributes and pollutants concentrations. Air Quality Operational Centers are 
responsible for processing all the recorded information and assess air quality. Certain 
indicators have been established in Europe and the US to determine air quality in 
urban areas, according to the European Directive on Ambient Air Quality (1996) and 
the US Clean Air Act (1990). Air pollutant concentration distinction in 'Air Quality 
Bands' has been applied to help the public associate pollution levels with possible 
health impacts. Air quality indicators issued by the European Commission are 
summarized in Table 1. In general, the calculation of air quality indicators is a simple, 
well-defined, straightforward procedure, as it involves the calculation of the average 
concentration in a certain time-frame. An in-depth discussion on air quality indicators 
and their association with human health can be found in [6]. EU Directives on Air 
Quality have delimited 'Information' and 'Alert' levels for air pollutant concentrations, 
associated with these bands. Specifically, European Directive 92/72/EEC arranges to 
inform the public when warning and information threshold levels are exceeded.   

Table 1. Air quality indicators 

   Air Quality Bands  
Pollutant Units Low S Moderate I High A Very High 
Ground Ozone ppb (1h av.) < 50  50-89  90-179  180+ 
Carbon Monoxide ppb (8h r.av.) < 10  10-14  15-19  20+ 
Nitrogen Dioxide ppb (1h av.) < 150  150-299  300-399  400+ 
Sulphur Dioxide ppb (15min av.) < 100  100-199  200-399  400+ 

S: Standard threshold, I : Information Threshold, A : Alerting Threshold 

 
In environmental monitoring networks, various 'sensor breakdown events', such as 

sensor malfunction, network delay, or noise, may lead to loss of or biased 
measurements. Consequently, all follow-up tasks including the identification of alerts 
are disabled or less credible. Potential incidents cannot be identified at the time they 
occur and human intervention is needed for substituting the missing measurements. 

In this manner, data uncertainty inherited from monitoring networks affects the 
efficient calculation of the air quality indicators. The typical procedure followed by 
the majority of Air Quality Operational Centers involves human experts to overcome 
data uncertainties. Usually, environmental scientists are engaged to assess air quality 
at real time and to trigger alarms when 'Information' and 'Alert' levels are exceeded. 
The US Environmental Protection Agency suggests a data quality assurance 
procedure through sophisticated graphing systems that allow monitoring staff to 
quickly review data coming from the monitoring network [12]. In London Air Quality 
Network1, flexible data analysis is supported through statistical tools [6] and in Texas 
Natural Resource Conservation Commission2, meteorologists set criteria for 
validating data and making predictions.  

It is evident that even if the calculation of air quality indicators is a simple task, the 
preparatory activities, of data validation and missing measurement estimation are 
complex processes, typically undertaken by humans. Even if the recorded 
measurements are available at time incidents occur, data validation and review is a 
                                                           
1 http://www.erg.kcl.ac.uk/london 
2 http://www.tnrcc.state.tx.us 
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struggling task that makes the whole procedure time-consuming. The European 
Environment Agency indicates that validated data, reviewed by environmentalists, are 
available one to six months after measurement [18]. Therefore, automating this 
procedure with respect to near real-time constraints is valuable.   

2.2. The related decision-making process  

Two are the driving forces involved in ambient air quality assessment. First comes the 
societal need for information, dispersed at the time of an incident. The second is data 
uncertainty, which is translated into an enormous workload for environmental 
scientists. In this context, an EMS is expected, not simply to calculate the air quality 
indicators, but to deal with data uncertainties and to adapt to an ever-changing 
environment. 

 The overall decision-making process in a generic automated EMS for ambient air 
quality assessment can be schematically represented as a fish diagram (Fig. 1). The 
starting point is to fuse all sensory inputs into the system. Then, a procedure of four 
decision-making steps follows. The first step is to validate incoming measurements. 
The second is to substitute invalid measurements, i.e. missing or erroneous ones. 
Finally comes, the calculation of formal alarms and the identification of custom 
alarms, for assessing air quality. 

