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Abstract. We present an integrated tool for preprocessing and analysis of genetic data 
through data mining. Our goal is the prediction of the functional behavior of proteins, a 
critical problem in functional genomics. During the last years, many programming 
approaches have been developed for the identification of short amino-acid chains, 
which are included in families of related proteins. These chains are called motifs and 
they are widely used for the prediction of the protein’s behavior, since the latter is 
dependent on them. The idea to use data mining techniques stems from the sheer size of 
the problem. Since every protein consists of a specific number of motifs, some stronger 
than others, the identification of the properties of a protein requires the examination of 
immeasurable combinations. The presence or absence of stronger motifs affects the way 
in which a protein reacts. GenMiner is a preprocessing software tool that can receive 
data from three major protein databases and transform them in a form suitable for input 
to the WEKA data mining suite. A decision tree model was created using the derived 
training set and an efficiency test was conducted. Finally, the model was applied to 
unknown proteins. Our experiments have shown that the use of the decision tree model 
for mining protein data is an efficient and easy-to-implement solution, since it 
possesses a high degree of parameterization and therefore, it can be used in a plethora 
of cases.  
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1. Introduction 
 
A very important issue in bioinformatics is data mining in biological databases. Large 
databases were created for the recording and exploitation of biological data, due to the 
human DNA and protein decoding. In fact, over 20 trillion basic structural DNA elements 
are recorded in the three large biological databases (Genbank, EMBL, DDBJ) at that 
moment. Another crucial issue in bioinformatics is structural biology, that is the presentation 
of the structure of several  biological macromolecules. The knowledge of the 3D structure of 
the macromolecules can give the answer to many diseases, since most of them are caused by 
malfunctions of the proteins that are related to them. The function of a protein is directly 
related to its structure. Bioinformatics cover the visualization of the 3D structure that has 
been derived from experimental data, as well as its prediction, using algorithms assumed to 
be valid for the protein structures. A protein is structured by amino-acids, whose sequence 
defines the protein’s function. The quantity of amino-acids that participate in the structure of 
a protein varies and is dependent on its type. From the above, we can easily conclude the 
great importance that the proteins have for human. Until now the biological effect of proteins 
could be identified only through a time -consuming procedure and expensive experiments. 
Using data mining, this problem can be solved by implementing methods such as the one 
presented here. 
Protein motifs are very critical for the prediction of a protein’s function. At this time, a few 
databases containing motifs have been developed, such as Prosite, Pfam and Prints. Protein 
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functions combined with motifs are stored in these databases, thus allowing the knowledge 
of the probable function of the proteins containing certain motifs. A protein’s function 
although can not be determined in this way, since the properties that characterize a protein is 
a function of many motifs where some overpower others. Thus, there is a vital need to create 
tools that can discover similarities in chains, consequently predicting a protein’s behavior. In 
fact, data mining algorithms are successfully applied in unknown protein identification [1]. 
GenMiner integrates the three different stages required in order to apply data mining 
techniques in protein data. The first step in this procedure is data preprocessing. GenMiner is 
capable of processing the three major protein databases and export a file containing the 
information needed by various data mining algorithms[2]. The next step is the application of 
data mining techniques, provided by WEKA (Waikato Environment for Knowledge 
Analysis) [3] and MS SQL Analysis Manager 2000 [4]. GenMiner integrates these methods 
in a single Graphical User Interface, thus providing a robust data mining tool. As a final step, 
experiments were conducted and results that lead to the system functionality evaluation are 
presented here. 
The rest of the paper is structured as follows. In section 2, we present a description of the 
problem and define the terms used. Then, in section 3 methodology for the development of 
GenMiner is  presented, including the technologies that were used, and the functions that 
GenMiner offers are exhibited. The proposed algorithm is analytically described in Section 
4, and the idea that led to this approach is depicted. In this section, the description of 
intermediate stages for the application of the data mining techniques is also presented. In 
section 5 statistical results from the conducted experiments are reported and the optimal 
parameters for the best possible results are also given. Finally, in Section 6 we discuss the 
conclusions that derive from our experiments as well as ways to possibly improve results.  
 
