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Abstract. As the most common causes of seasonal allergies, pollen af-
fects approximately 30% of the world population. The proper information
on the number of airborne allergens can significantly reduce its negative
health and economic impact. For this reason, there is a growing network
of automatic airborne particle monitors deployed. However, the calibra-
tion of such devices is a tedious task. Developing a deep learning classifier
may allow model transferability between the devices. To investigate this
approach, we employed data from two Rapid-E particle identifier de-
vices, in a multi-class pollen identification task. We aim to improve the
performance of models trained with data from one device and tested
on another device. To our knowledge, this is the first attempt to apply
any domain adaptation technique with unlabeled data between auto-
matic airborne particle identifiers. Convolutional Neural Networks were
constructed with two outputs to simultaneously perform pollen identifi-
cation and domain adaptation. A simple gradient reversal layer between
the domain classifier and the feature extractor promotes the emergence
of not just discriminative features related to the classification task but
also features invariant to the domain shifts in data. The development of
a method for model transferability has a huge practical value for pollen
monitoring since it reduces the costs of collecting labeled data.
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1 Introduction

Each spring, summer and fall, plants release tiny pollen grains to fertilize other
plants of the same species. In that period, quality of life significantly decreases
for 30% of the world population sensitive to pollen, since pollen is one of the
most common triggers of seasonal allergies [1]. Increased pollen production of
wind-pollinated plants, the introduction of new, invasive allergenic plant species
and human impact are some of the reasons why the sensations related to pollen
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are intensified over time with more severe effects on health, including death [2, 3].
The information on the type and number of airborne allergens is a prerequisite for
the prevention of allergy symptoms, which can significantly reduce the negative
health and economic impact of this widespread non-communicable disease [4].

Pollen classification is mostly performed manually under a microscope. This
is a long and costly procedure and the results become available with a delay of
a few days. In 2018 in Europe, only 8 out of 525 counting devices were auto-
matic [5]. The best current technologies for automatic pollen detection use laser-
induced fluorescence and automatic multi-stack image recording [6]. Rapid-E is
an airborne particle identifier that delivers laser-induced fluorescence informa-
tion about airborne particles in real-time. It records scattered light and laser-
induced fluorescence patterns, representing morphological and chemical finger-
prints of airborne particles [7]. A convolutional neural network has been devel-
oped to identify 24 types of airborne particles with 65% accuracy [8]. This is
the current state-of-the-art in terms of accuracy in classifying a high number of
pollen classes.

To develop a classification algorithm, one should go through the difficult
and costly procedure of obtaining labeled data. This requires collecting pollen
samples and exposing them to the device in a controlled environment [7]. We
have access to data from two devices, one in Novi Sad, Serbia and the other in
Osijek, Croatia. The two devices produce data of the same type, but of different
distributions – probably due to the sensibility of lasers and detectors. Therefore,
in this work, we investigate how to transfer the model developed for one device
to a second device, preferably with a few labeled data from the second device.
This would allow us to train a model on collected labeled data from one device
and to deploy that model on other devices, without collecting labeled data on
those devices.

This study aims to adapt the model learned from one device to the other
device, by using unlabeled data from both devices. To put it another way, we
want to train a network to learn features that are invariant to domain changes.
First, we adapted the domains on pre-trained models without looking at the class
labels. We did so by using a gradient reversal layer, a method introduced in [9].
This way the fully connected layers are learning to recognize the domains, while
the convolutional layers attempt to produce domain invariant features. This
method does not take into account the class labels during training and therefore
we will add an additional classifier to simultaneously learn discriminative and
domain-invariant features, as proposed in [9].

The rest of the paper is organized as follows: Section 2 is divided into five sub-
sections. Subsection 2.1 describes the data, preprocessing and the final dataset.
In Subsection 2.2 a convolutional neural network used for classification purposes
is described. Subsection 2.3 explains the expanded version of the network from
Subsection 2.2 for dealing with the domains. Subsection 2.4 describes the ex-
perimental setup for this paper in detail, i.e. methods for testing the domain
adaptation technique from Subsection 2.3 and evaluation with the evaluation
metric described in Subsection 2.5. The results of the experiments are presented
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in Section 3, along with the discussion. Finally, Section 4 concludes this paper
and highlights areas for future research.

2 Methodology

2.1 Data collection

The Rapid-E devices are recording three types of data for each particle, namely
scattered light image, fluorescence spectrum and fluorescence lifetime. After pre-
processing, we obtained images of size 1x20x120, 1x4x32 and 1x4x24, respectively
(Figure 1). Data preprocessing included normalizing the fluorescence signals into
0–1 range and converting them into images, centering the scattered light image
and smoothing the signals with the Savitzky–Golay filter [10] to reduce the noise.
The pre-processing steps are further detailed in [7, 8].

The scattering image represents morphological attributes of particles like
shape and size. It is obtained by illuminating the particle with an infra-red
laser multiple times, depending on the size and shape of the particle, while 24
detectors collect dispersed photons at different angles in the range of 45 to 135
degrees relative to the laser light beam.

Additional descriptiveness is obtained with the fluorescence spectrum and
lifetime, which represent the chemical properties of particles. Measured values
of the fluorescence spectrum are derived from the excitation by deep-UV laser
light at 337 nm. The spectral values include 32 measured values in the range
of 350 to 800 nm, and these measurements were repeated eight times with an
interval of 500 ns from the moment the laser excited the particle. Similarly, the
fluorescence lifetime is recorded. Particle fluorescence duration is measured for
four spectral ranges: 350-400 nm, 420-460 nm, 511-572 nm and 672-800 nm.

We collected data of two types: labeled and unlabeled data. Both were col-
lected on both devices; one located in Novi Sad, Serbia (Station 1) and the other
one in Osijek, Croatia (Station 2). Data have been recorded in 24 hours on the
two devices.

Datasets From both stations, we had access to both labeled and unlabeled data.
Labeled data were available for the same eight pollen labels in both stations.
Table 1 summarizes the number of samples for each class and device.

As the devices work in real-time, we also had access to unlabeled data, i.e.
data measured by the devices without knowing the substances therein. This data
corresponds to any type of airborne particles, not just pollen. The unlabeled
datasets comprise 14275 samples from station 1 and 16437 from station 2.

Low dimensional representation Initial exploration of data through low di-
mensional representation provided us valuable insight into differences between
signals coming from different devices. Autoencoders [11] were utilized to learn
a low dimensional representation of pollen data and results of spectrum dimen-
sionality reduction presented in Figure 2 illustrate intrinsic differences caused
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(a) Novi Sad (b) Osijek

Fig. 1: From top to bottom: Sample scattering image, fluorescence spectrum and
fluorescence lifetime for the same particle. Station 1 in Novi Sad appears on the
left, and Station 2 in Osijek on the right

Table 1: Number of samples for each class and each data source
Source Station 1 Station 2

Alnus 1225 1075
Ambrosia 3126 2611
Artemisia 4958 2380

Betula 1614 877
Cedrus 522 528
Corylus 497 693
Quercus 563 360
Urtica 3876 3464

SUM 16381 11988

by devices. This raised concern that a classifier learned on data from one device
could lose on its performance when used to classify particles on another device
and served as the motivation to examine the transferability of classifiers between
devices.

(a) (b) (c)

Fig. 2: Examples of low dimensional representation learned by autoencoder for
the two stations: (a) ambrosia, (b) betula and (c) urtica
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