Custom alarm identification and formal alarm calculation are simple tasks, for 
which environmental experts or legislation have specified, respectively, well-defined, 
explainable rules. In this respect, it is a task easy to be automated and reproduced by a 
computer system. However, the automated decision-making process, which involves 
the validation of incoming measurements and the estimation of missing ones, is a 
challenging problem, dependent on local conditions and seasonal trends. This 
problem was tackled in this work using knowledge discovery techniques on 
environmental monitoring data. 

 
 

 

Fig. 1.  The decision making process involved in reporting EMS. 
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2.3. Knowledge discovery for air quality assessment 

The current procedure at Air Quality Operational Centers involves data validation and 
missing measurement estimation by human experts. Vast volumes of data recorded by 
monitoring networks have been reviewed by experts, who appended data validation 
tags and air quality indicators. Our assumption is that mining these data may yield 
trustworthy predictive models, which can be used for supporting future decision-
making. Interesting patterns, hidden in environmental data sets, can be discovered and 
subsequently embedded into a decision support system. In this way, data-driven 
decision making models can be used for supporting an automated procedure for 
issuing air quality alarms at a timely fashion. A data-driven solution for dealing with 
uncertainties in an environmental monitoring network is preferable, because it takes 
into account the local characteristics of the problem at hand, which may deviate from 
general trends or 'rules of thumb'. As a result, the overall decision-making is more 
accurate, since data-driven models adapt the problem-solving method to local 
conditions and time-evolving trends. 

3. Mining Air Quality Data 

3.1. Available data and preprocessing 

In this work, we demonstrate the ability of knowledge discovery techniques to deal 
with data uncertainty problems involved in an EMS. Specifically, two estimators are 
employed to validate incoming ozone measurements and to estimate missing ones. 
These estimators realize data-driven strategies induced from environmental data 
recorded by an air quality monitoring network in the district of Valencia, Spain.  

The available data had been collected in three meteorological stations, situated in 
distinct locations in the region of Valencia. Nine variables, including both 
meteorological and air-pollutant variables, were sampled on a quarter-hourly basis for 
a period covering years 1999-2001. The sampled variables as well as their 
corresponding units are shown in Table 2. The recorded measurements are 
accompanied with the respective validation tags and quality indicators for ambient 
ozone variable, which have been apended manually by environmental scientists. The 
ozone validation tag characterizes the corresponding ozone measuremement as correct 
('a') or erroneous ('l'). The ozone concentration level is characterized as either 'low', 
'medium', 'high' or 'very high' for values in the ranges 0–49 � g/m3, 50–89 � g/m3, 90–
179 � g/m3, or 180– � g/m3, respectively. These ranges correspond to the 'Air Quality 
Bands' of the Valencian Community [20]. 

Datasets contain 105,216 records for each station, bringing the total to  315,648 
data records. In 16,304 records, that is around 5.2% of the total, the ozone variable is 
characterized as 'erroneous'. Errors in measuring ozone concentration may be 
attributed to several reasons, including polarization, noise, network or sensor fault. 
For more than half of the erroneous records, ozone concentration is missing, while for 
the rest some measurement is recorded, but it was rejected by the environmental 
scientists. Ozone air quality indicator is classified in four labels: ‘L’ , ‘M’ , ‘H’ , and 
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‘V’ ., with the overall distribution, in all datasets, at 27.8%, 41.7%, 27.5% and 0.2%, 
respectively. The statistics of the nine available datasets are presented in Table 3. 

