
A retraining methodology for enhancing agent intelligence

Andreas L. Symeonidis a,*, Ioannis N. Athanasiadis b, Pericles A. Mitkas a

a Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki and Laboratory of Intelligent Systems and Software

Engineering, Informatics and Telematics Institute/CERTH, 54124 Thessaloniki, Greece
b Istituto Dalle Molle di Studi sull’ Intelligenza Artificiale, CH-6928 Manna, Lugano, Switzerland

Received 5 August 2004; accepted 3 June 2006
Available online 17 October 2006

Abstract

Data mining has proven a successful gateway for discovering useful knowledge and for enhancing business intelligence in a range of
application fields. Incorporating this knowledge into already deployed applications, though, is highly impractical, since it requires recon-
figurable software architectures, as well as human expert consulting. In an attempt to overcome this deficiency, we have developed Agent
Academy, an integrated development framework that supports both design and control of multi-agent systems (MAS), as well as ‘‘agent
training’’. We define agent training as the automated incorporation of logic structures generated through data mining into the agents of
the system. The increased flexibility and cooperation primitives of MAS, augmented with the training and retraining capabilities of Agent
Academy, provide a powerful means for the dynamic exploitation of data mining extracted knowledge. In this paper, we present the
methodology and tools for agent retraining. Through experimented results with the Agent Academy platform, we demonstrate how
the extracted knowledge can be formulated and how retraining can lead to the improvement – in the long run – of agent intelligence.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Data mining; Multi-agent systems; Agent intelligence; Training; Retraining

1. Introduction

In a highly complex and competitive business environ-
ment, companies must take swift, yet fit decisions that rely
on corporate logic and domain knowledge. Diffusing, how-
ever, this knowledge into the software processes of the
company is a difficult task, which requires reconfigurable
software architectures and human expert involvement. A
unified approach for discovering useful corporate knowl-
edge and incorporating it into the company’s software
would therefore be highly desirable.

The most dominant solution for discovering non-trivial,
implicit, previously unknown and potentially useful [8]
knowledge is Data Mining (DM), a technology developed
to support the tremendous data outburst and the impera-
tive need for the interpretation and exploitation of massive

data volumes. DM issues concerning data normalization,
algorithm complexity and scalability, result validation
and comprehension have already been successfully dealt
with [1,14,25], while numerous approaches have been
adopted for the realization of autonomous and versatile
DM tools, which foster all the appropriate pre- and post-
processing steps that constitute the process of Knowledge
Discovery in Databases (KDD) [6,8,20]. The ultimate goal
of DM is the extraction of a valid knowledge model (i.e.,
Decision Rules, Decision Tree, Association Rules, Clus-
ters, etc.) that best describes the trends and patterns that
underlie in the data.

On the other hand, despite the support corporate soft-
ware provides on process coordination and data organiza-
tion, it often – especially legacy software – lacks advanced
capabilities, resulting therefore in decreased company com-
petitiveness. The increasing demand for sophisticated soft-
ware that comprises of collaborative, yet autonomous,
units to regulate, control and organize all distributed activ-
ities involved in the company processes, has oriented AI

0950-7051/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2006.06.003

* Corresponding author. Tel.: +30 2310 99 6349; fax: +30 2310 99 6398.
E-mail addresses: asymeon@iti.gr, asymeon@ee.auth.gr (A.L.

Symeonidis).

www.elsevier.com/locate/knosys

Knowledge-Based Systems 20 (2007) 388–396

In Knowledge-based Systems, 20 (4):388-396, 2007.

researchers towards the employment of Agent Technology
(AT) in a variety of disciplines [15,26]. The versatility and
generic nature of the multi-agent technology paradigm
has indicated that problems which are inherently distribut-
ed or require the synergy of a number of distributed ele-
ments for their solution can be efficiently implemented as
a multi-agent system (MAS) [9].

The coupling of DM and AT principles is therefore
expected to provide an efficient gateway for developing
highly reconfigurable software approaches that incorporate
domain knowledge and provide decision making capabili-
ties. The exploitation of useful knowledge extracted by
the use of DM may considerably improve agent infrastruc-
tures, while also increasing reusability and minimizing cus-
tomization costs.

