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SUMMARY

Crop models play a key role in the study of climate change impacts on food production as well as improving
food systems resilience and analyzing the effect of potential adaptation interventions. Here, we illustrate
opportunities that machine learning offers for tackling key challenges of agricultural modeling. However,
to unlock the full potential of machine learning, and thereby accelerate progress toward a more secure
and sustainable global food system, serious pitfalls must first be addressed. We argue that transdisciplinary
coordination is needed to identify impactful research gaps, curate and maintain benchmark datasets, and
establish domain-specific best practices.
INTRODUCTION

Despite large increases in the worldwide harvested area of sta-

ple crops, the United Nation’s Sustainable Development Goal

of eradicating hunger by 20301 is in jeopardy. Yields in some

breadbasket regions are stagnating, and the share of crops be-

ing used directly for food is decreasing.2–4 At the same time, the

effects of climate change are already being felt by the agricultural

sector, and these impacts are expected to increase over the

coming decades.5–11 Higher global temperatures are associated

with reduced crop yields,12,13 largely offsetting the recent gains

associated with rising CO2.
14 Food insecurity risk is expected to

increase due to more widespread and pronounced extreme

climate events such as droughts, heatwaves, and floods.15–18

The challenge of improving the resilience of our global food sys-

tem overlaps with an urgent need to mitigate its climate impact.9

The complexity of the food system necessitates a transdisci-

plinary systems thinking approach19 that takes into account

interactions and feedback mechanisms between economic,

environmental, and biophysical processes at field, regional, na-

tional, or global scales.20–22 This requires the use of empirical

and process-based modeling approaches, with couplings be-

tween climatic, biophysical, and socioeconomicmodels, in order

to accurately capture the behavior of food system decision pro-

cesses23 and disentangle underlying causal mechanisms.24

The biophysical impacts of climate on agricultural yields are

usually simulated using process-based crop models, which

track day-by-day plant development according to the interac-

tions of genetic, environmental, and management factors

(GxExM).25 This process-level representation allows crop
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models to be used for applications outside of observed condi-

tions, such as historical counterfactuals, future climate

scenarios, novel crop traits, or adapted management systems.

Process-based cropmodels can also simulate a large suite of in-

formation beyond yields, including water and nutrient use and

loss, soil carbon sequestration, and greenhouse gas emis-

sions—all of which are necessary for supply-side approaches

to agricultural development and food security analysis. However,

cropmodels differ in themechanistic and functional components

used, and some important plant processes are not captured.26,27

For example, models often use ‘‘stress factors’’ as a practical

way of representing the impact of heat or drought, but their per-

formance in cases of combined stresses has rarely been evalu-

ated, and most do not consider the effects of compounding bi-

otic and abiotic stresses.28 Furthermore, most models do not

consider the impact of pests and diseases, or the spatial vari-

ability of soils or management, despite being increasingly

applied at spatial and temporal scales at which these effects

become relevant. Any resulting lack of explanatory skill may

not be identified given that evaluation strategies are often insuf-

ficient in spatial contexts29 and high-quality reference data are

scarce. Consequently, although broad signals are robust,

current crop models exhibit substantial uncertainties in future

projections of global yields under climate change.11,30

Over the last few years, the use of data-driven machine-

learning (ML) methods has risen rapidly in agricultural science31

as well as many other scientific fields.32 While statistical models

have a long history in agricultural modeling, the flexibility of ML

models and their ability to learn complex, potentially unknown in-

teractions makes them promising tools for capturing crop
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Box 1. A brief history of agricultural crop models

Agricultural modeling has been driven by a transdisciplinary network of scientists since the 1960s, and the field has repeatedly

embraced emerging technologies such as dynamic programming, high-performance computing, and the open-source software

movement.25,41,42 Crop models have been used to improve our understanding of crop growth processes and their response to

the environment and to support a variety of stakeholder decisions. These include the evaluation of GxExM interventions for

climate adaptation and mitigation,43,44 the identification of optimal growing periods,45 and estimation of future warming

attributable to worldwide food consumption.46 Furthermore, simulations can provide valuable food-security information in

regions where the availability, frequency, and/or quality of data are lacking.47 Today, there exists a large diversity of crop

models,48 with over 40 developed for wheat alone.49

The release of global datasets of cropping areas, sowing dates, and yields in the early 2000s led to the establishment of data