Table 2: Air pollutants and meteorological attributes 

Data Attribute Symbol Data Type Units  
1 Date D date  
2 Time T time  
3 Sulfur dioxide SO2 real  �g/m3  
4 Ozone O3 real  �g/m3  
5 Nitrogen oxide NO real  �g/m3  
6 Nitrogen dioxide NO2 real  �g/m3  
7 Nitrogen oxides NOx real  �g/m3  
8 Wind velocity VEL real  m/s  
9 Wind direction DIR real  deg  
10 Temperature TEM real  oC  
11 Relative humidity HR real  %  
12 O3ValidationTag VAL nominal 'a' correct  
    'l' erroneous  
13 Ozone Indicator O3Level nominal 'L' (0-49�g/m3)  
    'M' (50-89�g/m3)  
    'H' (90-179 �g/m3)  
    'V' (>180�g/m3)  

Table 3: Environmental datasets statistics 

    Ozone Measurements Ozone Quality Indicator 
Dataset 

No. 
Station Year Instances Valid Erroneous L M H V 

1  1999 35040 33390 1650 15931 12366 5405 88  

2 GRAU 2000 35136 33699 1437 17878 11109 4830 120  

3  2001 35040 33187 1853 19971 12294 1742 108  

4  1999 35040 30470 4569 1082 14570 16240 46  

5 MORE 2000 35136 31881 3255 2653 15054 16779 43  

6  2001 35040 33041 1998 2575 15116 16068 24  
7  1999 35040 34318 722 8626 17279 8851 46  

8 ONDA 2000 35136 34881 255 9241 17460 8267 21  

9  2001 35040 34475 565 9777 16283 8482 29  

3.2. Incoming measurement validation predictive model 

Measurement validation is, in general, a function approximation problem, typically 
addressed in sensor networks using statistical methods [10], principal component 
analysis [11], Kalman filters [23], belief networks [1], or association rules [25]. 
However, the problem at hand is to decide whether an ozone measurement captured 
by the sensor is valid or not. As there are two validation tags (namely 'a' and 'l') the 
incoming measurement validation problem essentially becomes a two-class 
classification problem. Due to the uneven distribution of the two classes it is essential 
to focus on the identification of the minority class (‘ l’ ).  
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The predictive model developed to estimate the validity of an incoming ozone 
measurement uses the immediate history of the ozone sensor recordings. Ozone time-
series data recorded in the nine available datasets have been preprocessed and the 
extracted features are described in Table 4.  

The predictive model comprises seven predictor variables, calculated for a time 
window of 90 minutes (i.e. the past six measurements are buffered), and the response 
variable 'O3val', which is a nominal attribute labeled 'a' or 'l'.  

Table 4. Attributes used for the validation decision model 

O3 The current ozone value 
O3_15 The ozone value 15 min ago 
O3_45 The ozone value 45 min ago 
O3_75 The ozone value 75 min ago 
MinMax30 The difference between the maximum and the minimum ozone value in the last 30 

minutes 
MinMax60 The difference between the maximum and the minimum ozone value in the last 60 

min 
MinMax90 The difference between the maximum and the minimum ozone value in the last 90 

min 
O3val The corresponding validation tag (valid/erroneous) 

3.3. Erroneous measurement estimation predictive model 

An estimation of ambient ozone concentration from other variables is “ feasible in 
principle” . Ambient ozone concentration is known to be a function of both nitrogen 
oxides NOx [9] and meteorological variables [15]. It has been demonstrated that 
estimation of environmental missing data can be affected by regression techniques, 
e.g. linear extrapolation [12]. Nevertheless, conventional repressor models are 
restricted by a priori assumptions, including a model’s structure. An empirical 
approach is proposed here for estimating missing ozone measurements directly from 
the data 'by classification'. 

The problem can be summarized as follows: When the ozone sensor captures no 
measurement, or if the captured measurement is rejected by the validation process, the 
goal is to estimate the missing ozone concentration value from the remaining 
variables available. This problem can be considered as a function approximation 
problem. Since there are only four ozone concentration levels, the aforementioned 
estimation problem can be reformed as a classification problem.  