Going briefly through related work, attempts to couple
DM and AT already exist. Galitsky and Pampapathi [13]
use both inductive (DM) and deductive (AT) approaches,
in order to model and process the claims of unsatisfied cus-
tomers. Deduction is used for describing the behaviors of
agents (humans or companies), for which we have complete
information, while induction is used to predict the behavior
of agents, whose actions are uncertain to us. A more theoret-
ical approach on the way DM extracted knowledge can con-
tribute to AT performance has been presented by Fernandes
[10], who attempts to model the notions of data, informa-
tion and knowledge in purely logical terms, in order to inte-
grate inductive and deductive reasoning into one inference
engine. Kero et al. [17], finally, propose a DM model that
utilizes both inductive and deductive components. Within
the context of their work, they model the discovery of
knowledge as an iteration between high-level, user-specified
patterns and their elaboration to (deductive) database que-
ries, whereas they define the notion of a meta-query that per-
forms the (inductive) analysis of these queries and their
transformation to modified, ready-to-use knowledge.

Advancing on earlier research efforts to couple the two
technologies, we have developed Agent Academy [19,22],
an integrated platform for developing MAS architectures
and for enhancing their functionality and intelligence
through the use of DM techniques.

Agent Academy (AA) agents are developed over the
Java Agent Development Framework (JADE) [5], which
conforms to the FIPA specifications [11]. The MAS ontol-
ogies are developed through the Agent Factory module
(AF) of AA. Data to be mined are imported to AA in
XML format and are forwarded to the Data Miner module
of AA, a DM suite that expands the Waikato Environment
for Knowledge Analysis (WEKA) tool [25]. The extracted
knowledge structures are represented in PMML (Predictive
Model Markup Language), a language that efficiently
describes clustering, classification and association rule
knowledge models [7]. The resulting knowledge is then
incorporated into the agents of the MAS by the use of
the Agent Training Module (ATM) of AA. All necessary
data files (application data, agent behavior data, knowl-
edge structures, agent ontologies) are stored into AA’s

main database, the Agent Use Repository (AUR). Agents
can be periodically recalled for retraining, since appropri-
ate agent tracking tools have been incorporated into Agent
Academy, in order to monitor agent activity after their
deployment.

It is through retraining that we intent to prove certain
DM techniques can be used to augment agent intelligence
and therefore improve MAS overall performance. The rest
of the paper is organized as follows: Section 2 determines
the formal model for training and retraining agents
through Agent Academy and specifies all the necessary
notations. Section 3 outlines the already developed mecha-
nism for training and retraining, while Section 4 describes
the various training and retraining options for the improve-
ment of agent intelligence and presents some indicative
experimental results. Finally, Section 5 summarizes and
concludes the paper.

2. Formal model for agent (re)training

When a MAS application is deployed by the use of
Agent Academy, the developer has to follow a certain
methodology. These steps are:

(a) Create the application ontology;
(b) Create agent behaviors;
(c) Create agent types, realizing the created behaviors;
(d) Perform data mining on agent type-specific datasets;
(e) Generate knowledge models for each agent type;
(f) Create the agents of the application (of the different

agent types);
(g) Incorporate the extracted knowledge models into the

corresponding agents;
(h) Instantiate the MAS;
(i) Monitor agents;
(j) Periodically retrain the agents of the MAS.

Let O be the ontology of the MAS. Let A = {A1,
A2, . . . ,An} be the set of attributes described in O and
defined on D, the application data domain. Let D ˝ D be
a set of application data, where each dataset tuple is a vec-
tor t = {t1, t2, . . . , tn}, and ti, i = 1, . . . ,n is a value for the
corresponding attribute Ai. Missing values are allowed
within t.

In order to initially train a certain type Agi, i = 1, . . . ,k

of application agents, we use a subset of the application
dataset, containing the attributes that are relevant to this
specific type. We therefore define DIAgi ˝ DIT, where DIAgi

is the initial training dataset for agent type Agi, and DIT is
the initial application dataset. In most cases DIT = D. For
each Agi we perform data mining on the corresponding
dataset DIAgi, in order to extract a useful knowledge model
KMo(o = 1, . . . ,p) and incorporate it into all Agi(j),
j = 1, . . . ,m, the Agi-type agents of the MAS. We then
instantiate the MAS and monitor its agents.

