
Domain object modeling with relational
persistence for idiomatic OWL/RDF

Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

Dalle Molle Institute for Artificial Intelligence, USI—SUPSI, Lugano, Switzerland
ioannis,andrea@idsia.ch

Abstract. This paper investigates how to use an idiomatic OWL/RDF
model as a specification language for delivering Domain Object Model
with relational persistence. It presents a systematic translation of a
subset of OWL/RDF constructs to object structures with a relational
database back-end. The presented framework has been developed as a
plugin for the Protégé ontology editor, and it has been evaluated against
a benchmark of semantic repositories with promising results.

1 Introduction

The adoption of formal semantics for domain modeling has lately became very
popular. Semantic models, typically expressed using the Resource Description
Framework (RDF) or the Web Ontology Language (OWL), emerge for specify-
ing several domains including earth sciences, biology, medicine, or multimedia,
to name a few. Initially, semantic models were meant to be used as classifica-
tions or thesauri. Nowadays, they are the foundations for realizing Semantic
Web Applications, where data, services, and people interact seamlessly over the
open web. However, experience has shown that semantic models and their in-
carnations into OWL/RDF structures, though powerful for expressing complex
abstractions, remain difficult to utilize in conventional software projects.

A major challenge for knowledge-based software engineering is to take advan-
tage of the rich semantics expressed in OWL/RDF domain models. The goal of
providing benefits for the software development process requires aligning object-
oriented models (OO) with semantic models. However this linking is neither
straight-forward, nor trivial, as semantic modeling and object-oriented model-
ing employ different conceptualizations as their building blocks for expressing
domain models, as discussed in [1]. While in object models classes are consid-
ered as types for instances, classes in OWL are regarded as sets of individuals.
Obviously, there is a mismatch between semantic models and object models,
though they both serve similar purposes. The alignment across specification lan-
guages is a challenging task, and in this direction aims the recently published
as an OMG standard Ontology Definition Metamodel [2] that lays the base for
aligning UML models with RDF, OWL and topic maps.

This work investigates how a domain specification, expressed in OWL/RDF
can be used (and reused) in software engineering. This is a step to enable

In Workshop on Ontology-Driven Software Engineering at OOPSLA, Orlando, FL, USA, 2009.

2 Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

knowledge-based software engineering, where semantic models can serve as a
domain specification language, and builds upon our prior work [3, 4]. In the
following Section 2 we discuss the differences between semantic, object and rela-
tional models. Section 3 drafts a methodology for transliterating semantic models
to object models with relational persistence. Section 3.4 introduces an implemen-
tation of the presented method as a plugin for the Protégé knowledge editor1.
Finally in Section 4 we evaluate the efficiency of the proposed method in respond-
ing to queries using a benchmark for semantic repositories. The paper concludes
with a discussion and open issues for future research.

2 Semantic-object-relational model impedance mismatch

Object-relational impedance mismatch is the difference resulting from the fact
that relational theory is based in relationships between tuples that are queried,
whereas the object paradigm is based on relationships between objects that are
traversed [5]. Similarly, semantic-object impedance mismatch is the difference
resulting from the fact that the object paradigm is based on static definitions
of classes, whereas the semantic paradigm defines classes as a set of axioms
which are logically verified. There are certain incompatibilities between semantic
and object paradigms discussed in [6, 2] and between semantic and relational
paradigms, discussed in [7]. The key differences between the three paradigms
can be summarized as follows.

Open vs Close World Assumption: Semantic models adopt the open
world assumption, while Object and Relational models adopt the closed world
one. In OWL, the absence of a statement does not imply that the statement
is false. On the contrary, in OO languages and SQL, the absence of a state-
ment is considered as a false statement. For example in Java, the method call
professor.coursesTaught.contains(ECE123) will return false if the set con-
taining the courses taught by the object professor does not explicitly include
the course ECE123. The same operation in an OWL model will result with in-
formation that is inferred from the model, including statements not explicitly
assigned to the professor individual. As an example consider that there is an in-
verse property taughtBy that assigns ECE123 to have been taught by professor.
This statement is enough for an OWL model to derive the inverse relation, with-
out being directly assigned to the professor individial.