Specifically, we have developed two predictive models for estimating ambient 
ozone's concentration level. The first one uses only the concurrent measurements of 
other pollutants and meteorological attributes for predictor variables. In this way, an 
on-line, memoryless, decision-making scheme is created, as only concurrent 
measurements are used.  In the second model, historical ozone measurements are 
appended. This model uses a short memory for storing past ozone measurements in a 
30 minutes buffer, i.e. the prior two measurements are cached.  The output variable in 
both models is the ozone quality indicator, a nominal variable sized 'L', 'M', 'H', 'V'. 
The attributes used for these models are summarized in Table 5. The available 
datasets have been preprocessed properly in order to be restructured in the appropriate 
form.   
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Table 5. Attributes used for the estimation decision model  
(Those in italics are used in the second model) 

SO2 The concurrent value of SO2 concentration 
NO The concurrent value of NO concentration 
NO2 The concurrent value of NO2 concentration 
NOX The concurrent value of NOx concentration 
VEL The concurrent value of Wind velocity 
TEM The concurrent value of Temperature 
HR The concurrent value of Relative Humidity 
O3_15 The ozone value 15 min ago 
O3_30 The ozone value 30 min ago 
O3Class The (missing) ozone value level (low/med) 
 

4. Experiments and results  

4.1. Decision tree induction 

An empirical approach for creating data-driven decision making models was utilized 
for both cases. Quinlan's C4.5 algorithm for decision tree induction was employed 
[21]. Specifically, the C4.5 implementation in WEKA knowledge analysis 
environment [24], named J48, was used. J48 has been employed for inducing both 
pruned and un-pruned decision trees, whose nodes specify inequalities for the values 
of the respective environmental predictor attributes, while its leaves specify the output 
class. Two pruning methods have been used for improving the decision making 
capabilities of the induced decision trees: a. Confidence Factor Pruning, and b. 
Reduced Error Pruning.  

In total, we tested twenty three training schemes with C4.5 algorithm, using the 
following options:  

a) Un-pruned decision tree induction (U). (One scheme) 
b) Pruned decision tree induction, using the Confidence Factor parameter (C), 

where C = 0.05, 0.1, …, 0.45, 0.5 (10 schemes). 
c) Pruned decision tree induction, with Reduced Error Prunning using various 

values for the number of folds parameter (N), where N = 2, 3, 5, 10, 20, …, 
500, 1000 (12 schemes). 

4.2. Training and testing 

The aforementioned training schemes have been used for inducing decision trees for 
both the incoming measurement validation task and the erroneous measurement 
estimation task. The twenty-three training schemes have been applied on all 
preprocessed datasets. Training has been performed independently for each station 
and each year, i.e. there have been nine experiments for each case. A uniform training 
and testing procedure was followed: For each experiment, the first half of the records, 
covering period January – June of the year, has been used for training. The remaining 
records, which correspond to the period July–December of the year, have been used 
for testing. Following this procedure, C4.5 capability for learning from data is 
investigated for creating data-driven decision making models that are adapted in both 
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space (i.e. station) and time (i.e. year). In total, we elaborated 9�23=207 experiments 
for each task.    

4.3. Results for the incoming measurement validation task  

On overview of the results acquired for the incoming measurement validation task, is 
shown in Table 6. The results of the decision tree that outperforms for each 
experiment are presented along with the scheme options and the number of rules for 
the training phase. The overall accuracy at the testing phase in all experiments is 
extremely satisfactory, as its average reaches 98.3%. As the minority class 
corresponds to the 5.2% of the total records, we consider 95% accuracy performance 
as a "measure of acceptance" for the induced models. In this respect, we consider the 
extracted decision trees markedly capable of validating incoming ozone 
measurements. Also, note that the minority class is correctly identified. Minority class 
identification precision is over 88% in most cases, while minority class recall measure 
reaches an average of 71.5%.  

