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Abstract

In this study, we assessed the possible impacts of climate variability and change on growth

and performance of maize using multi-climate, multi-crop model approaches built on Agri-

cultural Model Intercomparison and Improvement Project (AgMIP) protocols in five different

agro-ecological zones (AEZs) of Embu County in Kenya and under different management

systems. Adaptation strategies were developed that are locally relevant by identifying a set

of technologies that help to offset potential impacts of climate change on maize yields.

Impacts and adaptation options were evaluated using projections by 20 Coupled Model

Intercomparison Project—Phase 5 (CMIP5) climate models under two representative

concentration pathways (RCPs) 4.5 and 8.5. Two widely used crop simulation models, Agri-

cultural Production Systems Simulator (APSIM) and Decision Support System for Agrotech-

nology Transfer (DSSAT) was used to simulate the potential impacts of climate change on

maize. Results showed that 20 CMIP5 models are consistent in their projections of

increased surface temperatures with different magnitude. Projections by HadGEM2-CC,

HadGEM2-ES, and MIROC-ESM tend to be higher than the rest of 17 CMIP5 climate mod-

els under both emission scenarios. The projected increase in minimum temperature (Tmin)

which ranged between 2.7 and 5.8˚C is higher than the increase in maximum temperature

(Tmax) that varied between 2.2 and 4.8˚C by end century under RCP 8.5. Future projections

in rainfall are less certain with high variability projections by GFDL-ESM2G, MIROC5, and

NorESM1-M suggest 8 to 25% decline in rainfall, while CanESM2, IPSL-CM5A-MR and

BNU-ESM suggested more than 85% increase in rainfall under RCP 8.5 by end of 21st cen-

tury. Impacts of current and future climatic conditions on maize yields varied depending on

the AEZs, soil type, crop management and climate change scenario. Impacts are largely

negative in the low potential AEZs such as Lower Midlands (LM4 and LM5) compared with

the high potential AEZs Upper Midlands (UM2 and UM3). However, impacts of climate

change are largely positive across all AEZs and management conditions when CO2 fertiliza-

tion is included. Using the differential impacts of climate change, a strategy to adapt maize
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cultivation to climate change in all the five AEZs was identified by consolidating those prac-

tices that contributed to increased yields under climate change. We consider this approach

as more appropriate to identify operational adaptation strategies using readily available

technologies that contribute positively under both current and future climatic conditions.

This approach when adopted in strategic manner will also contribute to further strengthen

the development of adaptation strategies at national and local levels. The methods and

tools validated and applied in this assessment allowed estimating possible impacts of cli-

mate change and adaptation strategies which can provide valuable insights and guidance

for adaptation planning.

1. Introduction

Agriculture is and will continue to be the main livelihood for millions of smallholder farmers

in Africa and other developing countries across the world. In Eastern Africa, agriculture

accounts for 43% of GDP and contributes to more than 80% employment [1]. The region

experiences high variability in rainfall [2,3] which has a direct bearing on the performance of

agriculture. Generally, the region experiences prolonged and highly destructive droughts cov-

ering large areas at least once every decade and more localized events almost every year [4,5].

In the countries such as Ethiopia, where agriculture is the main driver of the economy, the eco-

nomic activity measured by the gross domestic product is closely linked to the variability in

rainfall [6]. According to [7], a single drought event in a 12-year period reduces GDP by

7–10% and increase poverty by 12–14% in Eastern Africa.

In Africa in general and Eastern Africa in particular, agriculture is predominantly rainfed

[8] and the production is, therefore, heavily influenced by various climate dependent biotic

and abiotic factors. Important among them is the plant available water, the dynamics of which

are directly associated with rainfall and the spatial and temporal variability in it. The impacts

of climate variability will be more severe on rainfed systems of the semi-arid tropics which

have a marginal environment for crop production and adding to this, climate change is

expected to further exacerbate these challenges. The fifth assessment report (AR5) of IPCC

concluded with high certainty that the global climate change is unequivocal and will continue

for the next few decades even if the greenhouse gas emissions are contained at the current level

[9]. Coping with the potential impacts from projected changes in climate on agriculture is high

on the agenda of most African countries which are currently struggling to meet the increasing

demand for food and income from the rapidly growing population.

With nearly 80% of the land area under arid and semi-arid environments [10], Kenya is

one of the highly vulnerable countries to climate change. A number of studies suggest that

maize yields in Kenya are going to be negatively impacted at the national level [11,12]. How-

ever, the reliability of such impact studies is highly dependent on the skill of the simulation

models used and the underlying assumptions in setting the model scenarios [13]. In assessing

the impacts of climate change, skills of both climate models that are used to generate future cli-

mate scenarios and crop simulation models used to evaluate the impacts of projected climate

conditions on crop growth are important. Though there has been a significant progress in

modelling climate processes, there are still major issues due to the variety of spatial scales used

and the bias associated within the climate models such as internal variability, inadequate

parameterization, model and scenario uncertainty [14,15]. A wide range of crop models rang-

ing from very detailed process models to the relatively simple statistical models were applied to
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assess the impacts of changing climate on crop production [16]. To date, much of the available

information on impacts of climate change is at scales much bigger than the farm and is based

on simple statistical or rule-based models which will not be of much help in identifying the

components of the system that are vulnerable to climate change. For designing effective adap-

tation strategies at farm level, information about the climate sensitivity of various crops and

management practices employed is an essential pre-requisite. Such detailed assessment of cli-

mate sensitivity of components of agricultural systems is possible with process-based system

simulation models such as APSIM and DSSAT but the data required to calibrate, validate and

run the models is not readily available.

