
Trade-offs in the design of cross-disciplinary software
systems

1T. van der Wal, 1R. Knapen, 2M. Svensson, 3I. Athanasiadis and 3A.E. Rizzoli,
1Alterra, 2LUCSUS - Lunds Universitet, 3IDSIA, E-Mail: Tamme.vanderWal@wur.nl

Keywords: integrated assessment frameworks, software design, ontologies, modeling and simulation.

EXTENDED ABSTRACT

As researchers we are often faced with the difficult
and demanding task of preparing models, and their
computer implementations, for decision making,
or, more recently, for integrated assessment. Such
assessment often involves large scale problems,
where the decisions to be made can deeply affect
the environment, the social context and the
economic background of regions and even nations.

Yet, we face the grim reality that a model is a
focused representation of the world, and it is
always a result of several compromises in terms of
details and structure, leading to trade-offs in terms
of complexity, flexibility and performance. This
trade-off becomes an essential design property. We
often wish our models to be as simple as possible,
balancing transparency, understandability and
level of detail.

Now, we are involved in the SEAMLESS project,
an EU FP6 Integrated Project, aims at generating
an integrated framework of computer models. This
framework can be used for assessment of how
future alternative agricultural and environmental
polices affect sustainable development in Europe.
Thus, we are designing a cross disciplinary
software system to deal with different simulation
domains. In this, we need to take care of many
differences between the different modeling
societies.

We decided to apply an architecture centric
development method and evaluated this with
stakeholders based on a so-called Architecture
Trade-off Analysis method. When prioritizing the
requirements we used a cost-benefit analysis as a
weighting factor for deciding what to do first.
Requirements were grouped in user-roles, that
appeal to differences in user-interface options.

The resulting software architecture identified the
necessity to identify two major blocks: the
modeling environment, to be used by a number of
user roles, mostly modelers and coders, and the
processing environment, which is oriented towards
the needs of those user roles more focused on
system analysis, rather than design and
implementation. Another key factor of our
architecture is the knowledge base, which provides
a common repository for all knowledge, data,
model sources which are shared by the two
environments.

When moving on from architecture to design and
implementation, we tried to steer clear of the risk
of inventing another modelling framework, and
therefore in our prototype we use different existing
frameworks for different tasks in the overall
design. This means that we discussed the view that
‘one tool fixes everything’, and we chose to rely
on specific frameworks for specific needs. We
chose a modelling framework with a track record
in crop modeling, to target our biophysical
modeling needs, and we selected a de facto
standard framework for economic modeling to
solve agri-economic modelling problems. All of
this comes at a price, that is the extra effort
required to integrate different frameworks. We
chose therefore to develop an evolution of the
OpenMI integration framework to target this issue.

In this article we describe all the risks we have
identified as associated to our architecture centric
approach and how we dealt with them. This article
describes the design of the modeling framework
for SEAMLESS. A first prototype is ready in
January 2006.

732

In MODSIM 2005 Int’l Congress on Modelling and Simulation, (Zerger, A. and Argent, R. M., Eds.),
Melbourne, Australia, Modelling and Simulation Society of Australia and New Zealand, December 2005,
pp.732-737.

1. INTRODUCTION

Free trade, globalization, the opening of markets
pose a whole set of new questions to agricultural
policy makers. The World Trade Organisation
(WTO) negotiation rounds define the regime of
tariffs which consequently define the market price
for agricultural goods at the global scale. Yet,
agricultural production is the result of plant growth
processes in fields, which are managed by farmers
at a local scale. This means that effects of policy
changes at the macro level are governed by and
have an impact on the micro level. Integrated
analyses and assessment are then required to make
the ends meet, in order to be able to answer
fundamental questions on how the environment
through agricultural production will react to a new
regime of subsides and, at the same time, what
social impacts will be measured in terms of
changes in the employment rate, and how supply
will change in response to the new economic
conditions.

Such integrated assessments have to deal with both
the global context as well as its microscale effects
and they call for a new modeling arrangement. The
SEAMLESS project (www.seamless-ip.org) aims
at providing a framework able to deal with such
demands, based on the joint knowledge and
experiences of 32 highly valued partners in agri-
environmental research. This framework provides
structure and tools for building and deploying
models and corresponding datasets.