As Antoniou and van Harmelen (2004) pointed out “On the huge and only
partially knowably World Wide Web, the open world assumption is the correct
assumption... Nevertheless, a closed world assumption, (i.e. a statement is true
when its negation cannot be proven) is also useful in certain applications” [8].

Unique names assumption: Typical database applications assume that
individuals with different names are indeed different individuals [8]. This is also
the default behavior in OO classes, unless implemented differently. In the con-
trary, OWL does not make such an assumption, rather it is controlled through
specific constructs (owl:sameAs, owl:sameAs, owl:differentFrom).
1 http://protege.stanford.edu

Domain object modeling with relational persistence for idiomatic OWL/RDF 3

Inheritance issues: Semantic models in OWL/RDF allow multiple class
inheritance, i.e. a class may have more than one parents. On the contrary, most
programming languages allow a class to have only a single parent. However,
multiple inheritance can be implemented in OO languages through the use of
interfaces. Even recursive inheritance can be treated with the use of interfaces
in OO languages. What is really unknown to OO languages is property inher-
itance. Properties in OO languages are second order entities that are defined
through classes. For example, the member name of an Employee class is different
from the member name of a Person class. Having said this, one realizes that
property inheritance as defined in OWL is not supported by OO languages. For
example, it can not be declared that the property hasMother is a specialization
of hasParent. There are ways to implement such a feature, and overcome this
issue, as we will discuss it in Section 3.3. In the relational paradigm there is no
real construct for declaring formally inheritance of relationships.

Ownership of properties: Properties in semantic models are defined inde-
pendently of classes. On the contrary, properties (or fields) in object models are
defined through classes; they are members of classes. There is a direct ownership
of properties in object models. As pointed out also in [6], in semantic models
the statement P rdf:domain D does not mean that all members of D must have
a property P, but that if a property P occurs for a resource R, R must be of type
D.

Inversibility of properties Another issue related to the properties is the
notion of an inverse property: Assume a model where a professor teaches some
courses and each course is taught by some professors. In an OWL model, this is
defined as an inverse relationship. In OO languages inversibility is required to be
treated in code. In an OWL ABox is enough to state only an one-direction state-
ment, and the OWL model infers the inverse direction relation. As an example,
consider the following statement:

<owl:ObjectProperty rdf:about="#teaches">
<owl:inverseOf rdf:resourse="#isTaught">

</owl:ObjectProperty>

An OWL reasoner will infer that the course ECE123 isTaught by JohnDoe only
with the following statement:

<owl:Professor rdf:id="JohnDoe">
<teaches rdf:resourse="#ECE123">

</owl:ObjectProperty>

The inverse statement is redundant. On the contrary, in Java we will need an
implementation that manages inverse properties. According to the previous ex-
ample, the Professor class needs the method:

public void addTeaches(ICourse course){
this.courses.add(course);
course.addIsTaught(this);
}

4 Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

In relational models a many-to-many property is defined through an inter-
mediate table, which doesn’t really have a clear owner, so it fits better with the
OWL notion of inversibility. In the above example, we can define two relations
Professor(id,...) and Course(id,...) for the main entities and an inter-
mediate relation Teaches(professor,course) with external keys to the main
entity tables. This way, both ends of the property have access to it. Though this
reads as, non-inverse properties cannot be enforced in a relational database, as
there is no way to avoid traversing through the relations in both directions.

3 From semantic models to objects with relational
persistence

Taking under account the differences discussed in the previous section, here we
propose a transliteration of semantic models to object models with relational
persistence. Our goal is to enable the software engineering process that aims
to develop enterprise applications starting from a formal domain specification
expressed in OWL (in the sublanguages of DL or Lite). This allows the logical
verification of class hierarchy at design phase and the detection of inconsisten-
cies through logical reasoning. It also enables the adoption of existing semantic
models for domain specification.