2. Problem description 
 
The basic problem we are trying to solve can be stated as follows:  
“Given an amino-acid database or training set that exists in proteins with known properties 
(that have been experimentally specified), we aim to create a tool that can classify new, 
unknown proteins in some known to the training set family of proteins, referred as protein 
class.” 
In Figure 1 our approach to the problem is designated. The creation of a training set is 
needed in order to be able to predict the function of a protein. The training dataset should use 
a decision tree algorithm in order to build a decision tree. Then, in the tree evaluation step, if 
the results are as expected,  we are able to predict an unknown protein’s function. 
Any protein chain can be mapped into a representation based on attributes. Such a 
representation supports the efficient function of data-driven algorithms, which represent 
instances as classified part of a fixed set of attributes. A very important issue in the data 
mining process is the efficient choice of attributes. In our case, protein chains are represented 
using a proper motif sequence vocabulary [5].  
Suppose the vocabulary contains N motifs. Any given protein sequence typically contains a 
few of these motifs. We encode each sequence as an N-bit binary pattern where the ith  bit is 
1 if the corresponding motif is present in the sequence; otherwise the  corresponding bit is 0. 
Each N-bit sequence is associated with a label which identifies the functional family of the 
sequence (if known). A training set is simply a collection of N-bit binary patterns each of 
which has associated with it, a label that identifies the function of the corresponding protein. 
This training set can be used to train a classifier which can then be used to assign novel 
sequences to one of the several functional  families represented in the training set. This 
process is illustrated in Figure 2. 
 

 
 



 
Figure 1. GenMiner’s approach to the protein classification problem 

 
 
 

 
 

Figure 2. Protein data representation 
 
 
3. GenMiner methodology and functionality 
 
GenMiner has been developed in Java, in order to be able to communicate with the WEKA 
data mining module. The preprocessing procedure, as implemented in GenMiner,  requires 
the use of database tables, thus allowing the compact representation of data. The format used 
in SQL Server database is used, since such kind of representation can support the use of  
both the SQL Analysis Manager and  the WEKA data mining module. WEKA was selected 
as a protein data mining tool, since it provides a large variety of data mining algorithms and 
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decision tree building, while its open sourceness  facilitates the interconnection with 
GenMiner.  
The protein data are acquired from three major protein databases; ProSite and SwissProt’s 
tables of strong  motifs and strong prototypes. The automated procedure that GenMiner 
offers, in order to prepare the data for insertion in the WEKA data mining environment, 
provides the convenience to use any of the developed in WEKA data mining routines. In 
order to conduct classification experiments, the C4.5 algorithm was used. C4.5 basically 
chooses the threshold that yields the greatest information gained by partitioning the given 
training set into two subsets at that threshold. Its performance has been widely tested and is 
proven quiet well.  
Apart from the WEKA module environment, GenMiner is able to communicate with SQL 
Analysis Manager as well. The Microsoft Decision Trees algorithm is the one that is used in 
order to classify protein data. It is based upon the notion of classification. The algorithm 
builds a tree that will predict the value of a column based upon the remaining columns in the 
training set. Therefore, each node in the tree represents a particular case for a column. The 
decision on where to place this node is made by the algorithm, and a node at a different depth 
than its siblings may represent different cases of each column. The algorithm can be 
parameterized in order  to change its behavior when creating a model. 
GenMiner preprocessing procedure results in the production of the training and test data files 
in WEKA or SQL format. Furthermore, it exploits DTS in order to transform the SQL files 
to matrix format, thus enabling the communication with SQL Analysis Manager. 
From a functional point of view, GenMiner offers various services, that are presented below: 

a. Protein behavior discovering 
The user can enter a code of a protein and select a variety of  motifs contained in the 
protein. GenMiner discovers the family of proteins in which it belongs, along with 
the family’s properties. 

b. Protein recognition 
Another function of GenMiner is the capability of recognizing a given protein. 
Entering a protein’s code, GenMiner outputs the protein’s name, the motifs it 
contains, as well as the family in which it belongs. 

c. Decision tree building 
Protein recognition and protein behavior discovering are achieved through the 
building of a decision tree. The tree remains in the user’s choice to immediately 
study or store it. The user has also the capability to choose between two ways of 
building the tree, using WEKA or SQL Analysis Server. 

d. Simple and functional user interface 
The user interface was developed in order to simplify its use and be comprehensible 
even to users who might not be sufficiently familiar with computer technology, such 
as biologists or high school students. Tooltips for each key are implemented and 
interaction, such as color change on mouse over are included, among others, in the 
graphical user interface . 

e. Integration of multiple tools in one program 
Since our target is the development of an integrated system that can preprocess data 
and furthermore classify unknown proteins, the WEKA data mining platform was 
incorporated. In Figure 3, the dataflow diagram for GenMiner is shown.  Once the 
user has entered a valid SQL Server protein code, he can have access to create 
training and test set files that can be processed both by WEKA and SQL Analyzer. 
 