SEAMLESS incorporates disciplines from a whole
range of domains, including agricultural policy
evaluation, agro-economics, rural sociology, farm
management and business administration,
agronomy, crop and soil modeling, ecology etc. To
integrate all these disciplines in a coherent
simulation framework involves three main
challenges:

1. Each discipline has developed it’s own
language and definitions, which is mirrored in
their modeling and data. Cross-discipline
integration requires careful analysis and
interpretation of the jargon;

2. Each discipline has its own breed in modeling,
which is due to the nature of the subject
studied and governed strongly by the
application and the focus of the ‘customer’ of
the modeling exercise. We must integrate
numerical simulation, used to model
biophysical systems, with mathematical
programming and expert rule systems, used to

solve farm-economical management
problems;

3. The diversity of the user community stretches
from policy makers to scientific software
engineers. We need to integrate the
requirements from all user roles in the
framework and decide how different roles are
expressed in user interfaces.

Dealing with these issues will increase the
complexity of all current systems. It has been
noted this is subject to the trade-off between
complexity, flexibility and performance (Wal et
al., 2003). This means an increase in complexity
must result in a decrease in flexibility or
performance or both. It has been shown however
that depending on the purpose of an integrated
system, simplification in modelling, or even a
game, can be very successful in addressing the
complexity of a system (Erisman et al, 2002). This
clearly requires a complete redesign of your
modeling system.

This paper discusses the requirements for
architecture and design of the SEAMLESS
framework resulting from experiences, literature
and stakeholder interviews. We address the trade-
offs mentioned before.

2. DESIGN TRADE-OFFS FOR
INTEGRATION

The software engineering community has suffered
from severe miscommunication between
developers and customers, leading to an IT
reputation of never delivering on time, never
delivering within budget and never delivering what
is wanted. The 2001 update of the CHAOS report
(Standish Group, 2001) shows that in 2000 only
28% of all IT projects manage to deliver what is
promised in time and within budget. It also
mentions that the top 4 factors for project success
are all related to communicating with and
managing the stakeholders of the project.

The Carnegie Mellon Software Engineering
Institute (SEI) has developed the Architecture
Tradeoff Analysis Method (ATAM) to help a
system’s stakeholder community understand the
consequences of architectural decisions with
respect to the system’s quality attribute
requirements and business goals (Nord et al.,
2003). This is part of the architecture centric
development method characterized by the
following steps (amongst other, Nord et al, 2003):

1. defining the business case for the system;

733

2. understanding the requirements;

3. selecting, refining or creating the software
architecture;

4. documenting and communicating the software
architecture;

5. analyzing or evaluating the software
architecture;

6. implementing the system based on the
software architecture;

7. ensuring that the implementation conforms to
the software architecture.

In SEAMLESS we have applied the architecture
centric development to allow the stakeholders to
participate in the design and decision process of
building the SEAMFRAME architecture. Besides
stakeholder interviews and collecting requirements
in a user-centered design method, derived from
agile programming methods, we have also created
a dummy system, the so-called animated
narrative-demo (AND), to show to stakeholders
how the system might look like and it can be used.
The AND serves as an electronic discussion
document and has proved is value in
communication and requirements gathering.

Based on ATAM we created a list of risks leading
to management decisions for dealing with these
risks. We found that the main risks can be
summarized as: unrealistic user expectations,
reinventing the wheel, and premature obsolescence
of the framework. Let’s see them in detail.

User expectations, expressed as business goals as
well as requirements, are very much based on the
Aladdin’s lamp assumption. The software
engineers are able to fulfill every wish, and they
deliver a dreamed system that solves all problems.
The truth is that we already have enough
challenges trying to integrate the current situation
and make it work. Stepwise improvement of the
system must gradually introduce new, wanted,
requirements in addition to the business goals.
Managing user expectations is a major task.

Reinventing the wheel is a serious danger since
there are considerable efforts done already in the
agricultural and adjacent domains with regard to
integrated modeling and framework architectures.
We do not want to create a completely new
framework but try to connect to these other
initiatives and apply relevant parts to our system.
The Yet Another Modeling Framework (YAMF)
syndrome has very well landed within the

SEAMLESS community. The main risk is
however that we incorporate architectural aspects
in our design that do not comply to our business
case, just because they are there already. On the
other hand, there are lots of legacy systems and
dealing with them and their authors is a challenge
in its self.