In the retraining phase, each agent can be retrained indi-
vidually. The available datasets include: the initial dataset

A.L. Symeonidis et al. / Knowledge-Based Systems 20 (2007) 388–396 389

DIT, a new non-agent dataset1 DNAgi, and all the datasets
DAgi(j), each containing the tuples representing the actions
(decisions) taken by the respective agent. It must be
denoted that DAgi = DAgi(1) ¯ DAgi(2) ¯ � � � ¯ DAgi(m).
The symbol ¯ represents the concatenation of two datasets,
an operation that preserves multiple copies of tuples. There
are five different options of agent retraining, with respect
to the datasets used:

(A) DIAgi ¯ DNAgi. Retrain the agent using the initial
dataset along with a new, non-agent dataset DNAgi.

(B) DNAgi ¯ DAgi. Retrain the agent using a non-agent
dataset DNAgi along with DAgi, a dataset generated
by all the Agi-type agents of the application. AA
agents are monitored and their actions are recorded,
in order to construct the DAgi dataset.

(C) DIAgi ¯ DNAgi ¯ DAgi. Retrain the agent using all the
available datasets.

(D) DIAgi ¯ DAgi. Use the initial dataset DIAgi along with
the agent generated data.

(E) DIAgi ¯ DAgi(j). Use the initial dataset DIAgi along
with DAgi(j), the generated data of the jth agent.

A schematic representation of the training and retrain-
ing procedure is given in Fig. 1.

Through AA and its training/retraining capabilities the
user can formulate and augment agents’ intelligence. AA
supports a variety of both supervised (classification) and
unsupervised learning (clustering, association rule extrac-
tion) DM techniques, shown in Table 1.

3. The training and retraining mechanism

In order to enable the incorporation of knowledge into
agents, we have implemented Data Miner as an agent-ori-
ented tool. It is a DM suite that supports the application of
a variety of Classification, Clustering and Association Rule
Extraction algorithms on application-specific and agent-
behavior-specific data (Table 1). Data Miner can also
incorporate the extracted decision models into the AF pro-
duced agents, augmenting that way their intelligence.
Apart from being a core component of the AA platform,
the Data Miner can also function as a standalone DM tool.

The mechanism for embedding rule-based reasoning
capabilities into agents is illustrated in Fig. 2.

Data, either application-specific or agent-behavior-spe-
cific, enter the module in XML format. Each data file con-
tains information on the name of the agent the file belongs
to and on the decision structure of the agent it will be
applied on. The XML file is then inserted into the Prepro-

cessing Unit of the Data Miner, where all the necessary
data selection and data cleaning tasks take place. Next,
data are forwarded to the Miner, where the user decides

on the DM technique, as well as on the specific algorithm
to employ. After DM is performed, the results are sent to
the Evaluator, which is responsible for the validation and
visualization of the extracted model. If the user accepts
the constructed model, a PMML document describing
the knowledge model is generated. This document express-
es the referencing mechanism of the agent we intend to
train. The resulting decision model is then translated to a
set of facts executed by a rule engine. The implementation
of the rule engine is realized through the Java Expert
System Shell (JESS) [12], which is a robust mechanism
for executing rule-based agent reasoning. The execution
of the rule engine transforms the Data Miner extracted
knowledge into a living part of the agent’s behavior.

After the MAS has been instantiated, the user has the
ability to monitor AA agents and their decisions. These
decisions are stored into the AUR. For agent j, data stored
in the AUR constitute the DAgi(j) dataset. The user
can then decide, as mentioned in Section 2, on the dataset
s/he would like to perform retraining on.

4. Augmenting agent intelligence

4.1. Different retraining approaches

Retraining is performed in order to either increase or
refine agent intelligence. By reapplying data mining on a
new or more complete dataset, the user expects to derive
more accurate patterns and more efficient associations.

The five retraining options with respect to the available
datasets, can be classified into two main approaches: a) the
type-oriented, which deals with the augmentation of intelli-
gence of Agi, all the type-i agents (options A–D) and, b) the
agent-oriented, which focuses on the refinement of intelli-
gence of an individual agent Agi(j), the jth agent of type i

(option E).
It should also be denoted that we differentiate on the

way we define ‘‘intelligence improvement’’, since AA pro-
vides both supervised and unsupervised learning DM tech-
niques. In the case of classification, improvement can be
measured by evaluating the knowledge model extracted
metrics (mean-square error, accuracy, etc.), while in the
case of clustering and association rule extraction intelli-
gence augmentation is determined by external evaluation
functions.