 
 



 
 

Figure 3. Dataflow diagram for GenMiner 
 
 
4. GeneMiner structure  
 
The preprocessing step is very important for the accurate representation of data. In our case, 
data from the Prosite database, strong prototypes and strong motifs databases had to be 
preprocessed.  The fact that the individual protein data files are very slow to process has led 
us to introduce the data conversion into an environment of database tables, thus providing 
faster processing and robustness in the storage procedure. Therefore, the GenDatabase 
component was developed. 
Prosite database includes more than 1100 records. Each record describes a common function 
in certain proteins. In the system produced, each record corresponds to a class of proteins, 
e,g, the record PDOC00662 corresponds to the class names “MCM family signature and 
profile”. Prosite database records are sorted in a file, in order to ease browsing among vast 
quantities of data and allow programmers to develop bioinformatics tools. This file is sorted 
as follows: 

i. Each row can contain 6-128 characters. The first two characters state the type 
of information that follows in the rest row. 

ii. Characters 3-5 are empty, in order to separate data from their description and 
iii. The rest of the characters from 6 to 128 are reserved for the row data. 



A structure of the Prosite records is shown in Figure 4. We should note that the type ID 
Identification appears only once in a record and states the beginning of the record. Other 
types that can appear only once are AC Accession number, DT Date, DE Short description 
and DO Pointer the documentation file. All the remaining types may vary from 0 to infinite 
elements for each record. 
The strong motifs database contains the analytical description of each motif, which proteins 
contain a certain motif, as well as the Swisss-prot correctness for each protein.  

 
Figure 4. Structure of Prosite records 

 
 

 
Figure 5. Sample of SwisProt’s strong prototypes table 

 
The strong prototypes database has identical properties with the strong motifs database. It 
contains the prototype code, the proteins that contain it, as well as their names. A sample 
from the strong prototypes database is given in Figure 5. 
The various formats from the three databases described above was converted in a single file 
that can be processed by WEKA. The first line in the file contains the name of the relation 
whose data are represented under the tag @relation. The second line contains the protein 
known properties under the tag @attribute. The following lines contain the rest protein 

sw|O00628|PEX7_HUMAN|323|D405387F7F14B432 73 96
 prf|PS50082|WD_REPEATS_2|8.5|6.5|SEP-2000 11 -10
 8.169 
sw|O00629|IMA4_HUMAN|521|D98BC45002C9F57E 114 158
 prf|PS50176|ARM_REPEAT|8.5|6.5|SEP-2000 1 -1
 9.327 
sw|P57413|RSMC_BUCAI|338|E43516DDD22FA014 194 305
 prf|PS50193|SAM_BIND|8.5|6.5|MAY-1999 1 -1
 10.587 
sw|P57415|MVIN_BUCAI|511|D95FF4B563410A9F 157 182
 prf|PS50314|PHE_RICH|8.5|6.5|SEP-2000 1 -1
 6.529 
sw|P57421|FLGD_BUCAI|236|E15EAA2D3D84F293 5 38
 prf|PS50321|ASN_RICH|8.5|6.5|SEP-2000 1 -1
 6.922 
sw|P57426|FLGI_BUCAI|372|CCF74D2E1B294835 296 313
 prf|PS50079|NLS_BP|5.0|3.0|MAY-1999 1 -1 3.000 

ID Identification 
AC Accession number 
DT Date 
DE Short description 
PA Pattern 
MA Matrix/profile 
RU Rule 
NR Numerical results 
CC Comments 
DR Cross – references to SWISS – PROT 
3D Cross – references to PDB 
DO Pointer the documentation file 
// Termination line 



attributes along with possible values. They are tagged under @attribute and their volume 
may vary. Finally the data  rows appear under the @data tag, related by their attributes, 
values and order of appearance in each record. The WEKA format for the representation of 
the protein data is presented in Figure 6. For the insertion of data in the SQL Analysis 
Manager a DTS data transformation package was used for the conversion of the raw data in a 
database table. 