3.1 Related work

Several toolkits are available for translating OWL/RDF structures into object
models for supporting coding of semantic-rich applications. This is useful as the
native programmatic interfaces for OWL/RDF, as OWL API2, Jena3, Protégé
-OWL, seem arcane for most object-oriented programmers [9]. Undoubtedly,
runtime access to ontologies has advantages (related to the execution of reason-
ers), however it should be combined with object-oriented source code generated
from OWL, so that ontology-defined structures can be smoothly integrated with
object-oriented code [10]. One of the first code generators from semantic models
was the Protégé Bean Generator [11], which transforms conventional frame-based
Protégé ontologies into Java source code for developing JADE agents [12]. Re-
cent versions of Protégé -OWL incorporated code generation plugins that export
Java source code following the conventions of the Eclipse Modelling Framework
(EMF) cf. [13], or the JavaBeans. The Ontology Creator module in HarmonIA
[14] adopts a more sophisticated approach that deals with multiple inheritance.
Also, RDFReactor [15] is a toolkit for dynamically accessing an RDF model
through domain-centric methods (getters and setters). ActiveRDF [6]is another
dynamic object-oriented API for managing RDF data from Ruby programs.

The above tools provide with typical OWL/RDF storage options that rely
on triplestores. Though triplestores are optimal for short statements, they are

2 http://owlapi.sf.net
3 http://jena.sf.net

Domain object modeling with relational persistence for idiomatic OWL/RDF 5

quite slow compared to Relational Databases, when it comes to more complex
queries against storages of realistic volume [16]. Also, relational databases is
the industrial standard for data storage, and software engineers are much more
comfortable with them.

Motivated from the above, we describe below how we can derive an object
model with relational persistence from a semantic model expressed in idiomatic
OWL, since only a subset of OWL/RDF constructs can be transliterated in a
domain object model due to the impedance mismatch. Starting from a semantic
model, defined in OWL, we transliterate it in an domain object model with the
appropriate object-relational mappings that support persistence in a relational
database. The key constructs of the three paradigms are aligned as shown in
Table 1.

Note that individuals in OWL do not need to be directly typed, rather they
are facts classified to classes, whose restrictions satisfy. This can be the case
for individuals crawled on the Semantic Web. However, from an API generated
from an OWL one would expect to accommodate only consistent individuals.
Based on this requirement, we can consider objects as consistent individuals of
the semantic model at hand.

Table 1. Model alignement

Semantic model Object model Relational model
class class/interface entity

property field attribute or associative entity
individual object tuple

3.2 Mapping OWL Classes

OWL classes are organized in a hierarchy using the subClassOf construct. Also,
in OWL, there is a universal superclass for all classes (owl:Thing), and each
individual is identified by a URI. Based on these remarks, we introduce in the
domain object model, a superclass called Thing, that all generated classes inherit
from. The Thing class has two fields, an id and a URI. The id is required for the
persistent storage in a relational database, and in principle the URI is redundant,
as each object in the generated object model can be uniquely identified through
its id. The URI of an individual can be constructed by the URI of the database
and the id as jbdc:mysql://someserver/Database#12, but for convenience we
introduce the URI field. Also, the Thing class implementation provides with the
appropriate functionality for the proper identification and equality of Things.

A class in OWL defines a group of individuals that belong together because
they share some properties [17]. As such, it aligns better with an interface class
that exposes these properties. Also, interface classes in object oriented languages
support for multiple inheritance (diamond inheritance), in contrast with object

6 Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

classes. Therefore, OWL classes are mapped into interfaces of the domain object
model, and each one extends the IThing interface, that corresponds to the Thing
class.

Classes in OWL/Lite are defined using owl:Class statements, that identify
the URI of the class. Each one of them can be directly mapped to an interface
in the domain object model, together with a class implementation. OWL/Lite
also supports for logical intersections of classes or restrictions (intersectionOf),
which are equivalent to a specification relationship, i.e can be implemented in the
object model through interface class inheritance. Finally, OWL/DL supports for
equivalent classes (equivalentClass), which can be read as the implementation
of both interfaces.