The classification algorithms provided by the AA plat-
form are decision tree (DT) extraction algorithms. The
basic prerequisites for the proper application of a DT con-
struction algorithm are the existence of a distinct set of
classes and the availability of training data. All the DT
algorithms supported by the AA platform are criterion gain

algorithms, i.e., algorithms that decide on the construction
of the DT, according to the minimization (or maximiza-
tion) of a certain criterion. In the case of ID3 and C4.5, this
criterion is the information gain [21], in the case of CLS, it is
record sorting [14], and in the case of FLR, the criterion is
the inclusion measure [16].

1 We define a non-agent dataset, as the dataset that contains informa-
tion on the actions of agents, but has not been produced by them
(probably data come from a pre-stored application dataset).

390 A.L. Symeonidis et al. / Knowledge-Based Systems 20 (2007) 388–396

The clustering algorithms provided by AA are partition-
ing algorithms (PAs). The objective of PA algorithms is the
grouping of the data provided into discrete clusters. Data
must have high intra-cluster and low inter-cluster similari-
ty. PA algorithms’ splitting criterion is the Euclidean dis-

tance between data [18].

Finally, the association rule extraction (ARE) algo-
rithms provided by AA are mainly focused on transaction-
al datasets. AREs attempt to discover, as their name
implies, associations between items. In order for these algo-
rithms to decide on the strongest associations, two metrics
are considered: support and confidence [3].

4.2. Training and retraining in the case of supervised learning

Although the splitting criteria are different, all of the
above mentioned classification algorithms are applied in
a similar manner. We may focus on the information gain
criterion that is employed by the C4.5 and ID3 algorithms,
nevertheless the approach followed can be easily adjusted
to other classification algorithms of the platform.

The information gain expected when splitting dataset D

with respect to attribute Ai, Ai 2 A is given by

GainðD;AiÞ ¼ InfoðDÞ � InfoðD;AiÞ ð1Þ

Create Ontology

Create Agent Behaviors

Create Agent Types

Create Agents

Perform Data Mining

Create Knowledge Model

Incorporate Model into Agents

Deploy Application

Monitor Agent Actions

Retrain Agents

Use the DatasetiIAgD

Retrain using one of the available
datasets:

1)

2)

3)

4)

5) ()

i i

i i

i i i

i i

i i

IAg NAg

NAg Ag

IAg NAg Ag

IAg Ag

IAg Ag

D D

D D

D D D

D D

D D j

⊕
⊕

⊕ ⊕
⊕
⊕

Fig. 1. Training and retraining the agents of a MAS.

Table 1
DM provided techniques and algorithms

DM technique

Classification Association rules Clustering

ID 3 Apriori K-means
C 4.5 DHP PAM
CLS DIC EM
FLRa – j-Profile

a The FLR and j-Profile algorithms are novel algorithms, developed
within the context of Agent Academy. More information on these
algorithms can be found at [2,4,16].

A.L. Symeonidis et al. / Knowledge-Based Systems 20 (2007) 388–396 391

Info(D) is the information needed to classify D with respect
to the predefined distinct classes Ci (for i=1, . . . ,o), and is
given by

InfoðDÞ ¼ �
Xo

i¼1

pðIÞlog2pðIÞ ð2Þ

with p(I) the ratio of D tuples that belong to class Ci.
Info(D,Ai) is the information needed in order to classify

D, after its partitioning into subsets Dj, j = 1, . . . ,v, with
respect to the attribute Ai. Info(D, Ai), which is also denot-
ed as the Entropy of A, is given by

InfoðD;AiÞ ¼
Xv

j¼1

jDjj
jDj � InfoðDjÞ ð3Þ

Splitting is conducted on the attribute that yields the max-
imum information gain.

4.2.1. Initial training

When training takes place, classification is performed on
DIAgi, the initial dataset for the specific agent type. The user
can decide to split the dataset into a training and a testing
(and/or validation) dataset or to perform n-fold cross-val-
idation. To evaluate the success of the applied classification
scheme, a number of statistical measures are calculated,
i.e., classification accuracy, mean absolute error and confu-
sion matrix. If extracted knowledge model is deemed satis-
factory, the user may accept it and store it, for
incorporation into the corresponding Agi-type agents.

