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EXTENDED ABSTRACT 

As researchers we are often faced with the difficult 
and demanding task of preparing models, and their 
computer implementations, for decision making, 
or, more recently, for integrated assessment. Such 
assessment often involves large scale problems, 
where the decisions to be made can deeply affect 
the environment, the social context and the 
economic background of regions and even nations. 

Yet, we face the grim reality that a model is a 
focused representation of the world, and it is 
always a result of several compromises in terms of 
details and structure, leading to trade-offs in terms 
of complexity, flexibility and performance. This 
trade-off becomes an essential design property. We 
often wish our models to be as simple as possible, 
balancing transparency, understandability and 
level of detail.  

Now, we are involved in the SEAMLESS project, 
an EU FP6 Integrated Project, aims at generating 
an integrated framework of computer models. This 
framework can be used for assessment of how 
future alternative agricultural and environmental 
polices affect sustainable development in Europe. 
Thus, we are designing a cross disciplinary 
software system to deal with different simulation 
domains. In this, we need to take care of many 
differences between the different modeling 
societies.  

We decided to apply an architecture centric 
development method and evaluated this with 
stakeholders based on a so-called Architecture 
Trade-off Analysis method. When prioritizing the 
requirements we used a cost-benefit analysis as a 
weighting factor for deciding what to do first. 
Requirements were grouped in user-roles, that 
appeal to differences in user-interface options. 

The resulting software architecture identified the 
necessity to identify two major blocks: the 
modeling environment, to be used by a number of 
user roles, mostly modelers and coders, and the 
processing environment, which is oriented towards 
the needs of those user roles more focused on 
system analysis, rather than design and 
implementation. Another key factor of our 
architecture is the knowledge base, which provides 
a common repository for all knowledge, data, 
model sources which are shared by the two 
environments.  

When moving on from architecture to design and 
implementation, we tried to steer clear of the risk 
of inventing another modelling framework, and 
therefore in our prototype we use different existing 
frameworks for different tasks in the overall 
design. This means that we discussed the view that  
‘one tool fixes everything’, and we chose to rely 
on specific frameworks for specific needs. We 
chose a modelling framework with a track record 
in crop modeling, to target our biophysical 
modeling needs, and we selected a de facto 
standard framework for economic modeling to 
solve agri-economic modelling problems. All of 
this comes at a price, that is the extra effort 
required to integrate different frameworks. We 
chose therefore to develop an evolution of the 
OpenMI integration framework to target this issue. 

In this article we describe all the risks we have 
identified as associated to our architecture centric 
approach and how we dealt with them. This article 
describes the design of the modeling framework 
for SEAMLESS. A first prototype is ready in 
January 2006. 
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1. INTRODUCTION 

Free trade, globalization, the opening of markets 
pose a whole set of new questions to agricultural 
policy makers. The World Trade Organisation 
(WTO) negotiation rounds define the regime of 
tariffs which consequently define the market price 
for agricultural goods at the global scale. Yet, 
agricultural production is the result of plant growth 
processes in fields, which are managed by farmers 
at a local scale. This means that effects of policy 
changes at the macro level are governed by and 
have an impact on the micro level. Integrated 
analyses and assessment are then required to make 
the ends meet, in order to be able to answer 
fundamental questions on how the environment 
through agricultural production will react to a new 
regime of subsides and, at the same time, what 
social impacts will be measured in terms of 
changes in the employment rate, and how supply 
will change in response to the new economic 
conditions.  

Such integrated assessments have to deal with both 
the global context as well as its microscale effects 
and they call for a new modeling arrangement. The 
SEAMLESS project (www.seamless-ip.org) aims 
at providing a framework able to deal with such 
demands, based on the joint knowledge and 
experiences of 32 highly valued partners in agri-
environmental research. This framework provides 
structure and tools for building and deploying 
models and corresponding datasets.  

SEAMLESS incorporates disciplines from a whole 
range of domains, including agricultural policy 
evaluation, agro-economics, rural sociology, farm 
management and business administration, 
agronomy, crop and soil modeling, ecology etc. To 
integrate all these disciplines in a coherent 
simulation framework involves three main 
challenges: 

1. Each discipline has developed it’s own 
language and definitions, which is mirrored in 
their modeling and data. Cross-discipline 
integration requires careful analysis and 
interpretation of the jargon; 

2. Each discipline has its own breed in modeling, 
which is due to the nature of the subject 
studied and governed strongly by the 
application and the focus of the ‘customer’ of 
the modeling exercise. We must integrate 
numerical simulation, used to model 
biophysical systems, with mathematical 
programming and expert rule systems, used to 

solve farm-economical management 
problems;  

3. The diversity of the user community stretches 
from policy makers to scientific software 
engineers. We need to integrate the 
requirements from all user roles in the 
framework and decide how different roles are 
expressed in user interfaces. 