The climate change information required for conducting impact assessments using the

crop simulation models APSIM and DSSAT is of a spatial scale much finer than that provided

by GCMs [17–21]. The GCMs have resolution of hundreds of kilometres perhaps as coarse as

300 x 300 km, while Regional Circulation Models (RCMs) are fine-scale of tens of kilometres

(50x 50 km). However, many impact applications require the equivalent of point climate or

station observations and are highly sensitive to coarse-scale climate scenarios generated by

GCMs. This is particularly true for regions of complex topography, such as Kenya. The most

straightforward means of resolving the spatial scale issues is to downscale GCMs climate pro-

jections to finer-scales. Two different approaches, dynamical and statistical were employed in

downscaling coarse GCM projections to local applications [22]. Since dynamical downscaling

has similar uncertainty issues to GCMs and computationally intensive, statistical downscaling

methods are more commonly used to generate climate change projections at point or station

level because of its relative ease of use and lower time, data and resource requirement [23].

Various system simulation models are being used to make detailed assessment of the

impacts of climate change on various components of the smallholder farming systems such as

crops, cultivar and management options. APSIM and DSSAT are the two models that are most

widely used in assessing the climate impacts on agricultural systems. When properly calibrated

and validated, these models can simulate the growth and performance of a wide range of crops

as a function of climate, soil and crop management [24,25]. However, these models are data

intensive and require careful calibration and validation using site and location specific climate,

soil and crop management information. AgMIP developed a set of protocols [26] that integrate

state of the art climate, crop and economic simulation models, at different time-scales and

under different emissions scenarios for a more comprehensive assessment of climate change

impacts. The methodology involves development of downscaled future climate scenarios using

the simple delta approach and assessing the impacts of current and future climatic conditions

on agricultural systems using process-based crop simulation models such as APSIM and

DSSAT. The objective of this study is to make a detailed assessment of climate change impacts

on agricultural systems in Embu County, Kenya using AgMIP developed protocols and iden-

tify potential options for adaptation. More specifically, the study is aimed at:

a. Assessing current variability and projected changes in rainfall, Tmax and Tmin by down-

scaling and analysing location specific climate change scenarios to mid and end century

periods under RCPs 4.5 and 8.5 for various AEZs, namely, Upper Midlands (UM2, UM3)

and Lower Midlands (LM3, LM4 and LM5) of Embu county in Kenya.

b. Assessing the impacts of climate variability and change on maize yields in different AEZs of

Embu county and identify key vulnerabilities to climate factors.

c. Identifying and evaluating adaptation options that make maize production in the Embu

county more resilient to current and future climatic conditions.
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2. Materials and methods

2.1 Study location

The study was conducted in Embu County in Kenya, which is characterised by a range AEZs

ranging from highlands with altitudes up to 4,500 m in the North West which is part of Mt

Kenya to lowlands with altitudes around 500 m in the East in the Tana River basin. The cli-

mate of the county fluctuates in accordance with the altitudinal variations. The average

annual rainfall varies from more than 2200 mm at an altitude of 2500 m to less than 600 mm

at an altitude of 700 m near Tana River, while temperature varies from 20˚C to 30˚C. July is

usually the coldest month with the average monthly temperature of 15˚C while September is

the warmest month with an average monthly temperature rising up to 27.1˚C [27]. The

county is characterized by bimodal rainfall pattern with two distinct rainy seasons. The two

seasons are generally referred to as Long Rains (LR) season occurring between March and

May and Short Rains (SR) season between October-December. In Embu, cropping is done in

both LR and SR seasons. Though both seasons receive similar amounts of rainfall, SR season

with slightly higher rainfall and longer growing season is generally considered as more

dependable.

The county was selected based on its representativeness of the country’s major AEZs and

based on the availability of the data (crop, soil and climate) required to parameterize the crop

simulation models. The county is divided into 11 AEZs based on their probability of meeting

the temperature and water requirements of the major crops grown in the country. Among

them, Upper Midlands (UM2, UM3 and UM4) and Lower Midlands (LM3, LM4 and LM5)

are the major AEZs that represent the main cropping areas in Embu County (Fig 1). The other

AEZs, representing upper highland (UH0), lower highland (LH0 and LH1) and inner lowland

(IL5), are either too cool and wet or too hot and dry for crop production and hence excluded

from this analysis. Tea and coffee dominate the highland cropping systems. The AEZs of,

UM2, UM3 and LM3 with an annual rainfall of more than 1000 mm are generally considered

as high potential agricultural areas, while the AEZs, LM4 and LM5 with less than 1000 mm

rain are considered as low potential agricultural areas. This analysis is limited to these five

AEZs where the main food crop maize is extensively grown. Though maize is a common crop

in all the five AEZs, there are marked differences between the AEZs in the way the crop is man-

aged. For example, farmers in the high potential areas favour long duration maize cultivars

with relatively higher application of inputs such as fertilizer while those in the low potential

areas favour short duration maize cultivars with low levels of input use.