4.2.2. Retraining Agi

In the case of retraining agent-type Agi, the relevant
datasets are DIAgi, DNAgi and DAgi. Retraining option C

(DIAgi ¯ DNAgi ¯ DAgi) is the most general, containing all
the available data for the specific agent type, while options
A and D are subsets of option C. They are differentiated,
however, since option D is particularly interesting and
deserves special attention.

When using datasets DIAgi and DNAgi, the user may
choose among the different retraining options illustrated
in Table 2.

The user decides on which knowledge model to accept,
based on its performance. Nevertheless, in the DIAgi ¯ D-

NAgi case, best model performance is usually observed when

option 3 is selected. The inductive nature of classification dic-

tates that the use of larger training datasets leads to more

efficient knowledge models.

The retraining options when the DNAgi ¯ DAgi dataset is
selected are illustrated in Table 3.

When retraining an agent with the DNAgi ¯ DAgi dataset,
it is important to notice that the only information we have
on the training dataset DIAgi is indirect, since DAgi is for-
matted based on the knowledge model the agents follow,
a model inducted by the DIAgi dataset. This is why the val-

Preprocessing unit
(clean ing, selection)

Preprocessing un
(c

Mine r
(DM technique se lectio n, algorithm tun ing)

Mine r

Evaluato r
(Mod el va lidati on , Mode l visual ization)

Evaluato r

<?XML…

…>

(XML file)

<?XML…

…>

to
JESS Rules

JA

JESS Rule
Engine

(clean ing, selection)
Preprocessing unit

(cleaning, selection)

Mine r
(DM technique se lectio n, algorithm tun ing)

Miner
(DM technique selection, algorithm tuning)

Evaluato r
(Mod el va lidati on , Mode l visual ization)

Evaluator
(Model validation, Model visualization)

Classification Association Rules Clustering

<?XML…

…>

<?XML…

…>

Application/agent data
(XML file)

<?XML…

…>

<?XML…

…>

Extracted Decision Model
(PMML file)

Decision Rules
to

JESS Rules

Agent

JADE Behaviour

Rule-based
Behaviour

Initial Beliefs

JESS Rule
Engine

Fig. 2. The agent training/retraining mechanism.

Table 2
Retraining options for DIAgi ¯ D NAgi

Dataset Causality

DIAgi DNAgi

Option A-1 Training Testing Initial model validation
Option A-2 Testing Training Model investigation on data

independency
Option A-3 Concatenation and

cross-validation
New knowledge model discovery

Table 3
Retraining options for DNAgi ¯ D Agi

Dataset Causality

DNAgi DAgi

Option B-1 Training Testing Indirect initial model validation
Option B-2 Concatenation and

cross-validation
New knowledge model discovery

392 A.L. Symeonidis et al. / Knowledge-Based Systems 20 (2007) 388–396

idation of the initial model is indirect. If the DNAgi-extract-
ed model is similar to the DIAgi-extracted model testing
accuracy is very high.

The fact that DAgi is indirectly induced by DIAgi, does
not allow testing DAgi on DIAgi. Nevertheless, concatena-
tion of the datasets can lead to more efficient and smaller
classification models. Since class assignment within DAgi

(the agent decisions) is dependent on the DIAgi–extracted
knowledge model, a ‘‘bias’’ is inserted in the concatenated
DIAgi ¯ DAgi dataset. Let attribute Ai be the ‘‘biased’’ attri-
bute and Ci the supported class. While recalculating the
information gain for the DIAgi ¯ DAgi dataset, we observe
that the increase of Info(D) is cumulative (Eq. (2)), while
the increase of Info(D, Aj) is proportional (Eq. (3)) and
therefore Gain(D,Ai) is increased. Clearer decisions on the
splitting attributes according to the frequency of occur-
rence of Ai in conjunction to Ci are derived, thus leading
to more efficient knowledge models. Table 4 illustrates
the available retraining options for the corresponding
dataset.

In the most general case, where all datasets (DIAgi, DNAgi

and DAgi) are available, the retraining options are similar to
the ones proposed for the already described subsets
and similar restrictions apply. Table 5 illustrates these
options.