 
Figure 6. Protein properties representation in WEKA format. 

 
GenMiner is also capable of searching for a specified protein, in order to include it in the 
training or the test set. This function requires the combination of the above explained 
characteristics. Specifically, simplifying the records of the Prosite file, we can derive that the 
protein codes, their names and the “exists in the specific class” flag lie in the DR lines. The 
class in which a protein belongs appears at the end of each record under the DO tag. A 
proper parsing algorithm has been developed in order to extract these features from the 
Prosite format files and represent them in a compact format. Due to the fact that the other 

@relation protein 
@attribute protein 
{P98140,Q04962,P00748,Q9R098,P22897,P11717,Q07113,P49260,P80964,P
81019,P81121,P02751,P04937,P02784,P04557,P08253,P33434,P33436,P52
176,P14780,P41245,Q04756,P08169,P49259,Q9UBV2,P07589,P50282,Q9061
1,P50757,O18733,P41246} 
@attribute PS00023 {YES,NO} 
@attribute PS50034 {YES,NO} 
@attribute PS50240 {YES,NO} 
@attribute PS50026 {YES,NO} 
@attribute PS50070 {YES,NO} 
@attribute PS00022 {YES,NO} 
@attribute PS01253 {YES,NO} 
@attribute PS00021 {YES,NO} 
@attribute PS00134 {YES,NO} 
@attribute PS00135 {YES,NO} 
@attribute PS01186 {YES,NO} 
@attribute PS50099 {YES,NO} 
@attribute PS50231 {YES,NO} 
@attribute PS50041 {YES,NO} 
@attribute PS00615 {YES,NO} 
@attribute PS00017 {YES,NO} 
@attribute PS50079 {YES,NO} 
@attribute PS50325 {YES,NO} 
@attribute PS00687 {YES,NO} 
@attribute PS50269 {YES,NO} 
@attribute PS00024 {YES,NO} 
@attribute PS00343 {YES,NO} 
@attribute PS50319 {YES,NO} 
@attribute PS50105 {YES,NO} 
@attribute PS50276 {YES,NO} 
@attribute CLASS {PDOC00022} 
@data 
P98140,YES,YES,YES,YES,YES,YES,YES,YES,YES,YES,NO,NO,NO,NO,NO,NO,
NO,NO,NO,NO,NO,NO,NO,NO,NO,PDOC00022 
Q04962,YES,NO,NO,NO,NO,NO,NO,NO,NO,NO,YES,NO,NO,NO,NO,NO,NO,NO,NO
,NO,NO,NO,NO,NO,NO,PDOC00022 
P00748,YES,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,YES,NO,NO,NO,NO,NO,NO,NO
,NO,NO,NO,NO,NO,NO,PDOC00022 
Q9R098,YES,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,



two files are well formed, the information required from them is easier to extract. Then, the 
SQL server table is produced using a  
DTS package and a stored procedure. Thus, using the DTS package, two tables are created 
(one for each file), which include the protein code, its name, the motif or prototype code 
included, along with its name. 
Having created the required tables, GenMiner can provide the user with all the available 
Prosite classes. The user can select any or all of them, in order to include them in his search. 
Updating the database, several basic procedures are executed. Specifically, the selected 
classes are entered in the database. SQL Server selects the proteins that belong in the classes 
selected by the user and their flag is ‘T’ or ‘N’. The ‘T’ or ‘N’ flag indicates that the protein 
belongs to the specified class. A new table is  created and another stored procedure inserts in 
the table motifs and prototypes that are included in the proteins which exist in the selected 
proteins table. The update function is illustrated in Figure 7. The most important procedure is 
the creation of the @data part of the derived file. In this procedure, the necessary 
comparisons are carried out and the data tables are constructed. In order to seek in the 
selected proteins and the selected motifs/prototypes tables, two cursors are used. The 
existence of a combination between each motif and protein is discovered by applying an 
SQL select query. In the case when a combination between a protein and a motif does not 
exist, a “NO” value is inserted in the output table, otherwise the value is set to “YES”. 
Moreover, this procedure inserts the protein code in the beginning of each record, while 
adding in the end of the record the class in which the protein belongs. 
The data preprocessing procedure is designed in such a way that the minimum amount of 
data is required to be transferred from the SQL server to the user. The selection of classes by 
GenMiner creates a table in the GenDatabase  and this is the only transfer of data conducted 
until the derivation of results. Thus, the greater part of processing load falls into the SQL 
server, relieving the local system from the data preprocessing procedure. The application is 
only responsible for the correct creation of the training files and the attractive, though 
functional presentation of data. 
 