OWL/DL, on top of the above, supports for enumerated classes. This re-
sembles to enumerations in object oriented programming, though only enumer-
ations of literals support relational persistence. Also, OWL/DL sublanguage
provides with more boolean operations for classes (unionOf, complementOf,
disjointWith). The union of two classes is equivalent to a common general-
ization relationship, therefore can be mapped through the inheritance of mul-
tiple interfaces. On the contrary, complement and disjoint relations are default
behavior in object programming. The mapping from OWL Classes to object
interfaces imposes a disjoint relationship, not always present in OWL. The mis-
match between the semantic and object paradigms becomes apparent in this
case. Despite those, the advantage for the programmer is that the domain model
expressed in OWL can be logically verified through a reasoner, and the inferred
class hierarchy can be used for deriving the domain object model.

The relational back-end for storing the content of the domain object model
can be realized following the table per subclass pattern presented in [5] and
implemented by most object-relational mapping toolboxes. The following table
summarizes the mapping of OWL Classes to a domain object model with rela-
tional persistence.

Table 2. Summary of OWL Classes mapping with segments of Java code, and the
corresponding tables for relational persistence.

OWL OO DB
owl:Thing

Thing
Thing(id,URI)

IThing

owl:Class A
A extends Thing implements IThing

A(id,...)
IA extends IThing

A equivalentClass B

A extends Thing implements IB,IA,IThing
A(id,...)

IA extends IThing
B extends Thing implements IB,IA,IThing

B(id,...)
IB extends IThing

A intersectionOf B and C
A extends Thing implements IB,IC,IA,IThing

A(id,...)
IA extends IB,IC, IThing

A unionOf B and C

B extends Thing implements IB,IA,IThing
B(id,...)

IB extends IA,IThing
C extends Thing implements IC,IA,IThing

C(id,...)
IC extends IA,IThing

Domain object modeling with relational persistence for idiomatic OWL/RDF 7

3.3 Mapping properties and constraints

OWL properties are mapped into members or fields of classes and accessor
and mutator methods in the interfaces. Properties in OWL can be (a) Lit-
eral properties and (b) Object properties. Literal properties (defined through
owl:DatatypeProperty) define data attributes of an entity, while object prop-
erties (owl:ObjectProperty) assign relations among tables. In both cases, their
transliteration in the domain object model depends on the cardinality of the
property, which in OWL can de defined universally on the property, or as a con-
straint for the property in the class definition. Singular cardinality properties
are mapped to references of single objects, while multiple cardinality ones are
mapped as sets of objects.

OWL literal properties are defined using the XML Schema datatypes,
which support most object languages and databases. For example, let a singular
property price of a class Garment to have a float range. This corresponds to
a field Float price, accompanied by the accessor and mutator methods Float
getPrice() and void setPrice(Float f). In the case the price property has a
maximum cardinality greater than one, it can be mapped to a field Set<Float>
price. Using object-relational mappings, the single cardinality literal properties
are added as attributes in the Garment table, while for multiple cardinality literal
properties, an associative table GarmentPrices(id, price) key:id=Item.id.

For object properties the principles for adding them in the object model
are the similar: they map to members and methods of the class and the inter-
face. The only shortcoming is that the range of an object property in OWL
can be either a named classes, or an axiom. In case of a range set to a named
classes, the corresponding field of the domain class and the signature of the meth-
ods refer to the interface of the class in range. For example, consider an OWL
class CatOwner that through the object property isOwnerOf is associated to a
set of Cat classes. The generated interface ICatOwner will include the methods
Set<Cat> getIsOwnerOf() and void setIsOwnerOf(Set<Cat> set). In case
an object property range is de fined though an axiom, the corresponding inter-
face of the axiom is used. Anonymous axioms can be given arbitrary names, for
example using the OWL Manchester syntax. (i.e. from Apples or Pears syn-
tax we can name an interface as IApplesOrPears). Finally, the object model
can accommodate cardinality constraints of certain ranges by adding checks in
the accessor and mutator methods, to ensure consistency. Also, transitive and
symmetric properties can be implemented in code as well. What remains com-
plex to be implemented in the object model is the notion of functionality, which
corresponds by definition to a unique attribute relation in a database. We will
discuss this below, where we present the relational mappings of properties.