4.2.3. Retraining Agi(j)

When retraining a specific agent, the user is interested in
the refinement of its intelligence in relation to the working
environment. Let us assume that we have trained a number
of agents that decide on whether a game of tennis should be
conducted, according to weather outlook, temperature,
humidity and wind conditions (Weather dataset, [14,25]),
and have established these agents in different cities in

Greece (Athens, Thessaloniki, Patra, Chania, etc.).
Although all these agents rely initially on a common
knowledge model, weather conditions in Thessaloniki differ
from those in Chania enough to justify refined knowledge
models.

In this case, we have the options to perform agent-type
retraining. By the use of the DIAgi ¯ DAgi(j) dataset, it is
possible to refine the intelligence of the jth agent of type
i. High frequency occurrence of a certain value ti of attri-
bute Ai (i.e., ‘‘High’’ humidity in Thessaloniki, ‘‘Sunny’’
outlook in Chania) may produce a more ‘‘case-specific’’
knowledge model. In a similar to the DIAgi ¯ DAgi manner,
it can be seen that an increase of Info(D, Aj) can lead to a
different knowledge model, which incorporates instance-
specific information.

The analysis of different retraining options in the case of
Classification indicates that there exist concrete success
metrics that can be used to evaluate the extracted knowl-
edge models and, thus, may ensure the improvement of
agent intelligence.

4.3. Training and retraining in the case of unsupervised
learning

In the case of unsupervised learning, training and
retraining success cannot be determined quantitatively. A
more qualitative approach must be followed, to determine
the efficiency of the extracted knowledge model, with
respect to the overall goals of the deployed MAS.

4.3.1. Initial training

To perform clustering, the user can either split the DIAgi

dataset into a training and a testing subset or perform a
classes-to-clusters evaluation, by testing the extracted clus-
ters with respect to a class attribute defined in DIAgi. In
order to evaluate the success of the clustering scheme, the
mean square error and standard deviation of each cluster
center are calculated. One the other hand, if the user deci-
des to perform ARE on DIAgi, no training options are pro-
vided. Only the algorithm-specific metrics are specified and
ARE is performed. In a similar to classification manner, if
the extracted knowledge model (clusters, association rules)
is favorably evaluated, it is stored and incorporated into
the corresponding Agi-type agents.

Table 4
Retraining options for DIAgi ¯ DAgi

Dataset Causality

DIAgi DAgi

Option D-1 Concatenation
and
cross-validation

More application-efficient
knowledge model

Table 5
Retraining options for DIAgi ¯ DNAgi ¯ DAgi

Dataset Causality

DIAgi DAgi DNAgi

Option C-1 Training Testing Testing Initial model validation
Option C-2 Testing Testing Training Model investigation on data independency
Option C-3 Concatenation and

training
Testing New model (more efficient) validation

Option C-4 Concatenation and
cross-validation

New knowledge model discovery

A.L. Symeonidis et al. / Knowledge-Based Systems 20 (2007) 388–396 393

4.3.2. Retraining by clustering

Clustering results are in most cases indirectly applied to
the deployed MAS. In practice, some kind of an external
exploitation function is developed, which somehow fires
different agent actions in the case of different clusters. All
the available datasets (DIAgi, DNagi, DAgi and DAgi(j)) can
therefore be used for both training and testing for Initial

model validation, Model Data dependency investigation

and New Knowledge Model discovery. A larger training
dataset and more thorough testing can lead to more accu-
rate clustering. Often retraining can result in the dynamic
updating and encapsulation of dataset trends (i.e., in the
case of customer segmentation). Retraining Ai(j) can there-
fore be defined as a ‘‘case-specific’’ instance of retraining,
where data provided by agent j, DAgi(j), are used for own
improvement.

4.3.3. Retraining by association rule extraction

The ARE technique does not provide training and test-
ing options. The whole input dataset is used for the extrac-
tion of the strongest association rules. Consequently, all
available datasets (DIAgi, DNagi, DAgi and DAgi(j)) are con-
catenated before DM is performed. This unified approach
for retraining has a sole goal: to discover the strongest
association rules between the items t of D. In a similar to
the clustering case manner, retraining Ai(j) can be viewed
as a ‘‘case-specific’’ instance of retraining.