2.2 Current climate variability and future climate conditions

Long term observed climate data for the baseline period 1980–2010 was collected from the

archives of Kenya Meteorological Department for 4 stations (Embu, Karurumo, Ishiara and

Kindaruma) that are located within the target areas as presented in Fig 1. All stations have

long-term (30 years) rainfall data with less than 10% missing data. Good quality temperature

data is available for Embu station which is one of the synoptic stations managed by Kenya

Meteorological Service. The data was subjected to quality checks to identify outliers, typos and

discontinuity errors using R-Climdex [28] and where necessary AgMERRA Climate Forcing

Dataset for Agricultural Modelling [29] data was used to fill missing data and replace the outli-

ers in the observed data.

In this study the non-parametric Mann-Kendall trend test, a widely used statistical test for

the analysis of trend in climatologic and hydrological studies was used [30,31]. This method

has two advantages, first, it is a non-parametric test and does not require the data to be
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normally distributed. Second, the test has low sensitivity to abrupt breaks due to heteroge-

neous time series [32]. In this method, a correlation coefficient, tau, is computed, which has a

value between -1 and 1 and denotes the relative strength of the trend in a time series.

Location specific climate change scenarios were developed using a statistical downscaling

technique. The method used is known generally as delta method in which absolute monthly

changes in both Tmax and Tmin and relative changes in precipitation were computed and

these changes are perturbed to the corresponding observed historical variables [33]. The delta

method assumes that future model biases for both mean and variability will be the same as

those in present day simulations. Delta method calculates changes in surface temperatures

(ΔT) (Eq (1)) and precipitation (ΔP) (Eq (2)) and perturb the projected changes to observed

climate data as shown in Eqs 3 and 4. Surface temperatures are adjusted by adding the differ-

ence obtained from Eq 1. The daily precipitation is adjusted by multiplying the precipitation

ratio (Eq 4). The method assumes that changes in climates are only relevant at coarse scales

and that relationships between variables are maintained towards the future. This method was

applied over 20 CMIP5 GCMs model groups involved to run their models for future condi-

tions of greenhouse gas emissions, so-called RCPs. A set of four different pathways are [34]

defined based on the radiative forcing in W m−2 at the end of the 21st century as RCP2.6,

Fig 1. Agro-ecological zones of Embu County in Kenya (inset) with locations of the meteorological stations and locations of the

farmers covered by the survey.

https://doi.org/10.1371/journal.pone.0241147.g001
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RCP4.5, RCP6.0, to RCP8.5 [35,36].

D T ¼ ð�Tfut �
�TbaseÞ ð1Þ

D P ¼ ð�Pfut=
�PbaseÞ ð2Þ

Tadj ¼
�Tobs þ D T ð3Þ

Padj ¼
�Pobs x D P ð4Þ

Where

�Tfut: Climate model future projected temperatures

�Tbase: Climate model simulated baseline temperatures

�Pfut: Climate model future projected precipitation

�Pbase: Climate model simulated baseline precipitation

�Tobs: Historical surface temperature

�Pobs: Historical precipitation

Twenty CMIP5 GCMs were selected for the current study to cover the full spectrum of pro-

jections in future precipitation and surface temperatures. Since GCMs differ in their projec-

tions because of differences in underlying assumptions and the way climate system processes

are simulated, IPCC launched the CMIP5, whereby a multi-GCM ensemble analysis was facili-

tated through the provision of climate model outputs. Due to high sensitivity of agriculture to

variability in climatic conditions, the differences in the projections by different GCMs are

expected to have differential impacts. These uncertainties arising from climate change projec-

tions are handled by comparing the performance of maize yields simulated with outputs from

different GCMs that IPCC included in the CMIP5 assessments. This helped in understanding

the impacts of wise range of projected climates on maize yields and identify robust adaptation

options. In this study we deployed projections from 20 GCMs under two RCPs for two differ-

ent time periods. Climate change scenarios were developed for mid-century (2041–2070) and

end-century (2071–2100) for two RCPs. Selected RCPs (4.5 and 8.5) represent the realistic and

pessimistic emission scenarios. We used 20 GCMs in this study since the usage of multiple

models was suggested to provide more reliable assessment of impacts of climate change on

weather sensitive sectors like agriculture [26,37,38]. Climate change impact assessment studies

particularly, agricultural systems which are sensitive to climate variability and change show

that the agricultural sector is aversively affected and the situation is expected to worsen in the

future [26]. Cropping systems impact studies of climate change should not be assessed using

only one GCM, as major source of uncertainty for projections of future climate are from

unknown future trajectories of CO2 and CH4, emissions, but also due to the highly simplified

representation of reality encoded in these models [39]. The use of multiple models can provide

more reliable decision support in climate change impact assessment and assessments of agri-

cultural system vulnerability [26,37,38]. The CO2 concentration are adjusted to correspond the

RCP and time periods defined in [40] for regional assessment. The concentrations used are

499 ppm to mid-century, 532 ppm to end-century under RCP 4.5 and 571 ppm to mid-century

and 801 ppm to end-century under RCP 8.5. R scripts developed by AgMIP climate team were

used to generate required climate scenarios [29].
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2.3 Crop simulation models (CSMs)

In this study we used two plot specific widely applied CSMs—APSIM [25] version 7.7 and

DSSAT version 4.7, CERES-Maize [24,41] to assess the performance of maize under different

climatic conditions. These are process based models operating on a daily time step with a capa-

bility to dynamically simulate the main processes of crop growth and development, such as

phenological development, biomass production and grain yield as a function of climate, soil,

crop and management. CSMs simulate phenological development of the crop based on accu-

mulated thermal time derived from the daily surface temperatures (Tmax and Tmin) and bio-

mass development based on radiation use efficiency (RUE). Biomass partitioning rates to

different plant parts vary with crop development stage and re-translocation begins at the stage

of starting grain filling. These models have been evaluated around the globe under different

soil, climate and management conditions [42,43] and the simulated yields were found to be

realistic and reliable measures of actual yields. One of the limitations in using CSMs is the

amount of data required to define the soil, crop and management variables. Extensive efforts

were made to compile the required data from relevant secondary sources that included formal

and informal publications and by conducting household surveys.

