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Abstract. As the most common causes of seasonal allergies, pollen af-
fects approximately 30% of the world population. The proper information
on the number of airborne allergens can significantly reduce its negative
health and economic impact. For this reason, there is a growing network
of automatic airborne particle monitors deployed. However, the calibra-
tion of such devices is a tedious task. Developing a deep learning classifier
may allow model transferability between the devices. To investigate this
approach, we employed data from two Rapid-E particle identifier de-
vices, in a multi-class pollen identification task. We aim to improve the
performance of models trained with data from one device and tested
on another device. To our knowledge, this is the first attempt to apply
any domain adaptation technique with unlabeled data between auto-
matic airborne particle identifiers. Convolutional Neural Networks were
constructed with two outputs to simultaneously perform pollen identifi-
cation and domain adaptation. A simple gradient reversal layer between
the domain classifier and the feature extractor promotes the emergence
of not just discriminative features related to the classification task but
also features invariant to the domain shifts in data. The development of
a method for model transferability has a huge practical value for pollen
monitoring since it reduces the costs of collecting labeled data.
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1 Introduction

Each spring, summer and fall, plants release tiny pollen grains to fertilize other
plants of the same species. In that period, quality of life significantly decreases
for 30% of the world population sensitive to pollen, since pollen is one of the
most common triggers of seasonal allergies [1]. Increased pollen production of
wind-pollinated plants, the introduction of new, invasive allergenic plant species
and human impact are some of the reasons why the sensations related to pollen
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are intensified over time with more severe effects on health, including death [2, 3].
The information on the type and number of airborne allergens is a prerequisite for
the prevention of allergy symptoms, which can significantly reduce the negative
health and economic impact of this widespread non-communicable disease [4].

Pollen classification is mostly performed manually under a microscope. This
is a long and costly procedure and the results become available with a delay of
a few days. In 2018 in Europe, only 8 out of 525 counting devices were auto-
matic [5]. The best current technologies for automatic pollen detection use laser-
induced fluorescence and automatic multi-stack image recording [6]. Rapid-E is
an airborne particle identifier that delivers laser-induced fluorescence informa-
tion about airborne particles in real-time. It records scattered light and laser-
induced fluorescence patterns, representing morphological and chemical finger-
prints of airborne particles [7]. A convolutional neural network has been devel-
oped to identify 24 types of airborne particles with 65% accuracy [8]. This is
the current state-of-the-art in terms of accuracy in classifying a high number of
pollen classes.

To develop a classification algorithm, one should go through the difficult
and costly procedure of obtaining labeled data. This requires collecting pollen
samples and exposing them to the device in a controlled environment [7]. We
have access to data from two devices, one in Novi Sad, Serbia and the other in
Osijek, Croatia. The two devices produce data of the same type, but of different
distributions – probably due to the sensibility of lasers and detectors. Therefore,
in this work, we investigate how to transfer the model developed for one device
to a second device, preferably with a few labeled data from the second device.
This would allow us to train a model on collected labeled data from one device
and to deploy that model on other devices, without collecting labeled data on
those devices.

This study aims to adapt the model learned from one device to the other
device, by using unlabeled data from both devices. To put it another way, we
want to train a network to learn features that are invariant to domain changes.
First, we adapted the domains on pre-trained models without looking at the class
labels. We did so by using a gradient reversal layer, a method introduced in [9].
This way the fully connected layers are learning to recognize the domains, while
the convolutional layers attempt to produce domain invariant features. This
method does not take into account the class labels during training and therefore
we will add an additional classifier to simultaneously learn discriminative and
domain-invariant features, as proposed in [9].

The rest of the paper is organized as follows: Section 2 is divided into five sub-
sections. Subsection 2.1 describes the data, preprocessing and the final dataset.
In Subsection 2.2 a convolutional neural network used for classification purposes
is described. Subsection 2.3 explains the expanded version of the network from
Subsection 2.2 for dealing with the domains. Subsection 2.4 describes the ex-
perimental setup for this paper in detail, i.e. methods for testing the domain
adaptation technique from Subsection 2.3 and evaluation with the evaluation
metric described in Subsection 2.5. The results of the experiments are presented
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in Section 3, along with the discussion. Finally, Section 4 concludes this paper
and highlights areas for future research.