5. Experimental results

In order to prove the added value of agent retraining, a
number of experiments on Classification, Clustering and
ARE were conducted. In this section, three representatives
cases are discussed. These experiments are focused mainly
on retraining by the use of the DAgi and DAgi(j) datasets
and illustrate the enhancement of agent intelligence.

5.1. Intelligent environmental monitoring system

The first experiment was performed for the O3RTAA
System, an agent-based intelligent environmental monitor-
ing system developed for assessing ambient air-quality [4].
A community of software agents is assigned to monitor
and validate multi-sensor data, to assess air-quality, and,
finally, to fire alarms to appropriate recipients, when need-
ed. Data mining techniques have been used for adding
data-driven, customized intelligence into agents with suc-
cessful results [16].

In this work we focused on the Diagnosis Agent Type.
Agents of this type are responsible for monitoring various
air quality attributes including pollutants’ emissions and
meteorological attributes. Each one of the Diagnosis Agent
instances is assigned to monitor one attribute through the
corresponding field sensor. In the case of sensor break-
down, Diagnosis Agents take control and perform an esti-
mation of the missing sensor values using a data-driven
Reasoning Engine, which exploits DM techniques.

One of the Diagnosis Agents is responsible for estimat-
ing missing ozone measurement values. This task is accom-
plished using a predictive model comprised of the
predictors and the response. For the estimation of missing
ozone values the predictors are the current values measured
by the rest of the sensors, while the response is the level of
the missing value (Low, Medium, or High). In this way, the
problem has been formed as a classification task.

For training and retraining the Ozone Diagnosis Agent
we used a dataset, labeled C2ONDA01 and supplied by
CEAM, which contained data from a meteorological sta-
tion in the district of Valencia, Spain. Several meteorolog-
ical attributes and air-pollutant values were recorded on a
quarter-hourly basis during the year 2001. There are
approximately 35,000 records, with ten attributes per
record plus the class attribute. The dataset was split into
three subsets: one subset for initial training (DIAgi), a sec-
ond subset for agent testing (DAgi) and another subset for
validation (DVal) containing around 40%, 35% and 25%
of the data, respectively.

The initial training of the Diagnosis Agent was conduct-
ed using Quinlan’s C4.5 [21] algorithm for decision tree
induction, using the DIAgi subset. This decision tree was
embedded in the Diagnosis Agent and the agent used it
for deciding on the records of the DAgi subset. Agent deci-
sions along with the initial application data were used for
retraining the Diagnosis Agent (Option D: DIAgi ¯ DAgi).
Finally, the Diagnosis Agent with the updated decision tree
was used for deciding on the cases of the last subset (DVal).

The retrained Diagnosis Agent performed much better
compared to the initial training model, are shown in
Table 6. The use of agent decisions included in DAgi has
enhanced the Diagnosis Agent performance on the DVal

subset by 3.65%.

5.2. Speech recognition agents

This experiment was based on the ‘‘vowel’’ dataset of
the UCI repository [24]. The problem in this case is to rec-
ognize a vowel spoken by an arbitrary speaker. This data-
set is comprised of ten continuous primary features
(derived from spectral data) and two discrete contextual
features (the speaker’s identity and sex) and contains
records for 15 speakers. The observations fall into eleven
classes (eleven different vowels).

The vowel problem was assigned to an agent community
to solve. Two agents Agi(1) and Agi(2) were deployed to
recognize vowels. Although of the same type, the two

Table 6
Classification accuracies for the Diagnosis Agent

Dataset

DIAgi DAgi DVal

Number of instances 11,641 10,000 7414
Initial training Used 73.58% 71.89%
Retraining Used 74.66%

394 A.L. Symeonidis et al. / Knowledge-Based Systems 20 (2007) 388–396

agents operate in different environments. This is why the
dataset was split in the following way: The data of the first
nine speakers (DIAgi) were used as a common training set
for both Agi(1) and Agi(2). The records for the next two
speakers were assigned to Agi(1) and those of the last
two speakers were assigned to Agi(2).

The procedure followed was to evaluate the retraining
performance of each on of the agents (Option E: DIAgi ¯ -
DAgi(j)). After initial training with DIAgi, each of the Agi(1)
and Agi(2) was tested on one of the two assigned speakers,
while the second speaker was used for the evaluation of the
retraining phase. Quinlan’s C4.5 algorithm was applied.
The classification accuracy, which is similar to that report-
ed by Turney [23], is illustrated in Table 7.