standards and harmonized inputs.50 This then enabled the use of agricultural models to create projections of crop

productivity, trade, food prices, and other impacts under future climate-change scenarios.11,51,52 However, crop simulation

experiments were primarily run with diverse protocols and data and without consistent accuracy assessment or uncertainty

quantification,53 meaning that results from different studies could not be synthesized or compared. In response to this,

the Agricultural Model Intercomparison and Improvement Project (AgMIP) launched in 2010, fostering a global community

of climate, crop, livestock, economics, and nutrition modelers to conduct multi-model ensemble intercomparison experi-

ments.54,55 AgMIP intercomparison activities and large-scale ensemble simulations have been used to evaluate and improve

crop models56,57 and to robustly assess current and future challenges to food systems as well as historic variability58 and agro-

climatic sensitivity.59
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growth and development. Furthermore, ML models are skilled in

dealing with missing and noisy data, which are common prob-

lems in agricultural settings. ML models have been used to fore-

cast yields at multiple scales, to emulate existing process-based

crop models,33,34 to generate datasets of planting dates35 and

soil characteristics,36 and to downscale simulations to the fine

spatial resolutions needed to inform regional decision making37

(which can be anywhere from the field to district level depending

on the application). Their ability to extract information from image

and text data has allowed researchers to exploit data sources

such as satellite imagery38,39 and news articles.40

However, some pitfalls in the use of ML for typical agricultural

modeling applications must be recognized. Data-driven predic-

tive models may not necessarily capture true biophysical pro-

cesses, even if they exhibit excellent predictive performance.

This means that ML model predictions outside of the training

data distribution could be poor or even physically implausible,

which impedes their use for model emulation or yield projections

in future climate scenarios, alternative systems, or data-scarce

regions. Additionally, crop models are used to encapsulate and

improve scientific understanding of plant growth processes,

but most ML models are ‘‘black boxes.’’ While there has been

considerable research effort into explainable or interpretable

AI,41 current methods may not be robust to dependencies

among features or sampling variability.

While the existence of these theoretical limitations is well

known, their relevance is dataset and task specific. Agricultural

models are used for a wide range of applications, including

farmer decision support, national yield forecasting, and the

exploration of climate-change adaptation, each of which may

have specific usability requirements (such as computational

and data efficiency, auditability, ease of use without technical

expertise, precision, or accuracy). To drive research progress

at the intersection of ML and agricultural modeling, and to

capitalize on the strengths of both ML and process-based

modeling paradigms, transdisciplinary coordination and sus-

tained engagement with stakeholders is vital. In this article, we
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aim to foster such collaboration by providing an introduction to

the history, importance and pitfalls of both agricultural crop

modeling (Box 1) and ML research (Box 2). We outline several

ways researchers are leveraging ML to enhance existing crop

models and identify critical priorities to advance research prog-

ress such as the creation and maintenance of comprehensive

benchmark datasets, documentation of the diverse range of

stakeholder requirements, establishment of model intercompar-

ison protocols, and support for the development of innovative

hybrid modeling approaches.

CURRENT LIMITATIONS OF CROP MODELS

Despite a relatively strong research focus leading to robust

emerging information on the effects of climate change on

agricultural yields,55,71 crop models have been found to under-

estimate the impacts of heavy rainfall, extreme heat, and

drought.72–75 A number of non-linear responses of fertility and

phenology to extreme climate events are not addressed

adequately or at all in most models.76,77 Additionally, the com-

pounding effects of multiple non-extreme weather events can

lead to severe yield impacts,78 and scientific understanding of

these interactions is lacking.28 This was exemplified by the

extreme 2016 wheat failure in France, which was not anticipated

by forecasters until shortly before harvest.79,80 In general, crop

models do not explicitly consider interactions between multiple

stresses,28 but such combinations are critical for food security

risk assessments (for example, heat and drought stress lead to

intensified impacts when they co-occur81). Beyond climate fac-

tors, the multiple interactions between ozone,82 CO2,
83 salinity,

nitrogen, phosphorus, soils, and genetic factors remain poorly

understood.