2.4 Model parameterization

2.4.1 Farm and farm management data. Since management varies form one farmer to

the other, household surveys covering a total of 440 households were conducted in 2013 to

capture diversity and variability in the resources and management of maize production sys-

tems in the target AEZs. The households for the survey were identified using a combination of

stratified and multistage sampling technique (Table 1). The survey was conducted by Univer-

sity of Nairobi and Kenya Agricultural Research Institute (KARI) using the protocols devel-

oped by ICRISAT and detailed description of the methodology used and other survey details

are in [44]. Briefly, in all the five selected AEZs one sub-location (In Kenya sub-location is the

fifth level administrative division after province, district, division and location under its old

constitution) was chosen for sampling (Fig 1). At the selected sub-location, data on household

size, farm size, soil type, crops grown, management practices employed, yields achieved and

sources of income was collected.

2.4.2 Soil data. Soil data were obtained from the soil survey reports of KARI by identify-

ing representative soil profiles for the selected AEZs. Soil profile data as required for CSMs

(APSIM and DSSAT) were created for each soil types identified using the data from the bench-

mark soil profile. To account high variability in the soil conditions across the farms, two vari-

ants, one representing the good and the other representing poor were created by increasing or

decreasing the soil organic matter and plant available water contents by 20%. These profiles

are then assigned to individual farms based on the location of the farm and perception of the

farmer about the fertility status of the farm captured during the household survey. During the

Table 1. Agro-ecological zone (AEZ) wise number of households covered by the household survey and the admin-

istrative divisions they belong to in Embu county.

AEZ Division Number of HHs

Upper Midland 2 Kevote, Nembure 73

Upper Midland 3 Kithimu, Nembure 87

Lower Midland 3 Riandu, Siakago 107

Lower Midland 4 Nyangwa, Gachoka 91

Lower Midland 5 Mavuria, Gachoka 82

https://doi.org/10.1371/journal.pone.0241147.t001
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survey, farmers were asked to rate fertility status of their farm as good, average and poor when

compared to general conditions in that area. This information was used to identify appropriate

soil profile for individual farmers. A total of 12 soil profiles were developed with all the

required parameters (Table 2) for CSMs APSIM and DSSAT. Key characteristics of the average

soil profiles used with the crop models are as presented in Table 2.

2.4.3 Crop data. Much of the crop data required is for developing maize cultivar specific

parameters to capture the differences between the maize cultivars in phenological development

and yield potential. We calibrated APSIM and DSSAT for three varieties that represent the

long, medium and short maturity types with different yield potential using the experimental

data from a study conducted on the Embu research farm of Kenya Agricultural Research Insti-

tute (Table 3). The varieties selected are H513 for long duration, H511 for medium duration

and Katumani for short duration. The experiment included all these varieties and was con-

ducted over three seasons i.e., SR season of 2000 and LR and SR seasons of 2001. All the avail-

able data was compiled from the research reports as well as personnel communication with the

researcher concerned. This included, dates of sowing, days to tasselling and flowering, days to

maturity and grain and dry matter yields at harvest. Data on biomass at different days after

sowing was available for some seasons.

2.4.4 Model calibration and validation. The calibration and validation process can deter-

mine to what extent CSMs can reproduce experimental observations, such as crop phenology

and yield components. Cultivar specific parameters were derived by adjusting the thermal

Table 2. Important characteristics of the representative soil profiles used with crop simulation models and the agro-ecological zones they represent.

Properties Embu Kavutiri Gachuka Machanga

Target Agro-ecology UM2 UM3 and LM3 LM4 LM5

Soil type Typic Palehumult Othoxic Palehumult Typic Haplorthox Xanthic Ferralsol

Soil layers/depth (cm) 4/102 6/200 4/104 4/80

Sand, silt, clay (% in 0-15cm) 20,24,56 20,26,54 20,24,56 66,12,22

Plant available water (mm) 93.7 152.2 89.4 100

Organic matter (% in top three layers) 2.09, 1.49, 0.91 3.61,2.29,1.58 2.29, 1.58,0.92 0.58, 0.50,0.40

https://doi.org/10.1371/journal.pone.0241147.t002

Table 3. Maize varieties used by farmers and the identified equivalent in the model.

Variety used by farmer Duration (Months) Yields (t/ha) Variety in the Model

DK41 3.5 to 4.5 5–6 Deka_lb

DK43 4–5 6–7 H511

H513 4–5 6–8 H511

H613 6–8 8–10 H513

Local All 3–5 Katumani

Duma 4–5 6–7 H511

Pioneer 5–6 8–10 H513

Variety used by farmer Duration (Months) Yields (t/ha) Variety in the Model

DK41 3.5 to 4.5 5–6 Deka_lb

DK43 4–5 6–7 H511

H513 4–5 6–8 H511

H613 6–8 8–10 H513

Local All 3–5 Katumani

Duma 4–5 6–7 H511

Pioneer 5–6 8–10 H513

https://doi.org/10.1371/journal.pone.0241147.t003
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time required to complete various growth stages until the simulated phenology matched the

observed phenology. After matching the phenology, adjustments were made to match the sim-

ulated biomass and yield with experimental yield. The final set of cultivar specific parameters

used in APSIM and DSSAT are summarized in Table 4. After calibration, the models were vali-

dated by simulating yields from 160 of the 440 farmers covered by the survey and fall under

Embu climate by setting up farmer specific climate, soil, crop and management parameters.