Aligning OWL object properties to an object model with relational mappings
is a complex task, as the type of the underlying relational schema mapping
depends on the inversibility of the property and the cardinality constraints on
both sides. The issue of being or not an inverse property emerges, as the in
object-oriented programming properties are owned by classes, and the updating
of inverse relations need to be specified in the source code. Also, standard object-

8 Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

Table 3. Object-relational mapping of an OWL object properties is defined by cardi-
nality and inversibility

```````````inversibility
cardinality

singular multiple

not inverse 1-1 unidirectional N-M unidirectional
inverse of a singular 1-1 bidirectional N-1 bidirectional
inverse of a multiple 1-N bidirectional N-M bidirectional

relational mapping tools provide support for directions in relationships, which
means that an inverse OWL property is mapped in both sides of the relationship
in the object model, but it could refer only to one attribute or associative table
in the relational incarnation. We have discussed in detail these mappings in [3],
and we present an overview of all cases in Table 3. Note that the relational
back-end provides with a native implementation of functional OWL properties,
whose attributes can be declared as unique.

Finally, mapping rdfs:subClassOf is not straightforward issue, as OWL
treats properties as first order entities, which exist independently from classes
and form hierarchies. We pointed out also in Section 2 that domain object models
do not have similar functionality. For imitating the behavior of property inheri-
tance a possible solution is to have child properties calling the father properties.
For example, a mutator setMother(Woman w) should also invoke the mutator of
the superproperty setParent(Person w). However, such a solution is expensive
due to the duplication of data, and also conflicts with the relational database
principles.

3.4 Implementation

We implemented the methodology presented above as a plugin for Protégé -OWL
(v.3.4), named SeRiDA from Semantic-Rich Development Architecture and it
will become available as a open-source project at: http://serida.sf.net. The
export plugin traverses in a single pass through all concepts in an ontology and
generates the corresponding JavaBeans source code and Hibernate mappings4,
as both of them are widely used in enterprise application development. The
current version doesn’t support property inheritance, transitive and symmetric
relations. We intend to develop a plugin for Protege 4 as well.

4 Evaluation

4.1 Evaluation with LUBM benchmark

In order to evaluate the performance of our framework in querying large reposi-
tories, we selected the Lehigh University Benchmark (LUBM) [18]. LUBM pro-
vides with an evaluation framework for semantic web repositories. It includes
4 http://www.hibernate.org



Domain object modeling with relational persistence for idiomatic OWL/RDF 9

an OWL ontology that refers to the university domain5; an instance generator,
which provides with synthetically generated data; a set of extensional queries
expressed in SPARQL; and a set of performance metrics.

Using the developed Protégé plugin for exporting JavaBeans and Hibernate
Mappings, we exported the LUBM ontology into the corresponding object model
with relational persistence. In order to simplify the generated object model and
to be able to store all synthetic data generated by LUBM framework, the LUBM
ontology was extended as follows: (a) domain and range restrictions were added
in some properties, so that they will not appear in all generated classes. (b)
TeachingAssistant class was declared as a subclass of a GraduateStudent.

In order to generate the synthetic data, we used the instance generator pro-
vided with the LUBM framework. It gets two parameters, one is the number of
universities to generate (u) and the second is the seed for the pseudo-random
generator (s). Synthetic datasets are identified in the LUBM(u, s) notation. The
instance generator outputs an RDF document. We extended this architecture
for generating Java code that uses the generated JavaBeans to persistently store
data.

Then, we expressed all fourteen LUBM queries in the Hibernate Query-
ing Language (HQL), and used Hibernate to execute all of them against the