Some important factors are not included in simulations

because of the challenges that come with coupling external pro-

cess models, such as diverging input data requirements. For

example, the impacts of weeds, pests, and diseases are usually

not considered in crop models, most of which were originally



Box 2. The rise of ML

While ML dates from the 1950s or earlier, more recent advances in computation speed, data availability, and the success of deep

learning architectures have precipitated a new wave of interest in the field. The term ‘‘ML’’ encompasses a range of models,

including decision trees, random forests, gradient boosted machines, and neural networks (deep learning). Algorithms can

exploit labeled training examples (supervised learning), interact with a dynamic environment to maximize some reward

(reinforcement learning), or find patterns in unlabeled data (unsupervised learning). Neural network architectures are able to

exploit data properties such as temporal dependence, spatial patterns, or graph structures and have proved highly successful

for complex tasks such as protein folding60 and weather forecasting.61,62 These methods can achieve impressive performance

on high-dimensional input such as image or text data, but tree-based models may be preferable on tabular (low dimensional)

or small datasets and in some domains such as time series forecasting.63,64

The culture of ML research prioritizes predictive skill over understanding the underlying data-generating process. For example,

unlike traditional statistical models, where input variable interactions are clearly designed and the number of model parameters

kept small, neural network models involve several layers of non-linear interactions and can contain billions of parameters. In

general, ML methods are able to learn complex interactions that can improve model performance, but it is difficult to

explain their predictions,65 and models can overfit to the training data.66 Motivated by the need to build trust in ‘‘black box’’

ML models, research in ‘‘explainable’’ or ‘‘interpretable’’ methods has grown rapidly in recent years. Usually, post hoc

methods such as feature importances, partial dependence plots, and Shapley values are used to give human-

understandable explanations of the reasoning behind individual predictions or a holistic overview of the underlying

mechanisms.67–70
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designed to capture biophysical processes relating to water,

energy, and carbon. Separate models exist for simulating these

effects, but they require spatially explicit and hourly data for

variables not normally utilized by crop models.84

Crop models rely on knowledge of biophysical processes

gained from field-scale experimental studies72 and are usually

run independently for each location or grid cell studied. At larger

scales, the climate, topography, soil, and management data

used to drive crop models are often spatially aggregated and

may have substantial gap filling,85,86 introducing an additional

source of uncertainty.87 Factors not considered in process-

based models may have a larger effect at the regional, national,

or global spatial scales relevant for some decision makers (e.g.,

farmer behavior, government policies, and the availability of

workers). Some studies have found that scale-dependent

parameterization can ameliorate these errors,87,88 but validation

of model performance requires high-quality data at similar

scales. Furthermore, crop model evaluation frequently fails to

adequately consider spatial context.29

Finally, in part to make up for incomplete representation of rele-

vant processes happening at very fine scales, crop models

contain a large number of parameters. These are derived from

experimental data or empirically estimated by minimizing errors

of simulated output against observations (often by manual trial

and error).89 Outside of experimental settings, often only bulk

end-of-season yield or spatial production data are available for

calibration, and a precise tuning is not feasible given that the num-

ber of parameters is often larger than the number of observations.

Different calibration strategies can result in substantial variation in

model skill, even when the same validation data are used.87,90

Simulated yields and yield variability at the global scale have

been found to be highly sensitive to parameterization.91

RECENT USE OF ML IN AGRICULTURAL MODELING

The successful use of ML methods could help researchers

tackle several challenges in agricultural modeling. Their ability
to extract information from remote-sensing data products, social

media, or news articles,39,40,92–94 for example, could improve

yield predictions in regions where typical crop model input

data are inaccessible or low quality. ML models can be trained

on datasets comprising multiple crop types and cultivars and

then fine-tuned for relatively under-studied crops, like millet,

cassava, and groundnut. Although currently underrepresented

in research studies, there are many opportunities for ML ap-

proaches to complement existing biophysical crop models

(Figure 1). In this section, we highlight some of the ways in which

MLmethods have already been used in agricultural modeling, as

well as some recent advances in related fields that suggest ave-

nues for further exploration.

One of the simplest ways to make use of ML is to generate and

gap-fill data that are required as input for current cropmodels. For

instance, ML models have been used to map soils in high spatio-

temporal resolutions from sparse observations36 and to identify

annual field-scale planting dates from satellite imagery,35 both

of which are key sources of uncertainty in global crop yield simu-

lations.95,96 ML could also help to provide estimates that can be

used for calibrating process-based crop models, such as the

days from sowing to anthesis and maturity, plant canopy charac-

teristics such as chlorophyll content or leaf area index, or above-

ground biomass at different stages of the growing season.