Table 6: Measurement Validation Model Training and Testing 

 Training Phase Testing Phase 
Dataset Percent Scheme Number Overall Erroneous Measurements 

Station Year Correct Options of Rules Accuracy Precision Recall 
 1999 99.62 N 5 10 98.64 89.47 40.91 

GRAU 2000 99.77 N 3 4 99.68 98.88 83.02 
 2001 99.91 U  35 95.29 93.71 57.20 
 1999 99.69 C 0.5  13 97.45 96.92 85.41 

MORE 2000 98.41 N 30 15 99.47 88.12 97.67 
 2001 98.69 N 10 15 97.48 86.79 79.96 
 1999 99.64 N 3 3 97.72 93.03 32.69 

ONDA 2000 99.75 C 0.05 8 99.80 61.90 78.00 
 2001 99.86 N 3 4 99.74 99.69 88.01 

4.4. Erroneous measurement estimation results 

As discussed in section 3.3, two predictive models have been developed for 
estimating missing or erroneous ozone concentration levels. The first one uses 
concurrent pollutant and meteorological variable values. The corresponding results 
are shown in Table 7. The second combines concurrent pollutant and meteorological 
variable values with ozone's immediate history. Its results are summarized in Table 8. 
The memoryless models have a very good performance, but the models with history 
outperform in all cases. Outstanding results, acquired with the models with history, 
have an average predictive accuracy of 93.75% on the test data. Also, note that 
decision trees induced for the history model are simpler, as the number of rules is 
smaller. Experimental results imply that knowledge discovery techniques can produce 
to create decision making models that estimate ozone's erroneous measurements 
successfully.   
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Table 7: Erroneous Measurement Estimation Model Results  
(Model without history) 

Dataset Training Scheme Number Testing 
Station Year Accuracy Options of Rules Accuracy 

 1999 79.45 N 300 53 74.29 

GRAU 2000 79.66 N 300  40 74.91 

 2001 86.15 N 200 72 75.48 

 1999 87.41 N 20 248 67.99 

MORE 2000 87.29 N 2  355 59.54 
 2001 84.52 N 30  235 52.72 

 1999 75.37 N 300  63 62.93 

ONDA 2000 73.22 N 200  85 61.69 

 2001 65.72 N 1000  24 57.68 

Table 6: Erroneous Measurement Estimation Model Results  
(Model with history) 

Dataset Training Scheme Number Testing 
Station Year Accuracy Options of Rules Accuracy 
 1999 94.03 N 10  71 94.23  

GRAU 2000 94.97 C 0.05   68 94.63  

 2001 96.29 N 2  68 93.32  

 1999 97.58 N 50  7 95.98  
MORE 2000 96.69 C 0.05  4 97.03  
 2001 97.49 N 50  20 95.57  

 1999 90.68 N 1000  3 90.66  

ONDA 2000 91.70 N 3  64 91.86  
 2001 92.45 N 30  52 90.49  

5. Discussion 
 
In this paper, knowledge discovery techniques have been applied for supporting the 
decision-making process involved in a reporting EMS. The empirical approach 
followed yielded trustworthy decision making models. Experimental results have 
proven the potential of knowledge discovery techniques for data-driven, on-line 
decision support, which adapts to local conditions and time-evolving trends. 
Specifically, the data-driven approach, managed to deal with data uncertainties 
involved in an air quality EMS.  

The predictive models extracted have been realized in a NRT reporting EMS, 
named O3RTAA [2,3]. The O3RTAA system has been developed as a multi-agent 
decision support system for assessing ambient air quality. O3RTAA system has been 
deployed in collaboration with IDI-EIKON, Valencia, Spain, and has been 
successfully installed at the Mediterranean Centre for Environmental Studies 
Foundation (CEAM), Valencia, Spain. 
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The overall goal of O3RTAA is to assess air quality by the identification of 
ambient ozone indicators. O3RTAA captures air-quality data, including pollutants' 
concentrations, measured at several meteorological stations and processes them in 
order to calculate both Formal and Custom Ozone Alarms. Besides the alarm 
triggering activities and the usual 'housekeeping' tasks, such as the updating of the 
database with incoming measurements, O3RTAA is empowered [4,5] with advanced 
features, including measurement validation, and estimation of missing values. These 
advanced features are enabled by agent capabilities for reasoning rationally and the 
exploitation of knowledge discovery techniques.  
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