4. Experiments 
 
We have conducted several experiments with GenMiner, using WEKA and SQL Analysis 
Manager. We present here five of them and describe the conditions in each case,  the targets 
and consequently the results obtained from each one of them. For space saving purposes, we 
present the full result table for only three out of the five experiments. For the rest of them, 

Select 
classes 

Insertion in DB 

Select Proteins Select motifs/prototypes 
 

Create tables: 
Selected proteins,  
Selected motifs/prototypes 

Figure 7. GenDatabase update function 



only the percentage of correct classification is given. Finally, a further discussion about the 
results and their value follows.  
 
4.1. Experiments using WEKA data mining. 
4.1.1 Protein classification decision tree using 10 classes  
In this experiment the 10 most important protein classes among all the nucleic sets were 
used. The selected teams, as referred in Prosite, are the following: 
PDOC00662, PDOC00064, PDOC00670, PDOC50007, PDOC00154, PDOC00343, 
PDOC00561, PDOC00224, PDOC00791, PDOC00271. 
The preprocessing procedure lasted 5:45 minutes. The output file was used for data mining 
using the C4.5 WEKA algorithm. The results obtained are shown in Figure 8. 
During the preprocessing, a training set is exported, consisting of 1379 proteins that belong 
in barely 10 classes. The decision tree was produced by WEKA in 7 seconds. Using the 
whole training set as a test set, the percentage of successful classification was 80.13%. A 
view of the decision tree produced is illustrated in Figure 9.   
Using GenMiner, a test set for proteins was constructed, in order to discover whether it can 
be properly classified. The results are shown in Figure 10. We can remark that a randomly 
chosen protein was correctly classified. Moreover, looking up at the confusion matrix, we 
can find out that the protein belongs in the class PDOC00561. In any case, GenMiner can 
provide the user with various useful statistics for each class separately.  
 
4.1.2 Protein classification decision tree using 20 classes  
The selected classes for this experiment were ten more than the previous one, so that  the 
decision tree produced is bigger and possibly provides greater amount of knowledge. Thus, a 
greater percentage of success might be attained. The selected classes were the following: 
PDOC00020, PDOC00023, PDOC00027, PDOC00335, PDOC00340, PDOC00344, 
PDOC00552, PDOC00561, PDOC00564, PDOC00567, PDOC00789, PDOC00790, 
PDOC00793, PDOC00800, PDOC00803, PDOC50001, PDOC50006, PDOC50017 
Preprocessing lasted 10:13 minutes and the file was mined using the C4.5 algorithm from 
WEKA. The proteins used were 2174 and the full decision tree consists of 93 leaves and 185 
levels. The parameters used for this experiment gave a percentage of 84.26% accuracy for all 
proteins. The decision tree produced is too big, thus making its illustration impossible. 
 
4.1.3 Protein classification decision tree using 30 classes  
In this experiment, 30 protein classes were used in order to study the way the results 
differentiate. The produced decision tree consists of 2599 proteins and 371  
motifs/prototypes. The use of  a greater amount of classes did not induce a proportional 
increase in the number of proteins. Moreover, the percentage of correct classification 
dropped to 74.49% , which was caused by the bigger pruning threshold that was used in this 
experiment. The WEKA C4.5 algorithm was proved insufficient for such an amount of data, 
since 43.8 seconds were required for the production of a 128 leaves and 255 levels decision 
tree.  