The validation is limited to 160 farmers since this is the only location for which climate data

for the survey year is available. The simulated yields by both APSIM and DSSAT are found to

be generally higher than the yields reported by farmers (Fig 2).

2.4.5 Crop simulations. Crop simulations were carried out by setting up simulations with

farmer specific soil, crop and management data. A total of 440 farmer fields were simulated

Table 4. Genetic coefficients for three maize varieties derived from the calibration with APSIM and DSSAT using experimental data from Embu, Kenya.

DSSAT

CULTIVAR P1 P2 P5 G2 G3 PHINT

KATUMANI 100.0 0.500 554.0 550.0 10.60 47.0

H511 190.0 0.600 725.0 550.0 7.90 42.0

H513 205.0 0.600 760.5 690.0 8.70 40.0

APSIM

KATUMANI 150 24.0 660 450 8.5 NA

H511 180 24 780 650 8.0 NA

H513 240 20.0 980 750 8.0 NA

P1: Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature (8˚C) during which the plant is not

responsive to changes in photoperiod.

P2: Extent to which development (expressed as days) is delayed for each hour increase in photoperiod above the longest photoperiod at which development proceeds at

a maximum rate (which is considered to be 12.5 hours).

P5: Thermal time from silking to physiological maturity (expressed in degree days above a base temperature.

G2: Maximum possible number of kernels per plant.

G3: Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day).

PHINT: Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

https://doi.org/10.1371/journal.pone.0241147.t004

Fig 2. Relationship between maize yieids reported by farmers and simulated by APSIM (left) and DSSAT (right). Red solid line represents

1:1.

https://doi.org/10.1371/journal.pone.0241147.g002
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with each of the climate scenarios that included one observed and 80 climate change scenarios.

The model simulations were initiated by defining initial conditions that normally exist at the

beginning of the season. To account for the biomass leftover from the previous season crop,

weeds and other plant material accumulated during the off season, the amount of residue at

the beginning of the season was set to 400 kg/ha with a nitrogen content of 0.8%. Inorganic

nitrogen in the profile at the beginning of the season was estimated to be 8 kg/ha, 0.1 ppm of

NO3 and 0.01 ppm of NH4. Every year the model run was initiated 15 days before the start of

planting window and initial moisture was set to 50% of the total available water distributed

through the profile. For other parameters we used farmer specific information collected during

the survey. This includes information on maize cultivar, planting time, plant population or

seed rate and amount of fertilizer and manure applied. The varieties grown by the farmers in

the target AEZs were grouped into four groups based on the duration and yield potential of

the varieties. We have identified H511, H513, Deka_lb and Katumani varieties to represent

these groups. These are also the varieties the CSMs were calibrated and validated using the

experimental data. For Deka_lb we used the default parameters from the model. Table 3 pres-

ents the farmer used maize cultivar and its equivalent in the CSMs. The results were analysed

to identify the climate sensitivity of the systems under different combinations of soil, crop and

management conditions.

2.4.6 Crop management strategies for adaptation. Potential adaptation options vary

with the type and intensity of projected impacts on performance of maize under different cli-

mate change scenarios. Since current farmer yields are very low due to low input agriculture

practiced by majority of smallholder farmers, it is hypothesized that substantial improvement

in maize yields can be achieved with available technologies even under the projected changes

in climatic conditions. Adoption of better performing crop varieties with improved crop man-

agement practices were evaluated for their ability to cope with increased temperatures and

associated changes in rainfall. The adaptation strategy formulated included changes to maize

cultivars, planting time, amount of fertilizer applied and plant density. Using crop simulation

models, optimal combination of these management practices for each AEZ were identified by

conducting a series of simulations using the two crop simulation models.

3. Results

3.1 Trends in observed climatic conditions

To test the significance of the observed trends in both surface temperatures and rainfall

(Table 5) the Mann-Kendall Tau-b non-parametric function is employed. The p-values from

the test indicate that the trends in temperature is significant at less than 0.02 level while, the

trend in rainfall is less conclusive, except for Kindaruma. Where trends in annual and LR

season rainfall has shown a significant increasing trend with p-values of 0.01 and 0.05

respectively.

Analysis of historical climate data at four locations revealed clear increasing trend in both

Tmax and Tmin during LR and SR seasons (Fig 3). An increase of 0.54˚C was observed in the

annual mean Tmax during the period 2001–2010 compared to that during the period 1981-

1990. The corresponding increase in Tmin is 0.3˚C. Compared to 1981–1990 period, the aver-

age annual temperatures are higher by 0.57˚C during the SR season and by 0.49˚C during the

LR season during the period 2001–2010.

In case of rainfall, no clear declining or increasing trend was observed in the amount of

rainfall received annually or during the LR and SR seasons at all the four locations. However,

there are indications that variability in rainfall, particularly during the SR season was increas-

ing (Fig 4). The ten-year moving Coefficient of Variation (CV) of SR season rainfall has
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increased from 30% in 1980s to 50% during 2001–2010 period. This is a substantial change

from the current situation and is expected to have major impacts on the productivity of small-

holder farms since SR season is an important season during which the main food crop maize is

extensively grown.