ML models have also been trained on simulated datasets to

create emulators of existing process-based crop models (some-

times referred to as ‘‘meta-models’’ or ‘‘surrogate models’’).

These can be used to generate simulations for a wide range of

scenarios comparatively cheaply in terms of computation time

and/or using fewer input data.33,34,97–99 Emulators can also be

used for post-processing model output, for instance to down-

scale gridded simulations to the higher resolutions that are often

required for local impact assessments.37

The increasing popularity and accessibility of explainable ML

tools (section ‘‘the rise of ML’’) has led to a wave of research

that makes use of these techniques to analyze the relationships

between different factors, such as management practices, soil
One Earth 8, April 18, 2025 3



Figure 1. Examples of ways in which ML can be used to address current challenges in agricultural modeling
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characteristics and health, climate, plant phenotype, crop

growth, production, and food prices.31,79,100–106 Given the infea-

sibility of conducting experimental trials that take into account all

potential factors that influence crop growth, researchers have

expressed hope that this avenue of research could improve sci-

entific understanding of the compounding effects of multiple

stressors.28 Similarly, these methods can be used on emulators

to study the relationships embodied in process-based models

and diagnose incorrectly captured mechanisms.37 In this type

of research, ML models are usually trained to predict a single

target variable (commonly, yield) from a number of predictive

features. Post hoc interpretation methods are then used to iden-

tify important predictors and/or estimate the functional relation-

ships learned.69

The hybridization of ML and process-based crop models is

another promising avenue of research. Hybrid modeling aims to

retain known biophysical relationships encoded in existing pro-
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cess-based models while using ML to better fit to the data by

includingmissing processes or to select optimal parameter com-

binations.99 This couldmake cropmodels relevant for new stake-

holders and scientific communities by enabling the study of the

biophysical and socioeconomic elements of transformative

adaptation options (such as agroforestry, crop diversification, in-

tercropping, pest control, or conservation agriculture).107 Hybrid

(or knowledge-guided) ML models lie on a spectrum between

data-driven and process-based paradigms.108 For example, a

commonly used approach is to use simulated cropmodel output

as input features for ML models109,110 or as synthetic data to

augment the training set. Some studies have used ML to replace

components of process-based models where the underlying

mechanisms may not be accurately represented rather than us-

ing model parameters.111 This approach has been facilitated by

the development of shared modeling frameworks and more

modular and transparent crop models.112,113 Similarly, ML
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Figure 2. Some pitfalls in the use of ML for
agricultural modeling applications
(A–C) ML model overfitting to spatiotemporal (or
other) correlations in the training data (A),
disagreement between interpretations from
different explanationmethods (B), and a predictive
model not correctly capturing underlying causal
mechanisms (C).
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models can also be forced to adhere to known system dynamics

by using knowledge-guided constraints,114–116 which could

reduce the data required for training and improve generalizability.

PITFALLS OF ML

The flexibility that makes ML methods so powerful can also,

ironically, lead to serious impediments to their use for some

crop-modeling applications (Figure 2). Researchers have called

attention to the challenge of robustly evaluating ML models in

spatial or spatiotemporal contexts, where data are not indepen-

dent and identically distributed.117–119 A recent review article

identified data leakage issues leading to severely overoptimistic

conclusions in studies from 17 scientific fields,120 and there have

been findings of previously undetectedMLmodel failures in mul-

tiple scientific domains.66,121 Replicating studies using ML for

agricultural modeling is difficult, as research data are usually

not openly accessible due to the financial interests and privacy

concerns of stakeholders. This issue is, of course, not specific

to ML, but it may have serious consequences for its use in agri-

cultural modeling. Additionally, existing studies have made use

of varying datasets, methods, and model evaluation strategies,

which hinders comparison of results. This lack of reproducibility

and comparability may contribute to a lack of trust and underuti-

lization of ML methods in operational agricultural systems.122

Building trust requires transparency. Given the complex inter-

actions influencing crop growth, and the potential ability of ML

models to capture them, opening the black box is an attractive
concept. However, researchers using