2 Methodology

2.1 Data collection

The Rapid-E devices are recording three types of data for each particle, namely
scattered light image, fluorescence spectrum and fluorescence lifetime. After pre-
processing, we obtained images of size 1x20x120, 1x4x32 and 1x4x24, respectively
(Figure 1). Data preprocessing included normalizing the fluorescence signals into
0–1 range and converting them into images, centering the scattered light image
and smoothing the signals with the Savitzky–Golay filter [10] to reduce the noise.
The pre-processing steps are further detailed in [7, 8].

The scattering image represents morphological attributes of particles like
shape and size. It is obtained by illuminating the particle with an infra-red
laser multiple times, depending on the size and shape of the particle, while 24
detectors collect dispersed photons at different angles in the range of 45 to 135
degrees relative to the laser light beam.

Additional descriptiveness is obtained with the fluorescence spectrum and
lifetime, which represent the chemical properties of particles. Measured values
of the fluorescence spectrum are derived from the excitation by deep-UV laser
light at 337 nm. The spectral values include 32 measured values in the range
of 350 to 800 nm, and these measurements were repeated eight times with an
interval of 500 ns from the moment the laser excited the particle. Similarly, the
fluorescence lifetime is recorded. Particle fluorescence duration is measured for
four spectral ranges: 350-400 nm, 420-460 nm, 511-572 nm and 672-800 nm.

We collected data of two types: labeled and unlabeled data. Both were col-
lected on both devices; one located in Novi Sad, Serbia (Station 1) and the other
one in Osijek, Croatia (Station 2). Data have been recorded in 24 hours on the
two devices.

Datasets From both stations, we had access to both labeled and unlabeled data.
Labeled data were available for the same eight pollen labels in both stations.
Table 1 summarizes the number of samples for each class and device.

As the devices work in real-time, we also had access to unlabeled data, i.e.
data measured by the devices without knowing the substances therein. This data
corresponds to any type of airborne particles, not just pollen. The unlabeled
datasets comprise 14275 samples from station 1 and 16437 from station 2.

Low dimensional representation Initial exploration of data through low di-
mensional representation provided us valuable insight into differences between
signals coming from different devices. Autoencoders [11] were utilized to learn
a low dimensional representation of pollen data and results of spectrum dimen-
sionality reduction presented in Figure 2 illustrate intrinsic differences caused

149



Domain adaptation with unlabeled data

(a) Novi Sad (b) Osijek

Fig. 1: From top to bottom: Sample scattering image, fluorescence spectrum and
fluorescence lifetime for the same particle. Station 1 in Novi Sad appears on the
left, and Station 2 in Osijek on the right

Table 1: Number of samples for each class and each data source
Source Station 1 Station 2

Alnus 1225 1075
Ambrosia 3126 2611
Artemisia 4958 2380

Betula 1614 877
Cedrus 522 528
Corylus 497 693
Quercus 563 360
Urtica 3876 3464

SUM 16381 11988

by devices. This raised concern that a classifier learned on data from one device
could lose on its performance when used to classify particles on another device
and served as the motivation to examine the transferability of classifiers between
devices.

(a) (b) (c)

Fig. 2: Examples of low dimensional representation learned by autoencoder for
the two stations: (a) ambrosia, (b) betula and (c) urtica
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2.2 Multi-input CNN for pollen classification

We adopted the architecture of [7, 8] for pollen classification from Rapid-E in-
puts. The high complexity of data makes CNNs a suitable choice since they can
operate automatic feature extraction. An additional benefit is the easy combina-
tion of multiple inputs. The three-input architecture, shown in Figure 3, assigns
each input channel to the respective image type from the data. Each input chan-
nel is followed by two convolutional blocks (three for the fluorescence lifetime
image) and one fully connected layer for each branch. Branches are then con-
catenated and one more fully connected layer is added with n neurons, where n
is the number of classes and the softmax activation function is performed (Fig-
ure 3). In this way, the network learns to update the weights based on all inputs
at the same time, since the gradient flows through the whole network [7, 8].

Fig. 3: Neural network architecture

2.3 Domain Adaptation

In this work, we assume that data comes from two different distributions, one
from each device, and we want to bring those distributions as close as possi-
ble. Based on previous work on domain adaptation [9], we modified the above
three-input architecture for pollen classification, by adding a second output that
corresponds to a domain label (Figure 4).