Dealing with these issues will increase the 
complexity of all current systems. It has been 
noted this is subject to the trade-off between 
complexity, flexibility and performance (Wal et 
al., 2003). This means an increase in complexity 
must result in a decrease in flexibility or 
performance or both. It has been shown however 
that depending on the purpose of an integrated 
system, simplification in modelling, or even a 
game, can be very successful in addressing the 
complexity of a system (Erisman et al, 2002). This 
clearly requires a complete redesign of your 
modeling system. 

This paper discusses the requirements for 
architecture and design of the SEAMLESS 
framework resulting from experiences, literature 
and stakeholder interviews. We address the trade-
offs mentioned before.  

2. DESIGN TRADE-OFFS FOR 
INTEGRATION  

The software engineering community has suffered 
from severe miscommunication between 
developers and customers, leading to an IT 
reputation of never delivering on time, never 
delivering within budget and never delivering what 
is wanted. The 2001 update of the CHAOS report 
(Standish Group, 2001) shows that in 2000 only 
28% of all IT projects manage to deliver what is 
promised in time and within budget. It also 
mentions that the top 4 factors for project success 
are all related to communicating with and 
managing the stakeholders of the project.  

The Carnegie Mellon Software Engineering 
Institute (SEI) has developed the Architecture 
Tradeoff Analysis Method (ATAM) to help a 
system’s stakeholder community understand the 
consequences of architectural decisions with 
respect to the system’s quality attribute 
requirements and business goals (Nord et al., 
2003). This is part of the architecture centric 
development method characterized by the 
following steps (amongst other, Nord et al, 2003): 

1. defining the business case for the system; 
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2. understanding the requirements; 

3. selecting, refining or creating the software 
architecture; 

4. documenting and communicating the software 
architecture; 

5. analyzing or evaluating the software 
architecture; 

6. implementing the system based on the 
software architecture; 

7. ensuring that the implementation conforms to 
the software architecture. 

In SEAMLESS we have applied the architecture 
centric development to allow the stakeholders to 
participate in the design and decision process of 
building the SEAMFRAME architecture. Besides 
stakeholder interviews and collecting requirements 
in a user-centered design method, derived from 
agile programming methods, we have also created 
a dummy system, the so-called animated 
narrative-demo (AND), to show to stakeholders 
how the system might look like and it can be used. 
The AND serves as an electronic discussion 
document and has proved is value in 
communication and requirements gathering. 

Based on ATAM we created a list of risks leading 
to management decisions for dealing with these 
risks. We found that the main risks can be 
summarized as: unrealistic user expectations, 
reinventing the wheel, and premature obsolescence 
of the framework. Let’s see them in detail.  

User expectations, expressed as business goals as 
well as requirements, are very much based on the 
Aladdin’s lamp assumption. The software 
engineers are able to fulfill every wish, and they 
deliver a dreamed system that solves all problems. 
The truth is that we already have enough 
challenges trying to integrate the current situation 
and make it work. Stepwise improvement of the 
system must gradually introduce new, wanted, 
requirements in addition to the business goals. 
Managing user expectations is a major task. 

Reinventing the wheel is a serious danger since 
there are considerable efforts done already in the 
agricultural and adjacent domains with regard to 
integrated modeling and framework architectures. 
We do not want to create a completely new 
framework but try to connect to these other 
initiatives and apply relevant parts to our system. 
The Yet Another Modeling Framework (YAMF) 
syndrome has very well landed within the 

SEAMLESS community. The main risk is 
however that we incorporate architectural aspects 
in our design that do not comply to our business 
case, just because they are there already. On the 
other hand, there are lots of legacy systems and 
dealing with them and their authors is a challenge 
in its self. 

Even when we deliver the final framework, we 
might find that it is already obsolete. While 
lifespan assumptions and life cycle analysis in 
software engineering suggests a longer life time of 
the framework in comparison to its components, it 
is however our experience so far that in the science 
community the life time of the component exceeds 
the (expected) life time of the framework. This life 
cycle inversion directs our efforts in respecting the 
individual value of the component above the value 
of the framework. We have taken good notice of 
this in the design and architecture. 

3. MODULARITY FOR INTEGRATION 

All of above has led us to propose a global design, 
based on 3 coherent building blocks that can be 
deployed in an integrated fashion to deliver the 
required functionality. The main blocks are the 
Modelling Environment, the Processing 
Environment, and the Knowledge Base (figure 1). 
The former grants access to Sources (data, 
software components, results, etc.) by means of a 
set of ontologies, which conceptualise the structure 
and organization of the sources. 