LUBM(1,0) data set. The first query written in SPARQL and HQL is shown
below:

# Query1 in SPARQL

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/zhp2/2004/0401/univ-bench.owl#>

SELECT * WHERE

{

?x rdf:type ub:GraduateStudent .

?x ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0> .

}

# Query1 in HQL

select o

from

edu.lehigh.zhp2.s2004.s0401.univ_bench.IGraduateStudent as o

where

o.TakesCourse.URI=’http://www.Department0.University0.edu/GraduateCourse0’

Note that the result of the query in SPARQL is a set of URIs, while the result
in HQL is a set of objects implementing the IGraduateStudent interface.

As Hibernate enables polymorphic queries, the selected object o can be of
any type that implements the IGraduateStudent interface. HQL can resolve
the corresponding tables, access them in the database and return the results.
This also demonstrates how the inferred hierarchy can be used by simply adding
interfaces in the generated Java code. New classes can be inserted in the model

5 http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl



10 Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

Table 4. Summary of the querying results against LUBM(1,0) data using HQL.

Query
Time response Answers Measures

mean (std) act/exp F P
Q1 126.42 ( 4.33) 4/4 1 0.987
Q2 27.42 ( 1.44) 0/0 1 0.992
Q3 389.30 ( 4.16) 6/6 1 0.955
Q4 17.03 ( 3.22) 34/34 1 0.993
Q5 381.41 ( 6.06) 678/719 0.94 0.957
Q6 709.70 (47.98) 7790/7790 1 0.810
Q7 1,411.48 (36.14) 67/67 1 0.113
Q8 933.55 (49.51) 7790/7790 1 0.582
Q9 2,234.09 (41.53) 208/208 1 0.002
Q10 1,257.46 (40.16) 4/4 1 0.216
Q11 483.57 (40.67) 0/224 0 0.930
Q12 504.23 (39.25) 0/15 0 0.923
Q13 494.14 (37.60) 0/1 0 0.926
Q14 539.37 (39.59) 5916/5916 1 0.909

Note: Time response is in msec per query. F and P are performance measures of the
LUBM framework described in the text.

without changing the relational back-end: only the generated JavaBeans need to
be extended with new interfaces.

Then, we executed all LUBM queries 1000 times on an iMac with a 3.06
GHz Intel Core 2 Duo processor with 4GB of RAM, using Java 1.5 with 1GB
of maximum heap size and an underlying MySQL Server (ver 5.1) running on
the same machine. Actual results and the average response time for all queries
is shown in the following Table 4.1.

The results above demonstrate that using HQL support for polymorphic
queries bears with correct and sound answers for queries Q1-Q4, Q6-Q10 and
Q14, that require generalization in the object class hierarchy. This is achieved
by using Java reflection and implementing the corresponding interfaces of all in-
ferred parent classes. Implicit subclassing included in queries Q6-Q10 has been
treated soundly, as the inferred hierarchy has been used for the generated Jav-
aBeans.

Then, Q11 requires traversing through subOrganizarionOf which is a tran-
sitive property. Transitivity is not supported in HQL, therefore the correspond-
ing HQL query returns no results. Queries Q5, Q12 and Q13 require traversing
through sub-properties, which is again not supported in HQL. In Q5 sound but
not complete results have been retrieved, while Q11-Q13 didn’t result any. We
proposed a solution for this problem of sub-properties in Section 3.3.

The average time response remained below 1ms in most of the queries, with
the most expensive one being the Q9 that is characterized by the most classes
and properties in the query set and there is a triangular pattern of relationships.

Finally, we calculated some metrics proposed by the LUBM framework for
measuring querying performance. The F measure computes the tradeoff between



Domain object modeling with relational persistence for idiomatic OWL/RDF 11

answer completeness and soundness [18], as Fq = (β2+1)CqSq

β2Cq+Sq
and the query

performance metric Pq = 1
1+eaTq/N−b , where for query q Cq is completeness, Sq

is soundness and Tq is the time response. Parameters were set to the values
indicated in [18], i.e. a = 500, b = 5, β = 1 and N = 100 000, in order to respond
with a P (q) = 0.5 when a query is responded in 1ms. Table 4.1 presents these
measures for all queries. In 10 out of 14 queries F measure is one, as sound and
complete results have been retrieved, while the P measure tends to 1 for those
queries that have been answered faster.

4.2 Cross-evaluation with semantic repositories

Another incentive to adopt an object-oriented model for managing data with