 
4.1.4. Further discussion 
Experiments using the WEKA algorithms show that the protein classification conducted by 
GenMiner yields a very good percentage of success along with a fast time of execution. 
Especially in the first experiment, the pruning threshold was at 50%, yielding very good 
classification results. In the second experiment no pruning was enforced, resulting in a 
slower time of execution, though the correct classification  percentage was significantly 
higher. Finally, in the last experiment, due to the WEKA inability to process a sheer amount 
of data, pruning was much wider, yielding worse results than the previous experiments. 
Experimenting with WEKA algorithms, we can conclude that, for each experiment, different  



parameters should be chosen in order to succeed optimum results. In Figure 11 the optimum 
configuration in order to succeed the maximum percentage of correct classification and 
model construction speed are shown. 
 
4.2. Experiments using SQL Analysis Manager. 
4.2.1. Decision tree construction using 50 protein classes 
In this experiment a decision tree for protein classification in 50 classes was constructed. 
GenMiner needed 22 minutes in order to preprocess data and produce a suitable file. Using 
DTS the data was inserted in SQL Analyzer and a model was created. Its diagram is given in 
Figure 12. 
SQL Analyzer searches among all possible combinations, in order to discover patterns. 
According to the available data, the probabilities of classification in each class for each 
protein are calculated, thus creating a probabilistic classification tree. Using the greatest 
probabilities calculated, SQL Analyzer decides upon the number of leaves and levels that the 
produced tree should have. The user cannot modify the algorithm’s sensitivity, consequently 
the size of the tree cannot be preset. 
Each leaf of the tree contains the probability for a specified protein to belong in a certain 
class. In Figure 13, an overall result table is shown. We can observe the exact classification 
for the training set proteins. 
 
4.2.2. Decision tree construction using 80 protein classes   
The above described procedure was applied using 80 protein classes. The induced tree is 
illustrated in Figure 14. The color of each leaf indicates the class with the bigger probability 
for the specific motif/prototype. The histogram in Figure 15 shows the case where the 
prototype PS50071 exists in a protein’s chain. Then, the protein belongs in class 
PDOC00033 with a probability of 43.83% and in class PDOC00027 with probability of 
26.54%. In Figure 16 the classified proteins table is shown. We observe that, among the 567 
proteins that contain the PS50071 prototype, 43.83% belong in the PDOC00033 class, 
15.74% of the  proteins belong in the PDOC00032 class, while the rest of them spread 
among the remaining classes. 
 
4.2.3. Further discussion 
While SQL Analyzer is a powerful commercial package, it lacks the ability to respond to the 
need for execution of sheer amounts of data, due to the extremely big amo unt of 
motifs/prototypes that should be processed. Even though the optimum tool for data mining 
was not used, the results obtained were particularly useful, fast and correct, due to the 
GenMiner preprocessing procedure, which made the data representation  extremely compact. 
 
 
5. Conclusions  
 
We have presented GenMiner, an efficient system to mine protein data using WEKA and  
Microsoft SQL Analysis Manager. Preprocessing three major protein databases and 
combining the necessary data in a compact way, GenMiner is an integrated package which 
provides the data mining algorithms with enhanced reliability and robustness. The decision 
tree technique implemented for mining protein data  has produced strong results that depict 
the system’s capability of efficiently discovering properties of unknown proteins, while 
presenting them to the user in an interactive and functional interface. Our next steps involve 
GenMiner’s capability of the data mining algorithms execution through the worldwide web, 
as well as the representation of data in XML format, thus enabling communication with other 
commercial data mining packages.   
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Figure 8. Classification results using 50 protein classes 

 

Number of Leaves  :  78 
 
Size of the tree :  155 
 
 
Time taken to build model: 6.88 seconds 
 
=== Evaluation on training set === 
=== Summary === 
 
Correctly Classified Instances        1105               
80.1305 % 
Incorrectly Classified Instances       274               
19.8695 % 
Kappa statistic                          0.7701 
Mean absolute error                      0.0497 
Root mean squared error                  0.1577 
Relative absolute error                 28.5525 % 
Root relative squared error             53.4411 % 
Total Number of Instances             1379      
 
=== Detailed Accuracy By Class === 
 
TP Rate   FP Rate   Precision   Recall  F-Measure   Class 
  0.803     0.004      0.974     0.803     0.881    PDOC00064 
  0.45      0.02       0.739     0.45      0.56     PDOC00154 
  0.986     0.198      0.472     0.986     0.638    PDOC00224 
  0.808     0          1         0.808     0.894    PDOC00271 
  0.695     0.002      0.968     0.695     0.809    PDOC00343 
  0.945     0.004      0.912     0.945     0.929    PDOC00561 
  0.842     0.003      0.983     0.842     0.907    PDOC00662 
  0.917     0.001      0.917     0.917     0.917    PDOC00670 
  0.92      0          1         0.92      0.958    PDOC00791 
  0.415     0.001      0.944     0.415     0.576    PDOC50007 
 