explanation tools on ML models of crop

yields have found ambiguous or contra-

dictory results.98,123 This may be partly

due to the sensitivity of commonly used

explanation methods to small data pertur-

bations or correlations between fea-

tures,124–126 a lack of robustness to meth-

odological choices such as the sampling

method used for evaluation,118,127 or the

small size and inherent biases of observa-

tional agricultural datasets. The unreliabil-

ity of these methods is particularly

worrying because supplying inaccurate

explanations for ML model predictions

could still increase their perceived trust-

worthiness to stakeholders.128

Further study and more careful use of

these methods could ameliorate these is-

sues, but a fundamental problem re-

mains: the difference between a predic-
tive and causal model. Supervised ML methods exploit

correlations to maximize predictive skill, and explanation

methods are designed to diagnose bias and expose model

mechanisms, not to identify the underlying causal structure of

the data-generation process—a fundamentally different, and

much larger, challenge.129 Correlations learned by a predictive

model may not hold outside the training distribution, leading to

poor or physically implausible predictions.66,130 This implies

that, while ML models may be excellent tools for prediction,

they should not be expected to give trustworthy answers to

counterfactual questions or to capture the effect of interventions,

particularly under new conditions (out of distribution). This is also

an issue with traditional statistical models, unless they are care-

fully developed, as well as process-based models that are often

calibrated under specific growth conditions, but the flexibility

and high-dimensionality of MLmodels make themmore suscep-

tible while also making it more difficult to detect overfitting

behavior.

These caveats are particularly concerning for some agricultural

modeling applications. For example, a common crop model use

case is the assessment of yield impacts under potential future

climate scenarios, which entails extrapolation from the observed

data distribution. Simulations using process-basedmodels,which

embody biophysical relationships identified through scientific ex-

periments and theoretical understanding, can be assumed to

adhere to physical constraints under these conditions; the same

is not true for ML models. Furthermore, ML models that cannot

be shown to reliably answer counterfactual ‘‘what-if’’ questions
One Earth 8, April 18, 2025 5
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may be inappropriate for applications such as climate-change

adaptation planning or attribution analysis of the causal chains

leading to yield failures. Suitable datasets and evaluation strate-

gies to benchmark the performance of ML models, as well as

crop models, under such scenarios are needed.

Hybrid modeling approaches aim to avoid these limitations, but

this is not guaranteed. For example, the common approach of

training ML models using simulated data does not necessarily

mean that the relationships embodied by the process model are

effectively learned. This has been shown in studies building crop

model emulators, which then had difficulty generalizing to unseen

regions or years.97,98 Very rigorous evaluation is needed to identify

model overfitting, and commonly usedstrategiesmight not be reli-

able. Random or temporal cross-validation, for example, can lead

to severe overestimation of model skill.118 Bayesian neural net-

works have been argued to help mitigate overfitting but come

with an increase in computational complexity131 and, in reality,

are still vulnerable to overfitting due to the incorrect assumption

of independent and identically distributed data.

Overall, these pitfalls suggest that, although ML methods can

be a powerful tool, they must be used with caution. Ideally, pre-

dictions should be produced only where input data lie within the

training-data distribution.117 If not, the model used should be

evaluated in a procedure corresponding to its intended applica-

tion (for example, using a test set split by space or time that re-

flects operational usage). Where this is not possible, or where

other pitfalls apply to the intended application, it may be that

the use of ML is not appropriate.

ACCELERATING PROGRESS WITH
TRANSDISCIPLINARY COORDINATION

To conduct research at the intersection of process-based crop

modeling and ML without falling victim to these pitfalls, a deep

understanding of the challenges and assumptions underlying

both agricultural science and ML methods is needed. Although

the limitations we describe can have serious implications, their

impact will depend on the specific task, dataset, and modeling

approach used. Many of these pitfalls also apply to process-

basedmodeling to a certain degree, and goodmodeling practice

can be applied to address some of them.132,133 However, we

argue this is not always enough. More research is needed to un-

derstand the extent to which these limitations impact agricultural

modeling tasks and how this is influenced by the use of different

methodologies, model architectures, or other factors.

We argue that a transdisciplinary community is required, con-

sisting of ML experts and agricultural modelers as well as stake-

holders and experts from other fields who make use of crop

model simulations. We identify three key areas in which collabo-

rative activities conducted by such a community could advance

research progress (Table 1).