It is obvious in this case that retraining using DAgi(j)
leads to considerable enhancement of the agents’ ability
to decide correctly. The decision models that are induced
after the retraining procedure outperformed the validation
speakers. The improvement by the mean of classification
accuracy was improved by 36% in average.

5.3. The iris recommendation agent

In order to investigate retraining in the case of cluster-
ing, we used the Iris UCI Dataset [24], a dataset widely
used in pattern recognition literature. It has four numeric
attributes describing the iris plant and one nominal attri-
bute describing its class. The 150 records of the set were
split into two subsets: one subset (75%) for initial training
(DIAgi) and a second subset (25%) for agent testing (DAgi).
Classes-to-clusters evaluation was performed on DIAgi and
DIAgi ¯ DAgi (Option D) and the performance of the result-
ed clusters was compared on the number of correctly clas-
sified instances of the dataset (Table 8).

Again, retraining with the DIAgi ¯ DAgi dataset leads to
the improvement of clustering results.

The new knowledge models obtained with the above
retraining options can be easily incorporated into agents
following the already implemented training/retraining
mechanism, which is described next.

6. Conclusions

Work presented in this paper explains how DM tech-
niques can be successfully coupled with AT, leading to
dynamically created agent intelligence. Moreover, the con-
cepts of training and retraining are formulated and special
focus is given on retraining, the recursive process of ‘‘recall-
ing’’ an agent for posterior training. Through this proce-
dure, where DM is performed on new datasets (DNAgi,
DAgi and DAgi(j)), refined knowledge is extracted and
dynamically embedded into the agents. The different
retraining options in the cases of Supervised and Unsuper-
vised Learning are outlined in this paper and experimental
results on different types of retraining are provided. Final-
ly, the training and retraining mechanism is presented.
Based on our research work we strongly believe that data
mining extracted knowledge could and should be coupled
with agent technology, and that training and retraining
can indeed lead to more intelligent agents.

Acknowledgement

Work presented here has been partially supported by the
European Commission through the IST initiative (IST pro-
ject No. 2000-31050).

References

[1] P. Adriaans, D. Zantige, Data Mining, Addison-Wesley, 1996.
[2] Agent Academy Consortium, the, Requirements and specifications,

2000. Available from the World Wide Web: <http://AgentAcade-
my.iti.gr/downloads.htm>.

[3] A. Amir, R. Feldman, R. Kashi, A new and versatile method for
association generation, Journal of Information Systems 22 (6/7)
(1997) 333–347.

[4] I.N. Athanasiadis, P.A. Mitkas, An agent-based intelligent environ-
mental monitoring system, Management of Environmental Quality 15
(3) (2004) 238–249.

[5] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi-agent systems
with JADE, in: the Seventh International Workshop on Agent
Theories, Architectures, and Languages, 2000. Available from World
Wide Web: <http://jade.cselt.it>.

[6] M.S. Chen, J. Han, P.S. Yu, Data mining: an overview from a
database perspective, IEEE Transactions on Knowledge and Data
Engineering 8 (6) (1996) 866–883.

[7] Data Mining Group, the, Predictive Model Markup Language
Specifications (PMML), ver. 2.0, 2001. Available from the World
Wide web: <http://www.dmg.org>.

[8] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, Knowledge discovery
and data mining: towards a unifying framework, in: Proceedings of
the Second International Conference on Knowledge Discovery and
Data Mining, 1996, pp. 82–88.

Table 7
Speech recognition agents classification accuracy

Agi(1)

DIAgi DAgi(1) DVal(1)

Number of speakers 9 1 1
Initial training Used 53.03% 46.97%
Retraining Used 56.06%

Agi(2)

DIAgi DAgi(2) DVal(2)

Number of speakers 9 1 1
Initial training Used 33.33% 28.78%
Retraining Used 43.93%

Table 8
The iris recommendation agent success

Agi

DIAgi DAgi Correctly classified

Number of records 113 37
Initial training Used – 83.19%
Retraining Used 88.67%

A.L. Symeonidis et al. / Knowledge-Based Systems 20 (2007) 388–396 395