3.2 Projected changes in climate conditions

In this paper, we investigated the changes in Tmin, Tmax and rainfall over Embu county

under RCP4.5 and RCP8.5. Downscaled future climate projections for different climate change

scenarios showed a general increase in surface temperatures at all the four locations in Embu

County (Fig 5). The magnitude of this increase over different time periods varied with GCMs

and emission scenario that drives the climate models. In general, Tmin and Tmax projections

by HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-MR, IPSL-CM5A-LR and MIROC-ESM were

found to be higher compared to other selected 17 CMIP5 GCMs. Projected increase in Tmax

to end century period by different GCMs varied from 2.02˚C to 4.80˚C and that in Tmin var-

ied from 2.70˚C to 5.80˚C under RCP 8.5 compared with baseline climate. The magnitude of

Table 5. Kendall Tau significance test for annual and seasonal temperature at Embu and rainfall at all the four locations.

Average Temperature Rainfall

Embu Embu Ishiara Karurumo Kindaruma

Annual Kendall’s tau 0.43 0.22 0.34 0.12 0.38

P-Value 0.00 0.13 0.02 0.45 0.01

Short Rain season Kendall’s tau 0.30 0.26 0.14 0.14 -0.05

P-Value 0.02 0.08 0.36 0.34 0.75

Long Rain season Kendall’s tau 0.35 0.52 0.10 -0.03 0.29

P-Value 0.01 0.00 0.51 0.86 0.05

https://doi.org/10.1371/journal.pone.0241147.t005

Fig 3. Trends in annual, long rain (LR)-Season and short rain (SR)- maximum temperature (top) and minimum temperature (bottom) at Embu, Kenya with

linear trend line.

https://doi.org/10.1371/journal.pone.0241147.g003
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this change is substantially low under RCP 4.5 with Tmax varying between 0.50 and 2.70˚C

and Tmin between 0.70 and 2.90˚C. On an average, projections under RCP 8.5 are higher by

1.68˚C for Tmax and 2.04˚C for Tmin compared to the projections under RCP 4.5 to end cen-

tury. Most models projected greater increase in Tmin than Tmax. Only four of the 20 GCMs—

BNU-ESM, GFDL-ESM2G, GFDL-ESM2M and IPSL-CM5A-LR predicted higher increase in

Tmax than Tmin under RCP 8.5 emission scenario. Eight GCMs predicted more than 4.00˚C

increase in Tmax to end century under RCP 8.5 while 13 GCMs predicted more than 4.00˚C

increase in Tmin. The projected increase in Tmin to end century under RCP 8.5 is 4.0˚C

which is 0.50˚C higher compared to the projected 3.50˚C increase in Tmax. The projected cli-

mate shows a clear shift from the current temperatures which leads decrease in the frequency

of low temperature events (below 9.00˚C for Tmin) and increase in the frequency of high tem-

perature events (above 34.00˚C for Tmax). This shift may push the temperature range outside

the optimum range for some of the crops grown in the study area (Fig 6).

Compared to temperature, changes in projected rainfall are more uncertain. Annual rainfall

projections by different GCMs to end-century varied from -25% to 111% under RCP 8.5 and

from -18 to 71% under RCP 4.5 to end century (Fig 5). However, majority of the GCMs, 15 of

the 20, predicted an increase in rainfall amounts across the four study locations. Among the

GCMs, GFDL-ESM2G, MIROC5, and NorESM1-M project 8 to 25% decline in rainfall while

CanESM2, IPSL-CM5A-MR and BNU-ESM project more than 85% increase in rainfall by

end-of-century under RCP 8.5. On an average, rainfall is expected to increase by 32.5% under

RCP 8.5 and by 16.7% under RCP 4.5 to end century.

The projected changes in rainfall have further indicated a greater increase in rainfall during

SR season compared to LR season under RCP 8.5 to end century period. Rainfall during the

SR season varied from -16 to 241% with an average of 96% while that during LR season varied

Fig 4. Ten year moving coefficient of Variation (CV) of rainfall from 1980 during the short rain (SR) season at the four sites in Embu

County, Kenya. (The analysis is limited to 1997 since the data for remaining years is gap filled with AgMERRA data).

https://doi.org/10.1371/journal.pone.0241147.g004
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from -9% to 171% with an average of 32% to end century under RCP 8.5. In case of RCP 4.5,

the changes are relatively small compared to those with RCP 8.5 and no major difference was

observed in the projected rainfall amounts during SR and LR seasons. The amount of rainfall

projected by different GCMs varied between -29 and 76% with a mean of 12% during SR

Fig 5. Projected changes in maximum and minimum temperatures (absolute change) and in rainfall (percent

deviation from historie rainfall) by 20 GCMs under RCP 4.5 (upper) and 8.5 (lower) by End- century for Embu,

Kenya.

https://doi.org/10.1371/journal.pone.0241147.g005
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season and between -10 and 116% with a mean of 20% during LR season. Almost all GCMs

with the exception of GFDL-ESM2G predicted higher increase in SR season rainfall compared

to LR season rainfall under RCP 8.5.