Exchanging knowledge, data, and domain-specific best
practices
ML educational material is increasingly easy to access, but pop-

ular textbooks, courses, and software libraries often neglect is-

sues that are relevant for agricultural modeling (such as spatial

autocorrelation, sparse datasets, or susceptibility to covariates).

Researchers applying ML have found that models often fail to
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generalize outside of the dataset on which it was trained and

have suggested that this may be due to underspecification of

the intended task in the modeling pipeline.134 In other words,

the training dataset and evaluation strategy used are not rigorous

enough and/or are not capturing stakeholder requirements in

real-world use. Commonly used strategies to address pitfalls

may not be helpful for all models or tasks. For example, a popular

method of addressing the challenges of imbalanced binary clas-

sification is to balance the data using duplicate or synthetic sam-

ples. However, some recent research suggests that using this

method does not lead to improvedmodel performance for strong

classifiers.135 Better communication of the assumptions under-

lying both ML methods and agricultural datasets, together with

collaborative research to identify domain-specific best prac-

tices, is needed.

The transfer of knowledge from crop modelers, agronomists,

and scientists from related fields to ML researchers is also

important. We have highlighted some of the ways in which ML

methods can be used in complement to existing process-based

crop models, such as the development of hybrid models. Here,

targeting opportunities with the most potential impact is key.

For example, modules or parameters of existing crop models

that are known to less accurately reflect the intended processes

may be more likely to lead to improved predictive skill (or other

desired behavior) if replaced with ML. Effective model develop-

ment that builds on the advantages of both paradigms requires

a deep understanding of the strengths and weaknesses of

both existing crop models and state-of-the-art ML methods.

Finally, accessing, handling, and processing agricultural data

come with many domain-specific obstacles. Often, data used

in individual studies cannot be shared due to privacy, ownership,

and other governance issues. Publicly available data, where

available, also tend to have issues related to size and quality.

Coverage is often limited to major crops (such as wheat and

maize). Other crops relevant for food security or nutritional diver-

sity, such as millet and sorghum, may not have data available of

the required size or quality. Most applications will require a range

of data types (crop yields, weather, soil characteristics andmois-

ture, planted and harvested areas, sowing and harvesting dates,

irrigation and fertilization practices, to name a few) that vary in

their spatial and temporal resolution, coverage, collection, and

preprocessing needed. Combining these datasets for modeling

is a daunting task that requires both deep and wide expertise.

Data harmonization and exchange standards, protocols, and

shared tools are also lacking.136 AgMIP has made important

contributions in this domain, but these have not been dissemi-

nated and used as widely as the challenge would require.

Robustly quantifying performance of ML methods for
agricultural modeling tasks
So far, studies have reported varying abilities of different ML

methods for agricultural modeling tasks, and reconciling these

results is difficult due to the range of performance metrics,

modeling methodologies, and datasets used. Community efforts

to define benchmark datasets, evaluation strategies, and proto-

cols that well represent the intended task are vitally needed.

These benchmarks should adhere to the Findable, Accessible,

Interoperable, and Reusable (FAIR) principles, and have defined

procedures for reproducing resulting model performance



Table 1. Transdisciplinary community activities to tackle ML pitfalls in agricultural modeling

Knowledge exchange Quantifying ML performance ML method development

Pitfall: ML model overfitting and poor generalization

For specific applications, identify where and

how overfitting or lack of generalization

ability might be problematic. Find

thresholds of required model generalization

performance in discussion with

stakeholders and model users.

Create and maintain benchmark simulated

and observational datasets (and

corresponding robust evaluation strategies)

designed to detect unacceptable overfitting

for specific applications.

Use simulated or large observational

datasets to test and develop improved

model evaluation and uncertainty

quantification methods.

– Intercompare existing ML methods on a

wide variety of datasets and tasks.

Develop and intercompare hybrid models

that enforce certain physical processes,

model architectures that adhere to physical

constraints or explicitly handle

spatiotemporal autocorrelation.

Pitfall: Ambiguous model interpretations

Assess and communicate the limitations of

commonly used interpretable ML methods,

identify state-of-the-art methods or

inherently interpretable models that have

promise for agricultural modeling

applications.

Intercompare existing and state-of-the-art

interpretable ML methods on simulated

data where underlying processes

are known.