The class label classifier is a regular fully-connected neural network. The
parameters of both feature extractor and label classifier are updated in such
a way to minimize the label prediction loss, which ensures that the features
are discriminative and that the pollen classification yields good performance.
Conversely, we want to find parameters of the feature extractor which maximize
the domain loss to obtain similar feature distributions for two domains, while
the domain classifier should be updated to minimize the domain loss. Our loss
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is now defined as:
Loss = Llabel + λLdomain

The domain classifier comprises two fully-connected layers, with the gradient
reversal layer (GRL) between the feature extractor and the domain classifier,
resulting in the architecture presented in Figure 4. The role of the GRL is to
make the features as bad as possible in classifying domain labels. In a forward
pass, it acts as an identity. But in a backward pass, it multiplies the gradients
with constant −λ. Now we move in the direction of the gradient, which leads to
a local maximum of the loss function. λ controls the trade-off between the two
objectives that shape the features.

Fig. 4: The proposed architecture for domain adaptation, where θf represents
the parameters of the feature extractors, and the parameters of the class label
classifier and the domain classifier are denoted by θy and θd, respectively.

2.4 Experimental setup

We used the described pollen dataset for our experiments. Data were split in
three, before training. The validation set consists of 10% of random samples
from each class as well as the test set, and the rest 80% of the data is used
for training. The model was fitted using the training set and evaluated against
the validation set. In the end, the best models on the validation set were tested
on the test set. Batches were created manually to represent all classes equally,
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having 100 samples per class for the multi-class pollen classification and 500
samples per class for the domain adaptation.

We first trained a model on data from only one domain so that we can
compare the test performance on both domains. This will give us a baseline
which we will try to outperform.

Second, we adapted the domain of the baseline models, by adding a new
fully-connected set of layers on top of the pre-trained feature extractor that will
classify the domains with the GRL to obtain domain-invariant features. Since we
train a whole network with a new classifier, a big gradient is expected, which will
lead to a big change in the feature extractor. Therefore we try different learning
rates to adjust the feature extractor rather than to change it completely. At
the test phase, we will use the retrained feature extracting layers with the fully-
connected classifier from the baseline.

Third, we create a new model that will employ the pollen class classifier simul-
taneously with the domain classifier to learn domain-invariant features relevant
to the classification problem. We will explore different λ values representing dif-
ferent learning rates to obtain the best result. In the experiments below, we will
adapt the domains with the unlabeled data as well as with the unlabeled class
data as follows: each sample will be assigned a new label, depending on which
device does the sample belongs to.

2.5 Measures

The measure for validating the models is the weighted F1 score (the Sorensen-
Dice index, Dice similarity coefficient), which is more appropriate than accuracy
since we have imbalanced data. To define the F1 score, first, we will define values
of precision and recall. Consider we have a binary classification problem, and the
obtained confusion matrix is:

True class
Positive Negative

Predicted class
Positive TP FP
Negative FN TN

The precision is defined as TP
TP+FP . It represents the ability of the classifier

not to label a negative sample as positive. The recall is defined as TP
TP+FN and it

represents the ability of the classifier to find all the positive samples. Now, the
F1 score is defined as the harmonic mean of the two values:

F1 = 2 ∗ precision ∗ recall
precision+ recall

It is in the range [0, 1], where 1 indicates perfect precision and recall and 0
indicates that either precision or recall (or both) are 0. Since we have a multi-
class classification task, we will use the weighted F1 score which calculates the
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metric for each label and finds their average weighted by the number of instances
for each label.

3 Results and discussion

3.1 Baseline

We have trained two models with the architecture presented in subsection 2.3
on labeled data from stations 1 and 2 and tested on both. For each station, we
observe a performance drop between testing on the original station and the new
station (Figure 5). For station 1 the performance drops by 13%, while for station
2 we observe a drop of 25.6%, almost twice as much as for station 1. We think
that station 1 data is more generalized than data from station 2 and therefore
the model trained on station 1 fits better on data from station two than the
other way around.

Both models were initialized with the same predefined weights before train-
ing to have the same starting point. Two learning rates were explored: 0.001 and
0.0001. In both setups the model converges, but in different time frames. Fur-
thermore, the error and the F1 score of a model trained with the higher learning
rate oscillates more than with the lower learning rate. Therefore our final setup
was to start training with a high learning rate and to gradually decrease the
learning rate to obtain a steady error.