3.2.1 Calibration and validation of APSIM and DSSAT. The maize varieties H511,

H513 and Katumani were selected to represent the cultivars used by farmers in the Embu

county. APSIM and DSSAT crop models were calibrated for these maize varieties using the

experimental data as discussed in the material and methods section. The observed crop phe-

nology, biomass and yield are satisfactorily simulated by the models for three cultivars at

Embu. The model’s ability to reproduce the phenological and yield attributes were tested using

experimental data for three maize cultivars. The rates of phenological development were cali-

brated well with 6–7% RMSE (Root Mean Square Error) while, at flowering and maturity

RMSE is observed between 2–4% as displayed (Table 6). The simulated values for total above-

ground biomass and grain yield were quite close to the observed values (Table 6).

The CSMs are validated using 160 farmers crop data which fall under Embu climate. Both

the CSMs simulated maize yields are higher than observed yields in the region. The differences

between simulated and observed yields varied from as little as 20 Kg/ha to as high as 4000 kg/

Fig 6. Probability density function of projections in maximum temperature by GCMs at Embu (left) and Ishiara (right) in Embu county, Kenya (red dotted line

denotes observed temperature).

https://doi.org/10.1371/journal.pone.0241147.g006

Table 6. Observed (average of three seasons) and DSSAT and APSIM modeled phenology and grain and biomass yields of three maize varieties.

Flowering Maturity Biomass Yield

Variety Observed DSSAT APSIM Observed DSSAT APSIM Observed DSSAT APSIM Observed DSSAT APSIM

H511� 68.7 71.3 71.3 137.7 139.7 142.0 12495.7 12082.0 11580.0 4677.3 4428.7 4654.3

H513� 73.3 71.3 72.3 141.0 137.0 137.0 13391.3 13681.7 13479.3 5282.7 5027.7 4597.3

Katumani� 53.0 54.0 50.0 103.5 105.5 104.0 8567.5 8088.5 8888.0 4060.5 4058.5 3911.0

Mean 66.6 67.8 67.2 134.8 134.6 134 12884.0 12454.6 12567 5037.2 4890.6 4794.8

SD 9.7 9.0 10.2 16.8 15.8 17.8 1938.5 2391.0 2465.9 1097.7 1112.0 1035.6

CV 14.6 13.3 15.2 12.5 11.7 13.3 15.0 19.2 19.6 21.8 22.7 21.6

RMSE 2.76 2.49 3.19 3.52 783.8 747.1 318.7 357.2

SD = Standard Deviation, CV = Coefficient of variation and RMSE = Root mean square error.

https://doi.org/10.1371/journal.pone.0241147.t006
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ha. This could be attributed to various factors such as differences in interpreting and translat-

ing farmer description of the resource endowment into model parameters, inability of the

models to capture the effects of biotic stresses such as pests, diseases and weeds, inaccuracies

in estimating per hectare yields from bags per plot as reported by farmers and inaccuracies in

defining the initial conditions. However, the simulated long-term yields of different AEZs

reflected the trends in the yields reported by farmers fairly well, especially in the low potential

LM4 and LM5 AEZs. In these AEZs, high moisture stress is the major yield limiting factor and

this to a large extent masks the relatively low effect of other management practices and also the

influence of differences in the resource base.

Using parametrized APSIM and DSSAT crop simulation models, impact of climate change

on maize production in the five AEZs is assessed. Maize yields varied in response to differences

in the magnitude of projected change in surface temperatures and rainfall by different GCMs

under different scenarios. Maize yields also varied depending on the AEZ, season, and man-

agement practices. While there is a general agreement in the trends in maize yields simulated

with APSIM and DSSAT under different climate change scenarios and AEZs, there are differ-

ences in the magnitude of the impact on maize.

3.2.2 Impacts across AEZs. CSMs simulations maize yields indicate that the impacts of

climate change on maize yields are largely positive in the high potential AEZs of UM2, UM3

and LM3 and negative in the low potential AEZs of LM4 and LM5 (Fig 7). However, the mag-

nitude of this change is higher in the yields simulated with DSSAT compared to that with

APSIM. For example, the increase in DSSAT modelled maize yields to end century under RCP

8.5 varied between 3.6 and 47.6% in the high potential LM3 and between -43.0 and -17.5% in

low potential LM4 over corresponding baseline yields. For the same scenario, APSIM simu-

lated yields varied between 6.3 and 15.0% in case of LM3 and between -21.3 and -7.8% in LM4.

In general, the impacts of climate change on maize yields modelled with DSSAT are more pos-

itive for the projections by GCMs CanESM2, BNU-ESM, IPSL-CM5A-LR, MIROC-ESM, and

MRI-CGCM3 while negative with projections by GFDL-ESM2G, INMCM4, MPI-ESM-MR,

BCC-CSM1, GFDL-ESM2M and MIROC5. In case of APSIM, projections by CESM1-BGC,

MRI-CGCM3, GFDL-ESM2M, NorESM1-M and MIROC5 showed greater positive impact

compared to IPSL-CM5A-LR, IPSL-CM5A-MR, CanESM2, BNU-ESM and MIROC-ESM.

3.2.3 Impacts across seasons. Impacts of climate change on maize yields were also found

to be different in the two crop growing seasons. The impacts were more positive during SR

season compared to LR seasons. Average maize yields during SR season to end century under

RCP 8.5 increased by 14.5% with DSSAT and by 1.5% with APSIM and declined by about

1.0% during LR season with both the models. In both seasons, maize yields followed the gen-

eral trend of predominantly positive changes in the high potential AEZs and negative changes

in the low potential AEZs. Average annual (both seasons) maize yield modelled with DSSAT

by end century under RCP 8.5 varied between 13 and 48% (with an average deviation of 30%)

in LM3 and between -46 and -10% (with an average deviation of -31%) in LM4 compared to

baseline yields. In case of APSIM, the increase in maize yields in LM3 varied between 6 and

18% (with an average deviation of 12.7) and the decline in LM4 ranged between -20 to -12%

(with an average deviation -15.4%). The magnitude of either positive or negative change in

maize yields under different AEZs is in the order 4.5 MID, 4.5 END, 8.5 MID and 8.5 END

which is also the order in which changes in temperature and rainfall have occurred.