Develop interpretable ML tools tailored to

agricultural modeling tasks, research

questions, and stakeholders.

Identify andmake explicit the diverse needs

of different users of model interpretations

(e.g., model developers, scientists using

interpretable ML for process

understanding).

Investigate the relevance of providing

model interpretations to different

stakeholders and model users (e.g.,

increasing model trustworthiness).

Develop domain-specific interpretable ML

evaluation and uncertainty quantification

tools and platforms.

Pitfall: Predictive models not capturing causal mechanisms

Establish guidelines for the use of predictive

ML models for scientific research in

agricultural modeling.

Measure and intercompare abilities of

current ML methods for counterfactual and

intervention analysis in different tasks using

simulated or experimental datasets.

Develop and intercompare causal ML

methods for interventional and

counterfactual queries on agricultural

modeling applications.

Identify agricultural modeling tasks that

require causal models (e.g., estimating the

effect of a proposed climate adaptation

strategy) and assess if assumptions of

causal methods may be violated (e.g., the

presence of non-stationarity or

feedback loops).

– Develop and intercompare hybrid or

knowledge-guided models, in close

collaboration with domain experts, to

enforce consistency with known

biophysical processes.
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scores. The curation and maintenance of these resources re-

quires a transdisciplinary, coordinated effort with awareness of

the specific needs of different model users and stakeholders.

For many crop-modeling applications, labeled ground-truth

data are not available (for example, assessment of future

climate-change impacts to crop yields). However, simulated

data from process-based crop models could be used to create

benchmark datasets with similar characteristics. Such set-ups

enable in-depth study of the impact of evaluation strategy118 or

training data availability98 on model behavior. Similar ap-

proaches have been used to provide evidence for improved

phenotypic prediction across different environments137 and to

estimate bias in the modeled temperature sensitivity of global

crop yields arising from uneven spatial representation of obser-

vation data.138

Facilitating the development of new ML methods for
agricultural modeling applications
The quest for improvement in model performance on benchmark

datasets drives and quantifies progress in ML research.
Providing such datasets and evaluation criteria for specific agri-

cultural modeling applications could enableML experts with little

domain knowledge to contribute, leading to the development of

improved ML models.139 For example, the recent release of a

benchmark dataset for medium-range weather forecasting

(WeatherBench145) has led to rapid technological advances,

with several ML models now reporting performance comparable

to, or better than, physics-based models.61,62

Experimental or simulated data from agricultural modeling

studies could be repurposed for ML research in relevant subdo-

mains, such as domain generalization, explainability, and robust-

ness. For example, the use of computer vision for image-based

plant phenotyping was accelerated by the compilation of bench-

mark datasets for a challenge hosted at a 2014 computer vision

conference.140 Since then, these datasets have been used in

hundreds of published studies and are now a standard bench-

mark for multi-instance image segmentation.

Finally, ML researchers have called attention to the negative

consequences of excessive focus on model scores on specific

metrics and datasets. Benchmark dataset suites that represent
One Earth 8, April 18, 2025 7
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multiple locations, cultivars, and management strategies,

including granular evaluation criteria aligned with the needs of

specific end-users, could help to avoid ML models achieving

the right answer for the wrong reasons and improve generaliz-

ability. However, we note that there is a tradeoff between the

use of detailed evaluation criteria, which can help to democratize

ML utilization by identifying performant approaches given the

computation, data and expertise available, and the use of simple

aggregate metrics that enable straightforward model intercom-

parison.

RECOMMENDATIONS AND WAYS FORWARD

MLmethods are already driving scientific progress in the agricul-

tural modeling domain, and, with effective transdisciplinary

collaboration, we expect these tools to lead to significant

research advances in the coming years. For researchers working

at the intersection of ML and agricultural modeling, we have

several recommendations.

First, consider any potential impact of the fundamental limita-

tions of ML methods on the intended use case of the model.

There aremanyways to integrate the scientific knowledge of bio-

physical processes embodied by existing crop models with ML

(via parameterization, data generation, calibration, data assimi-

lation, post-processing, or the use of hybrid modeling ap-

proaches) that may lead to better outcomes than a purely

data-driven approach.