Even when we deliver the final framework, we
might find that it is already obsolete. While
lifespan assumptions and life cycle analysis in
software engineering suggests a longer life time of
the framework in comparison to its components, it
is however our experience so far that in the science
community the life time of the component exceeds
the (expected) life time of the framework. This life
cycle inversion directs our efforts in respecting the
individual value of the component above the value
of the framework. We have taken good notice of
this in the design and architecture.

3. MODULARITY FOR INTEGRATION

All of above has led us to propose a global design,
based on 3 coherent building blocks that can be
deployed in an integrated fashion to deliver the
required functionality. The main blocks are the
Modelling Environment, the Processing
Environment, and the Knowledge Base (figure 1).
The former grants access to Sources (data,
software components, results, etc.) by means of a
set of ontologies, which conceptualise the structure
and organization of the sources.

Figure 1. The SEAMLESS building blocks.

The Modeling Environment, which targets the
needs of the different kind of modelers, from
biophysical modelers, to economic modelers. We
will implement different modeling environment
variants depending on the type of modeling
required; e.g. the modeling environment for
economic models will be build around the GAMS

Modelling
Environment

Processing
Environment

Sources

Knowledge
Base

SEAM
LESS

Ontologies

734

language and engine. Any Modelling Environment
delivers models, which are packaged as software
components (Szyperski, 2002). A software
component therefore implements a model that can
be simulated or optimized, according to the
computational engine it embeds. The modeling
environment reflects the need to build new models
in an integrated fashion. Modelers can easily
develop their ideas into software and deploy it in
the standardized environment. The modeling
environment is a real productivity tool and should
decrease the time-to-market of new models
considerably.

The Processing Environment allows the system
analysts to access the work of the modelers. It
allows analysts to define and execute scientific
workflows, which are sequences of operations on
data and models. The scientific workflow defines
how to connect systems together to perform a
certain analysis. The processing environment
finally, comprises the high-level integration that
connects all sources into a executable system. This
includes user-interface elements such as user
dialogues and presentation of scientific data, in
graphs, tables and maps.

All relevant components for integrated modeling,
such as models, databases or datasets, expert rules
and all other formally and digitally captured
knowledge are stored in the Sources. Our sources
will be primarily existing models and databases,
just conveniently wrapped in a fashion to be
deployed in the processing environment. Existing
sources can be in any language and can also stem
from other frameworks. The modeling
environment integrates these sources into
components.

Access to the sources is mediated by the
Knowledge Base that includes functionality and
rules to use the ontologies to semantically mark up
the sources. For instance, the ontology can be used
to store concrete information on purpose and
application of a source, and it also informs the user
about scale, scope and restrictions in use.

Thanks to the SEAMLESS ontologies, the
knowledge base includes functionality to negotiate
between sources when the user wants to connect
them and to automatically add converters in the
scientific workflow (Rizzoli et al., 2005).

4. SOFTWARE REUSE FOR
INTEGRATION

This block system has been elaborated in several
sessions involving all stakeholders (developers and
users) during the first phase of the project. We

have used diverse technologies for this, ranging
from writing papers and documents, discussions at
meetings and developing software parts to provide
some hands-on examples to the user community.
During these ‘negotiations’ we have analysed the
outcomes based on the Cost Benefit Analysis
Method (CBAM) (amongst other, Nord et al.,
2003) in order to direct the project in a manageable
fashion towards available budget and resources.
Besides prioritization this has also led to trade-offs
with regards to so-called ‘build-or-buy’ decisions,
which in the open source segment better is defined
by ‘build-or-borrow’. In our steps 6 and 7
(implementation and verification) of the ATAM
architecture-centric development we have chosen
to develop a prototype, which will be the basis for
further developments. This prototype uses existing
parts to a maximum, while it also focuses on
integration of the current state-of-the-art, and does
not impose too many enhancements right away.

We had to select the building blocks on which to
start developing the Modelling and the Processing
Environment, and the Knowledge Base.

The choice for the modeling environment was not
easy, given the requirement of being able to model
across a wide scope of disciplines and spatial and
temporal scales. We therefore decided to target the
development of two modeling environments, one
for biophysical modeling and another one for
farm-economical modeling. For the former we
have chosen for MODCOM (Hillyer et al. 2003)
while we have evaluated several alternatives (see
also Evert et al. 2005, in these proceedings). The
latter modeling environment is based on GAMS
(http://www.gams.com), which is a de facto
standard for agricultural-economic modeling.