 

 

 

 

 

 

 

 

Figure 1. The SEAMLESS building blocks. 
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language and engine. Any Modelling Environment 
delivers models, which are packaged as software 
components (Szyperski, 2002). A software 
component therefore implements a model that can 
be simulated or optimized, according to the 
computational engine it embeds. The modeling 
environment reflects the need to build new models 
in an integrated fashion. Modelers can easily 
develop their ideas into software and deploy it in 
the standardized environment. The modeling 
environment is a real productivity tool and should 
decrease the time-to-market of new models 
considerably.  

The Processing Environment allows the system 
analysts to access the work of the modelers. It 
allows analysts to define and execute scientific 
workflows, which are sequences of operations on 
data and models. The scientific workflow defines 
how to connect systems together to perform a 
certain analysis. The processing environment 
finally, comprises the high-level integration that 
connects all sources into a executable system. This 
includes user-interface elements such as user 
dialogues and presentation of scientific data, in 
graphs, tables and maps. 

All relevant components for integrated modeling, 
such as models, databases or datasets, expert rules 
and all other formally and digitally captured 
knowledge are stored in the Sources. Our sources 
will be primarily existing models and databases, 
just conveniently wrapped in a fashion to be 
deployed in the processing environment. Existing 
sources can be in any language and can also stem 
from other frameworks. The modeling 
environment integrates these sources into 
components.  

Access to the sources is mediated by the 
Knowledge Base that includes functionality and 
rules to use the ontologies to semantically mark up 
the sources. For instance, the ontology can be used 
to store concrete information on purpose and 
application of a source, and it also informs the user 
about scale, scope and restrictions in use.  

Thanks to the SEAMLESS ontologies, the 
knowledge base includes functionality to negotiate 
between sources when the user wants to connect 
them and to automatically add converters in the 
scientific workflow (Rizzoli et al., 2005).  

4. SOFTWARE REUSE FOR 
INTEGRATION  

This block system has been elaborated in several 
sessions involving all stakeholders (developers and 
users) during the first phase of the project. We 

have used diverse technologies for this, ranging 
from writing papers and documents, discussions at 
meetings and developing software parts to provide 
some hands-on examples to the user community. 
During these ‘negotiations’ we have analysed the 
outcomes based on the Cost Benefit Analysis 
Method (CBAM) (amongst other, Nord et al., 
2003) in order to direct the project in a manageable 
fashion towards available budget and resources. 
Besides prioritization this has also led to trade-offs 
with regards to so-called ‘build-or-buy’ decisions, 
which in the open source segment better is defined 
by ‘build-or-borrow’. In our steps 6 and 7 
(implementation and verification) of the ATAM 
architecture-centric development we have chosen 
to develop a prototype, which will be the basis for 
further developments. This prototype uses existing 
parts to a maximum, while it also focuses on 
integration of the current state-of-the-art, and does 
not impose too many enhancements right away. 

We had to select the building blocks on which to 
start developing the Modelling and the Processing 
Environment, and the Knowledge Base.  

The choice for the modeling environment was not 
easy, given the requirement of being able to model 
across a wide scope of disciplines and spatial and 
temporal scales. We therefore decided to target the 
development of two modeling environments, one 
for biophysical modeling and another one for 
farm-economical modeling. For the former we 
have chosen for MODCOM (Hillyer et al. 2003) 
while we have evaluated several alternatives (see 
also Evert et al. 2005, in these proceedings). The 
latter modeling environment is based on GAMS 
(http://www.gams.com), which is a de facto 
standard for agricultural-economic modeling. 

For the processing environment we decided to rely 
on the OpenMI framework 
(http://www.openmi.org). Although primarily 
designed and build in the hydrological domain, the 
OpenMI framework offers functionality and 
interfaces that suits our need nicely. Most 
important, it is open source (as MODCOM is) and 
this allows us to contribute to its development. 

For the knowledge base we rely primarily on 
existing ontologies and existing tools. We are 
inspired by projects like KEPLER 
(http://www.kepler-project.org) and SWEET, the 
Semantic Web for Earth and Environmental 
terminology (http://sweet.jpl.nasa.gov/ontology/) 
where similar, but more ambitious efforts are 
undertaken. The software we are developing is 
based on the Java libraries provided by the Jena 
(http://jena.sourceforge.net) and Protégé 
(http://protege.stanford.edu) projects.  
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In order to integrate all these building blocks, we 
have designed the Seamless OpenMI+ Framework 
Architecture (SOFA), as a comfortable and soft 
landing of all these systems. SOFA is a 
SEAMLESS specific implementation of OpenMI. 
The ‘+’ in OpenMI refers to the Requests For 
Change (RFCs) we have already implemented and 
we have offered to the OpenMI consortium for 
adoption in the standard. These refer mainly to 
adaptations of OpenMI to a more generic modeling 
scene than just hydrology. 