(a) Train: station 1 (b) Train: station 2

Fig. 5: Models trained on labeled data from a) station 1 and b) station 2, tested
on both stations

3.2 Domain adaptation - training only with the domain classifier

The naive approach to obtain domain invariant features is to add new fully-
connected layers on top of the pre-trained feature extractor from the baseline
which will now classify the domains. Employing GRL and training the new net-
work the features should become domain invariant over time. Different learning
rates were explored: 0.01, 0.001, 0.0001, 0.00001, 0.000001 and 0.0000001 and the
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models were trained for 100 epochs. We have tested our models on labeled data
from both devices by replacing the domain classifier with the already trained
class label classifier from the baseline. For each learning rate, we have experi-
enced the same result as depicted in Figure 6. After some time, depending on
the learning rate, the performances started to decrease on both stations, which
was expected since we have adapted the domains without looking at the class
labels. Therefore the feature extractor ”forgot” how to be discriminative since its
only concern was to produce domain-invariant features. The same results were
obtained on both stations, with the unlabeled data and the unlabeled class data,
as described in subsection 2.4.

Fig. 6: Adapting domains on model trained on labeled data from station 1

3.3 Domain adaptation - simultaneous training of the domain and
the class label classifier

Finally, we have trained a model to simultaneously classify class labels and the
domains with architecture depicted in Figure 4. This model takes as input labeled
class data from only one station to classify pollen and unlabeled data from both
stations to classify the domains. Since we have two types of unlabeled data, we
will have two experiments. The first experiment will use unlabeled class data and
the second one will use random data when the devices were working in real-time.

The feature extractor and the class label classifier were initialized with the
predefined weights from the baseline before training, while the domain classifier
was initialized with a new set of random weights. We have used the same setup
with the learning rate as for the baseline, starting with a higher one and gradually
reducing it to obtain a steady error when the model converges. Along with the
learning rate, we have evaluated different λ rates: 0.1, 1, 5, 10 and 20, defining
how big of an impact the domain loss has on the overall loss. The best λ on the
validation data was λ = 5, even though bigger lambdas such as 10 and 20 were
on par with the best results.

The F1 score for the models trained on station 1 and tested on the same
data stays approximately the same as for the baseline (in the range of 0.6%),
while tested on station 2 the F1 score improves by 11.8% for experiment 1 with

155



Domain adaptation with unlabeled data

the unlabeled class data, and 11% for the experiment 2 with the random data.
The situation is similar to the models trained and tested on station 2. Tested on
station 1, however, the model shows an improvement of 11.5% for experiment
1 and only 1.9% improvement for experiment 2 with the random data (Table
2). More examination needs to be done to explore this phenomenon. One of the
reasons can be the choice of random data. Another may be the order in which
we provided the data to the model during training. Similar results were obtained
on the validation set, with negligibly small differences (Table 3).

Table 2: The F1 scores on test set
Train Station 1 Station 2

Test Station 1 Station 2 Station 1 Station 2

Baseline 73 60 50.2 75.8
DA exp1 73.5 71.8 61.7 76.8
DA exp2 73.6 71 52.1 75.1

Table 3: The F1 score on validation set
Train Station 1 Station 2

Test Station 1 Station 2 Station 1 Station 2

Baseline 78.4 60.7 56.7 77.6
DA exp1 76.9 72.9 65 79.4
DA exp2 77.8 72.4 54.9 79

4 Conclusion and future work

In this work, we have experimented with the domain adaptation method for
training classification models in such a way so that the data shift between the
domains is as small as possible, where the domains represent different Rapid-E
airborne particle monitors. The devices produce data of the same type, but still
there exists a shift in data distributions which can be seen in subsection 2.1. We
have shown that we can improve the performance by approximately 11% when
training on station 1 and testing on station 2 with both types of unlabeled data.
The results were similar when training on station 2 and testing on station 1
but only for the experiment with the unlabeled class data. The experiment with
the random data, however, did not show any improvement which needs to be
investigated further since many stations will not have class data available.

Future work will include new random data and explore if the order in which
we provide the data to the model during training affects the results. On the other
hand, exploration of the number of classes needed for the domain adaptation
with the unlabeled class data is necessary to show how much class data should
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be gathered to obtain the best possible results. Future experiments should also
include more stations to further validate our results. Finally, more advanced
domain adaptation techniques should be considered.
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