For the processing environment we decided to rely
on the OpenMI framework
(http://www.openmi.org). Although primarily
designed and build in the hydrological domain, the
OpenMI framework offers functionality and
interfaces that suits our need nicely. Most
important, it is open source (as MODCOM is) and
this allows us to contribute to its development.

For the knowledge base we rely primarily on
existing ontologies and existing tools. We are
inspired by projects like KEPLER
(http://www.kepler-project.org) and SWEET, the
Semantic Web for Earth and Environmental
terminology (http://sweet.jpl.nasa.gov/ontology/)
where similar, but more ambitious efforts are
undertaken. The software we are developing is
based on the Java libraries provided by the Jena
(http://jena.sourceforge.net) and Protégé
(http://protege.stanford.edu) projects.

735

In order to integrate all these building blocks, we
have designed the Seamless OpenMI+ Framework
Architecture (SOFA), as a comfortable and soft
landing of all these systems. SOFA is a
SEAMLESS specific implementation of OpenMI.
The ‘+’ in OpenMI refers to the Requests For
Change (RFCs) we have already implemented and
we have offered to the OpenMI consortium for
adoption in the standard. These refer mainly to
adaptations of OpenMI to a more generic modeling
scene than just hydrology.

SOFA’s main responsibility is to integrate
components (sources, tools, environments) using
the mediation of the knowledge base.

5. USERS AND FRAMEWORKS

On top of the architecture and using the
frameworks, software applications are built to
satisfy the needs of different users. For the sake of
analysis we have categorized the different user
roles that can be distinguished within our user
community:
• Coder: creates new data structures, new

models and new applications, using the
SEAMFRAME environment as a productivity
tool for better time-to-market;

• Linker: builds scientific workflows, dedicated
to specific research questions. A Linker
combines existing models and databases that
suit his purpose.

• Provider: brings in legacy software
components and needs functionality to
describe and formalize the components for
further reuse;

• Runner: executes a chain of components in a
scientific workflow by changing parameters
and evaluating the results;

• Player: plays around with prepared
experiments and explores alternatives. The
Player differs also from a Runner in its
attitude such as impatience, attracted by GUI
elements and a desire to test the system
capabilities;

• Viewer: looks at prepared results and their
interpretation, as presented in Reference Book
kind of application (Wien et al., 2005).

Through mixing and matching of components
different applications will be assembled to support
tasks of different user roles. All applications are
from the same breed, which is shown in their
deployment of the same framework and the re-use
of software components.

The architecture centric development allows to
abstract from the desired functionality to a base set
of requirements for the whole system. The

framework does not prevent extensions and
adaptations; on the contrary, thanks to its
component based structure, it provides the
necessary elements to build upon the framework
and its components. This has been made possible
by defining framework concepts for specific parts
and separating the modeling environment from the
linking environment acknowledging the essential
difference between the two: a modeling
environment is basically meant for coders. The
processing environment is used by all user roles as
it is the backbone of end-user applications. In this
analogy, the knowledge base is the spinal cord.
The explicit separation of processing and modeling
environment allows us to integrate different
modeling environments in our system. In
SEAMLESS we will have one modeling
environment for equilibrium models using multiple
goal linear programming tools like GAMS.
Another modeling environment will be build upon
MODCOM. The third modeling environment
concerns a declarative modeling tool, that provides
a sound way of documentation and knowledge
transfer of model (-equations). When a model is
declaratively expressed, the equations are clearly
separated from the imperative code that performs
the numerical integration and data preparation. The
model is therefore written using a text based
declarative language, which states facts that are
true about the model and that can be processed by
an inference engine. Think of a declarative model
as a Prolog program. A key advantage of using a
declarative language to store models is the
capability to export models according to different
implementation requirements and even platforms
(Muetzelfeldt, 2004).

The SOFA takes care of the integration of the
different frameworks and enforces the use of the
knowledge base in retrieving and deploying
components.

6. CONCLUSIONS

Large scientific software projects, like in
SEAMLESS benefit greatly from an architecture
centered development method. The lack of a
clearly defined customer with clearly specified
requirements could be well tackled with the trade-
off analysis where stakeholders could clearly
indicate what restrictions were and were not
acceptable.