=== Confusion Matrix === 
 
   a   b   c   d   e   f   g   h   i   j   <-- classified as 
 188   4  40   0   0   0   1   1   0   0 |   a = PDOC00064 
   3  68  79   0   0   0   1   0   0   0 |   b = PDOC00154 
   0   3 207   0   0   0   0   0   0   0 |   c = PDOC00224 
   0   1  23 105   1   0   0   0   0   0 |   d = PDOC00271 
   0   7  26   0  91   5   1   0   0   1 |   e = PDOC00343 
   0   0   1   0   2  52   0   0   0   0 |   f = PDOC00561 
   1   4  27   0   0   0 170   0   0   0 |   g = PDOC00662 
   0   0   1   0   0   0   0  11   0   0 |   h = PDOC00670 
   1   2  14   0   0   0   0   0 196   0 |   i = PDOC00791 
   0   3  21   0   0   0   0   0   0  17 |   j = PDOC50007 



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.Constructed decision tree for 10 protein classes. 
 
 



Figure 10. Classification of test set using 10 classes. 

=== Run information === 
 
Scheme:       weka.classifiers.j48.J48 -C 1.0 -M 2 
Relation:     protein-weka.filters.AttributeFilter-V-R2-275 
Instances:    1379 
Attributes:   274 
              [list of attributes omitted] 
Test mode:    user supplied test set: 1 instances 
 
Time taken to build model: 6.36 seconds 
 
=== Evaluation on test set === 
=== Summary === 
 
Correctly Classified Instances           1              100      
% 
Incorrectly Classified Instances         0                0      
% 
Kappa statistic                          1      
Mean absolute error                      0      
Root mean squared error                  0      
Relative absolute error                  0      % 
Root relative squared error              0      % 
Total Number of Instances                1      
 
=== Detailed Accuracy By Class === 
 
TP Rate   FP Rate   Precision   Recall  F-Measure   Class 
  0         0          0         0         0        PDOC00064 
  0         0          0         0         0        PDOC00154 
  0         0          0         0         0        PDOC00224 
  0         0          0         0         0        PDOC00271 
  0         0          0         0         0        PDOC00343 
  1         0          1         1         1        PDOC00561 
  0         0          0         0         0        PDOC00662 
  0         0          0         0         0        PDOC00670 
  0         0          0         0         0        PDOC00791 
  0         0          0         0         0        PDOC50007 
 
=== Confusion Matrix === 
 
 a b c d e f g h i j   <-- classified as 
 0 0 0 0 0 0 0 0 0 0 | a = PDOC00064 
 0 0 0 0 0 0 0 0 0 0 | b = PDOC00154 
 0 0 0 0 0 0 0 0 0 0 | c = PDOC00224 
 0 0 0 0 0 0 0 0 0 0 | d = PDOC00271 
 0 0 0 0 0 0 0 0 0 0 | e = PDOC00343 
 0 0 0 0 0 1 0 0 0 0 | f = PDOC00561 
 0 0 0 0 0 0 0 0 0 0 | g = PDOC00662 
 0 0 0 0 0 0 0 0 0 0 | h = PDOC00670 
 0 0 0 0 0 0 0 0 0 0 | i = PDOC00791 
 0 0 0 0 0 0 0 0 0 0 | j = 
PDOC50007
 



 
 Pruning Sensitivity 

Maximum classification 
accuracy No 1 

Maximum model construction 
speed  Yes 0.25 

Figure 11. Optimum WEKA configuration for maximum accuracy and speed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.Decision tree for 50 classes using SQL Analyzer. 
 
 
 
 



Figure 13 Classification results for 50 classes using SQL Analyzer 
 

 
Figure 14. Decision tree using 80 protein classes 



 
Figure 15. Histogram analysis for the prototype PS50071 in 80 class classification 

 

 
Figure 16. Classification results for 80 classes using SQL Analyzer 

 
 