relational persistence can be its performance with respect to other repositories,
especially the semantic web ones. A recent comparison between semantic and
relational storages [16] demonstrated that there is a great difference with respect
to their query-answering performance. Relational storage is much faster. The
SeRiDA framework stands somewhere in between of the two choices, as it does
not offer the full functionality of a semantic data storage, but certainly offers
more than a conventional RDBMS. For example the support for polymorphism
and polymorphic queries can be considered as a classification service.

For getting a rough evaluation of the performance of SeRiDA against se-
mantic repositories, we compared its performance against the Jena framework.
As we have in mind to evaluate the scaling of the approaches with much larger
data-sets, we installed Jena/SDB6, which provides with RDF storage using SQL
databases, including transactional operations. Jena/SDB was installed on the
same machine with SeRiDA, using the same Java and MySQL configurations.
Using LUBM benchmark we generated the LUBM(1,0) dataset in RDF to be
loaded on Jena/SDB. However, as Jena/SDB is intended for RDF storage, we
preprocessed the synthetic data by applying the Jena reasoner. The extended
datasets that include inferred data have been loaded in Jena/SDB. Then, we
executed each LUBM benchmark queries 1000 times and recorded the average
time response. A comparison of the SeRiDA and Jena performance are shown
in Table 5 for selected queries, which does not require any inference, or require
only class generalization inference.

As a metric of comparison of the performance of the two systems we selected
the LUBM composite metric CM =

∑
q wq

(α2+1)PqFq

α2Pq+Fq
, where α determines the

relative weight between F and P . We set α = 1, as suggested in [18].
Table 5 suggests that SeRiDA response has been well below 1ms per query,

for most of the queries. Also SeRiDA is faster than Jena/SDB, except for Q6 and
Q14. Both Q6 and Q14 of the are simple queries with low selectivity. Q6 asks for
all instances of type Student and Q14 for all instances of UndergraduateStudent.
The former is more complex, as it assumes the subclassing relationship. This re-
mark draws us to the conclusion, that the underlying ORM approach has an

6 http://jena.hpl.hp.com/wiki/SDB



12 Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

Table 5. Comparison of query response time between Jena/SDB and SeRiDA: The
average query response time (ms) is shown for the selected queries, along with F and
P measures. The composite metric for all queries has been calculated as well.

Query
SeRiDA Jena/SDB

Time response Measures Time response Measures
mean (std) F P mean (std) F P

Q1 126.42 ( 4.33) 1.00 0.987 920.29 (33.96) 1.00 0.598
Q3 389.30 ( 4.16) 1.00 0.955 2,655.20 (57.75) 1.00 0.000
Q4 17.03 ( 3.22) 1.00 0.993 322.82 ( 3.17) 1.00 0.967
Q5 381.41 ( 6.06) 0.94 0.957 3,507.32 ( 9.17) 1.00 0.000
Q6 709.70 (47.98) 1.00 0.810 126.46 ( 2.55) 1.00 0.987
Q10 1,257.46 (40.16) 1.00 0.216 3,312.75 ( 9.21) 1.00 0.000
Q14 539.37 (39.59) 1.00 0.909 96.29 ( 1.56) 1.00 0.989

CM Index 3.139 1.939

overhead that becomes apparent in simple queries, while it becomes less impor-
tant for complex ones. It also verifies the fact that triplestores are very efficient
for simple queries.

5 Discussion and future work

This paper presented our work in progress for using idiomatic OWL/RDF models
as a domain specification language for object modelling with relational persis-
tence. We presented a methodology that transliterates OWL models to object
models with relational persistence, and we coded a Protégé plugin that imple-
ments it. Finally we report our evaluation of the performance of the method
against the LUBM benchmark.

We realized that the transliteration from OWL models to domain object
models, though not complete due to the semantic-object-relational impedance
mismatch, it still provides with a powerful tool for the programmer: a systematic
way to model a domain using Description Logics, that can verify the model con-
sistency at early design stage through reasoning. Also, the transliteration may
be proven useful for deploying end-user applications that rely on object-oriented
programming and relational databases, but originate from existing OWL ontolo-