When retrieving user requirements after all, we
have made use of software parts, presented as
mock-ups, that show (potential) users the vision
we have with the software. These software parts
were very useful in focusing on specific
functionality and made the abstract discussions

736

much more concrete. Besides that, our animated
narrative demo made sure all stakeholders keep
their minds also with the greater picture or the
overall function of the system.

When converting user requirements into planning
and prioritize the different requirements we found
a cost-benefit analysis very worthy. The costs were
mainly assessed by software engineers and
expressed in terms of man-hours work.

The separation of the linking function of the
framework from the modeling function has been a
very useful line of work. Besides a risk-mitigation
effect it also provides another hook for variation
and extension.

The choice for the existing frameworks to be
included in the overall SEAMFRAME
environment is not undisputed. The fact that we
have made a choice in the first place was one of
the best things that happened in the project,
because it allowed us to move forward towards
realization. Whether these frameworks are good
enough will be assessed after completing and using
the SEAMLESS prototype. This is due in June
2006. With a life expectation of components that
exceeds the life expectation of the framework, we
anticipate for reusing the components in other
frameworks, either in parallel in other projects or
as a successor of the current framework.

With the SEAMFRAME design and architecture
that has been described here, we think we can cope
with the main challenges mentioned in the
introduction: dealing with different languages and
domains; dealing with different modeling
paradigms and dealing with different user roles.

7. ACKNOWLEDGMENTS

This publication has been partially funded under
the SEAMLESS integrated project, EU 6th
Framework Programme for Research,
Technological Development and Demonstration,
Priority 1.1.6.3. Global Change and Ecosystems
(European Commission, DG Research, contract
no. 010036-2). The authors wish to thank all our
partners in this project for their fine collaboration;
their names cannot be listed here, but you can find
more information on the project website:
http://www.seamless-ip.org.

8. REFERENCES

Erisman, J.W., A. Hensen, W. de Vries, J. Kros, T.
van der Wal, W. de Winter, J. E. Wien,
M.van Elswijk, M Maat and K. Sanders
(2002): ‘NitroGenius: A nitrogen decision

support system. A game to develop the
optimal policy to solve the Dutch nitrogen
pollution problem’. Ambio 31 (2): 190-196.

Evert, F. van, D. Holzworth, R. Muetzelfeldt, A.E.
Rizzoli, F. Villa. 2005. Convergence in
integrated modeling frameworks. MODSIM
05, 11-15 December, Melbourne, Australia.

Hillyer, C., J. Bolte, F, van Evert, A, Lamaker.
2003. The ModCom modular simulation
system. European Journal of Agronomy, 18
(3-4).

Muetzelfeldt, R.I. 2004. Declarative Modelling in

Ecological and Environmental Research.
European Commission Directorate-General
for Research, Position Paper no. EUR 20918.
European Commission, Brussels, B.

Nord, R.L., M.R. Barbacci, P. Clements, R.
Kazman, M. Klein, L. O’Brien, J.E.
Tomayko. (2003). Integrating the
Architecture Tradeoff Analysis Method
(ATAM) with the Cost Benefit Analysis
Method (CBAM). Technical Note,
CMU/SEI-2003-TN-038, Carnegie Mellon
Software Engineering Institute, Pittsburgh,
PA.

Rizzoli, A.E., M. Donatelli, I. Athanasiadis, F.
Villa, R. Muetzelfeldt, D. Huber. (2005).
Semantic links in integrated modeling
frameworks. MODSIM 2005, 11-15
December, Melbourne, Australia.

Standish Group International Inc., (2001), Extreme
Chaos, www.standishgroup.com.

Szyperski, C., Gruntz, D., Murer, S. 2002.
Component Software – Beyond Object-
Oriented Programming, Second Edition.
ACM Press, New York, NY.

Wal, van der T., J.J.F. Wien, and A.J. Otjens
(2003), The application of frameworks
increases the efficiency of knowledge
systems, proceedings of the 4th EFITA
conference on ICT in agriculture.

Wien, J.J.F., M. Blind, and T. van der Wal, (2005)
The AQUASTRESS integrated Solutions
Support System, MODSIM 2005, 11-15
December, Melbourne, Australia.

737