SOFA’s main responsibility is to integrate 
components (sources, tools, environments) using 
the mediation of the knowledge base.  

5. USERS AND FRAMEWORKS 

On top of the architecture and using the 
frameworks, software applications are built to 
satisfy the needs of different users. For the sake of 
analysis we have categorized the different user 
roles that can be distinguished within our user 
community: 
• Coder: creates new data structures, new 

models and new applications, using the 
SEAMFRAME environment as a productivity 
tool for better time-to-market; 

• Linker: builds scientific workflows, dedicated 
to specific research questions. A Linker 
combines existing models and databases that 
suit his purpose. 

• Provider: brings in legacy software 
components and needs functionality to 
describe and formalize the components for 
further reuse;  

• Runner: executes a chain of components in a 
scientific workflow by changing parameters 
and evaluating the results; 

• Player: plays around with prepared 
experiments and explores alternatives. The 
Player differs also from a Runner in its 
attitude such as impatience, attracted by GUI 
elements and a desire to test the system 
capabilities; 

• Viewer: looks at prepared results and their 
interpretation, as presented in Reference Book 
kind of application (Wien et al., 2005). 

Through mixing and matching of components 
different applications will be assembled to support 
tasks of different user roles. All applications are 
from the same breed, which is shown in their 
deployment of the same framework and the re-use 
of software components.  

The architecture centric development allows to 
abstract from the desired functionality to a base set 
of requirements for the whole system. The 

framework does not prevent extensions and 
adaptations; on the contrary, thanks to its 
component based structure, it provides the 
necessary elements to build upon the framework 
and its components. This has been made possible 
by defining framework concepts for specific parts 
and separating the modeling environment from the 
linking environment acknowledging the essential 
difference between the two: a modeling 
environment is basically meant for coders. The 
processing environment is used by all user roles as 
it is the backbone of end-user applications. In this 
analogy, the knowledge base is the spinal cord. 
The explicit separation of processing and modeling 
environment allows us to integrate different 
modeling environments in our system. In 
SEAMLESS we will have one modeling 
environment for equilibrium models using multiple 
goal linear programming tools like GAMS. 
Another modeling environment will be build upon 
MODCOM. The third modeling environment 
concerns a declarative modeling tool, that provides 
a sound way of documentation and knowledge 
transfer of model (-equations). When a model is 
declaratively expressed, the equations are clearly 
separated from the imperative code that performs 
the numerical integration and data preparation. The 
model is therefore written using a text based 
declarative language, which states facts that are 
true about the model and that can be processed by 
an inference engine. Think of a declarative model 
as a Prolog program. A key advantage of using a 
declarative language to store models is the 
capability to export models according to different 
implementation requirements and even platforms 
(Muetzelfeldt, 2004).  

The SOFA takes care of the integration of the 
different frameworks and enforces the use of the 
knowledge base in retrieving and deploying 
components. 

6. CONCLUSIONS 

Large scientific software projects, like in 
SEAMLESS benefit greatly from an architecture 
centered development method. The lack of a 
clearly defined customer with clearly specified 
requirements could be well tackled with the trade-
off analysis where stakeholders could clearly 
indicate what restrictions were and were not 
acceptable.  

When retrieving user requirements after all, we 
have made use of software parts, presented as 
mock-ups, that show (potential) users the vision 
we have with the software. These software parts 
were very useful in focusing on specific 
functionality and made the abstract discussions 
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much more concrete. Besides that, our animated 
narrative demo made sure all stakeholders keep 
their minds also with the greater picture or the 
overall function of the system. 

When converting user requirements into planning 
and prioritize the different requirements we found 
a cost-benefit analysis very worthy. The costs were 
mainly assessed by software engineers and 
expressed in terms of man-hours work. 

The separation of the linking function of the 
framework from the modeling function has been a 
very useful line of work. Besides a risk-mitigation 
effect it also provides another hook for variation 
and extension.  

The choice for the existing frameworks to be 
included in the overall SEAMFRAME 
environment is not undisputed. The fact that we 
have made a choice in the first place was one of 
the best things that happened in the project, 
because it allowed us to move forward towards 
realization. Whether these frameworks are good 
enough will be assessed after completing and using 
the SEAMLESS prototype. This is due in June 
2006. With a life expectation of components that 
exceeds the life expectation of the framework, we 
anticipate for reusing the components in other 
frameworks, either in parallel in other projects or 
as a successor of the current framework. 

With the SEAMFRAME design and architecture 
that has been described here, we think we can cope 
with the main challenges mentioned in the 
introduction: dealing with different languages and 
domains; dealing with different modeling 
paradigms and dealing with different user roles.  
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