Secondly, ML models should be evaluated more rigorously,

with evaluation criteria that take into account the specific re-

quirements and difficulties of stakeholders (such as the neces-

sary lead time for forecasting, or time lag in data availability) as

well as the presence of spatiotemporal autocorrelation or other

dependencies between features. Ideally, multiple metrics should

be used. For example, model performance under climate ex-

tremes, such as heatwaves or droughts, could be reported sepa-

rately.141 Predictions used for model evaluation could be made

available in public repositories to enable follow-up analyses.142

It is important to note that defining and weighting diverse and

context-specific model criteria is not strictly a scientific question

but a matter of balancing the priorities of multiple stake-

holders.143 Optimizing agricultural yields, for example, can lead

to biodiversity loss, degraded soils, and increased pollu-

tion.144,145 Therefore, deciding on criteria by which models are

evaluated should take place in an open conversation between

ML researchers, crop modelers, stakeholders from multiple

communities, and experts from other scientific disciplines such

as soil scientists, climatologists, agronomists, and ecologists.

This transdisciplinary dialogue is likely to be as important for

advancing scientific understanding as the resulting models, so

these discussions and corresponding lessons learned should

be documented.146 Furthermore, quantifying model require-

ments can be challenging, and stakeholder priorities will change

over time. The emphasis should be on establishing an efficient

process for iterative improvement rather than the creation of a

single definitive product.

For this type of undertaking, global and transdisciplinary coor-

dination is needed. In 2023, we established the AgMIP ML

community (AgML) as a first step toward addressing the

above-mentioned challenges. While we were met with consider-
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able enthusiasm and engagement from bothML researchers and

crop modelers, channeling collective ideas and discussion into

useful output is more difficult. The following recommendations

are based on our experience launching and working with this

large, open, and diverse community.

Focus on application-driven challenges
It is important to decide on a specific problem or research ques-

tion early on in the process, which should be tied to the needs of

a real-world model user or researcher. For example, if we

consider crop yield forecasting, the user could be an individual

farmer trying to maximize profits or a governmental institution

hoping to anticipate and avoid food insecurity. This decision

will dictate the scale and type of data required, the forecasting

lead time, suitable model architectures and corresponding

learning algorithms, and the evaluation criteria. However,

despite the narrow scope, receiving regular input from a wide

range of participants is key. To facilitate this, we have found it

useful to hold regular open meetings where the progress of mul-

tiple activities can be discussed, alongwith other relevant topics.

This provides enough value to merit continual high attendance

and has allowed small issues to be noticed by community mem-

bers with specific expertise. We note that motivating engage-

ment and collaboration between researchers is easier than

with real-world users of crop models and other non-academic

stakeholders.

Develop a common language
Although transdisciplinary community discussion is important, in

order to produce legible output (such as the publication of

benchmark datasets), the problems tackled must be explained

and motivated in field-specific language. To attract interest

from the wider ML community, publications in ML conferences

would be prioritized. These are highly competitive and have a

fast-paced review system. Reviewers are unlikely to be familiar

with crop modeling or adjacent topics, so this context and the

research problem should be explained clearly using domain-

specific vocabulary. A more general problem may be that inter-

disciplinary research careers may not fulfill field-specific criteria

needed to obtain professorship positions.

Reward interdisciplinary work and dataset curation
Producing high-quality research and datasets in coordination

with a large, interdisciplinary community has long been disincen-

tivized by academic structures. Research is driven by a need to

publish quickly and preferentially focuses on novelty over itera-

tive improvement. The actual costs involved in collecting agricul-

tural data and the inherent time lag in generating them (i.e., a

growing season may span several months) often do not receive

proper attention. In ML, the hard work of benchmark dataset cu-

ration has been undervalued, although there has been a recent

push for ‘‘data-centric ML,’’ which aims to improve this. Simi-

larly, data journals in the environmental sciences offer prominent

venues and credit for the often-laborious creation of relevant

auxiliary data.

In conclusion, we advocate for open, accessible communities

to facilitate important dialogues, help scientists to reap the po-

tential benefits of ML for agricultural modeling while avoiding pit-

falls, and conduct activities such as benchmark dataset creation
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andmodel intercomparison experiments. These actions will help

quantify the domain-specific utility of current ML methods and

build trust in the use of these tools where warranted. We believe

that such efforts will enable the development of more robust, us-

able, and trustworthy crop models that can be used to address

the multiple challenges that face our global food system.
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