gies. In this way, the developments of the Semantic Web community in terms of
OWL/RDF domain ontologies can indirectly contribute to engineering software
applications.

Finally, the presented method appears to significantly improve the query
response times, which means that have a potential as a semantic storage platform
as well.

Future work will focus on investigating further the performance of SeRiDA in
query response, involving larger datasets from the LUBM framework, in order to
evaluate the scaling performance. Also, the implementation of the property sub
classing needs further investigation, especially in terms of performance. Finally,



Domain object modeling with relational persistence for idiomatic OWL/RDF 13

we intend to add an inspection facility that will identify axioms/patterns in an
ontology that do not allow its transliteration into a domain object model. Adding
missing axioms in the OWL, so that the translation becomes more explicit at a
logical level may be useful as well.

References

1. Knublauch, H., Oberle, D., Tetlow, P., Wallace, E., Pan, J.Z., Uschold, M.: A
Semantic Web Primer for Object-Oriented Software Developers. W3C Working
group note, W3C (2006)

2. OMG: Ontology Definition Metamodel. OMG Specification version 1.0, OMG
(2009)

3. Athanasiadis, I.N., Villa, F., Rizzoli, A.E.: Enabling knowledge-based software
engineering through semantic-object-relational mappings. In Kendall, E.F., et al.,
eds.: Proceedings of the 3rd International Workshop on Semantic Web Enabled
Software Engineering, 4th European Semantic Web Conference, Innsbruck, Aus-
tria, KnowledgeWeb (2007) 16–30.

4. Athanasiadis, I.N., Villa, F., Rizzoli, A.E.: Ontologies, JavaBeans and Relational
Databases for enabling semantic programming. In: Proc. of the 31th IEEE Annual
International Computer Software and Applications Conference (COMPSAC). Vol-
ume 2., Beijing, China, IEEE (2007) 341–346 First IEEE International Workshop
on Development and Application of Knowledge Based Software Engineering Tools.

5. Ambler, S.W.: Building object applications that work. Cambridge University Press
(1998)

6. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: Embedding Semantic Web data
into object-oriented languages. Web Semantics: Science, Services and Agents on
the World Wide Web 6 (2008) 191202

7. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. Web Semantics: Science, Services and Agents on the World Wide Web
7 (2009) 74–89

8. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. MIT Press (2004)

9. Knublauch, H., Horridge, M., Musen, M., Rector, A., Stevens, R., Drummond, N.,
Lord1, P., Noy, N.F., Seidenberg, J., Wang, H.: The Protégé OWL experience. In:
Workshop on OWL: Experiences and Directions. (2005)

10. Knublauch, H.: Ramblings on Agile Methodologies and Ontology-Driven Software
Development. In: Workshop on Semantic Web Enabled Software Engineering,
International Semantic Web Conference, Galway, Ireland (2005)

11. van Aart, C., Pels, R., Caire, G., Bergenti, F.: Creating and Using Ontologies in
Agent Communication. In Cranefield, S., Finin, T., Willmott, S., eds.: Ontologies
in Agent Systems, 1st International Joint Conference on Autonomous Agents and
Multi-Agent Systems. Volume 66 of CEUR Workshop Proceedings., Bologna, Italy
(2002)

12. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE-A white paper. EXP in
search of innovation 3 (2003) 6–19

13. Sharma, D.K., Johnson, T.M., Solbrig, H.R., Chute, C.G.: Transformation of
Protégé Ontologies into the Eclipse Modeling Framework: A Practical Use Case
based on the Foundational Model of Anatomy. In: 8th Intl. Protégé Conference,
Madrid, Spain (2005)



14 Ioannis N. Athanasiadis and Andrea-Emilio Rizzoli

14. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.: Automatic Mapping of OWL
Ontologies into Java. In: 16th Int’l Conference on Software Engineering and Knowl-
edge Engineering, Banff, Canada (2004)

15. Völkel, M.: RDFReactor - From Ontologies to Programmatic Data Access. In:
International Semantic Web Conference ISWC-2005. (2005)

16. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on
Semantic Web & Information Systems 5 (2009) 1–24

17. Guinness, D.L.M., van Harmelen, F., et al.: OWL Web Ontology Language
overview. W3C Recommendation, W3C (2004) www.w3.org/TR/owl-features/.

18. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. J. Web Sem. 3 (2005) 158–182