3.2.4 Impacts across maize cultivars. Among the maize varieties, Katumani, a short

duration local cultivar that is widely adopted by farmers in Kenya, was found to be more sensi-

tive to the changes in the climate compared to the other three varieties. APSIM simulated

yields of Katumani under RCP 8.5 to end century declined by 5% during SR season and by 9%

during LR season. Yields of other three varieties increased by 3–7% during SR season and
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varied between -1.5 to 1.4% during LR season. When modelled with DSSAT for the same sce-

nario, yields were increased by 13% during SR season and by 1.7% during LR season. Yields of

other varieties increased by 21–38% during SR season and by -4.5 to 2.4% during LR season

(Fig 8). The results further indicate that the duration of crop is getting shortened by 6–15 days

Fig 7. Changes in maize yields (%) from baseline as simulateci by APSIM (above) and DSSAT (below) with future

climàtic conditions from 20 GCMs by end Century under RCP 8.5 in different agro ecological zones of Embu

county, Kenya without elevated C02.

https://doi.org/10.1371/journal.pone.0241147.g007
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for each degree increase in the average temperatures. This reduction in the duration of the

crop has bigger effect on short duration Katumani cultivar compared to long-duration varie-

ties H513, H511 and DEKA_LB which were able to maintain the same yield levels. Hence,

replacing short-duration varieties with long-duration varieties is considered one of the options

for adapting to climate change.

3.2.5 Impacts of planting time. APSIM and DSSAT simulated yields were found to be

higher when planted between mid-March (day of year 74) and mid-April (day of year 105) for

LR season and between start of October (day of year 274) and start of November (day of year

305) for SR season under baseline climate. Under climate change, mid-March (day of year 74)

to end March (day of year 89) for LR season and start of November (day of year 305) to mid of

November (day of year 319) for SR season was found to be optimal time for planting maize.

The results also indicate that maize planted early within the identified planting window per-

formed better during both SR and LR seasons. Early planted maize (Table 7) yields were found

to be 25% higher in SR season and 7% in LR season to end century under RCP 8.5 with

Fig 8. Impact of climate change on the performance of different maize varieties under cultivation in different AEZs in Embu county of Kenya.

https://doi.org/10.1371/journal.pone.0241147.g008

Table 7. Adaptation strategy for different agro-ecological zones with best combination of planting time, plant population, variety and fertilizer nitrogen for LR

and SR seasons.

AEZ Adaptation strategy for LR season Adaptation strategy for SR season

Planting Time Plant pop. Variety Fertilizer nitrogen (kg/ha) Planting Time Variety Plant Pop. Fertilizer

UM2 15–30 Mar 50 H513 80 1–15 Nov H511 40 70

UM3 15–30 Mar 50 H513 70 1–15 Oct H513 40 60

LM3 15–30 Mar 50 H513 60 1–15 Oct Deka_lb 50 80

LM4 15–30 Mar 50 Deka_lb 60 15–30 Oct H511 50 70

LM5 15–30 Mar 50 H511 60 1–15 Nov Deka_lb 40 60

https://doi.org/10.1371/journal.pone.0241147.t007
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DSSAT. In case of simulations by APSIM, a smaller increase of 1.1% was recorded during SR

season while declined by 2.3% during LR season with early planting.

3.2.6 Impacts of plant population. Among the other agronomic practices that signifi-

cantly influenced maize yields is plant population. Both models simulated higher maize yields

with increasing plant population. In SR season, maize yields increased from 1239 to 1481 kg/

ha with DSSAT and from 1719 to 2718 kg/ha with APSIM when plant population is increased

from 30,000 to 50,000 plants/ha. With 52% of the farmers surveyed using 30,000 plants/ha and

other 42% using 40,000 plants/ha, most farmers are using below optimal plant population.

Only 6% of farmers adopted 50,000 plants/ha which is also the recommendation for these

areas. Furthermore, DSSAT simulations indicate an increase in maize yields in both SR and

LR seasons with different plant populations. Maize yields increased by up to 16% with 30,000

plants/ha and 42% with 50,000 plants/ha during SR season and by 0.3 and -0.8% during LR

season by end century under RCP 8.5. The increase in yield is higher with higher plant popula-

tion in SR season and with lower plant population in LR season. APSIM simulations indicate

less than 3% increase in maize yields when plant population increased from 30,000 to 50,000

plants/ha.

3.2.7 Impacts of soil fertility and nitrogen application. APSIM and DSSAT differed in

simulating the impacts of climate change on maize yields on soils with different water and fer-

tility regimes in SR and LR seasons. The kavuturi soil is the most fertile soil with an organic

matter content of 2.29% followed by Gachuka (1.58%), Embu (1.49%) and Machanga (0.5%).

Impacts of climate change are mostly positive on all soils during SR season and negative in LR

season. Average increase in SR season maize yields under climate change on all soils is 3.6%

with APSIM and 11% with DSSAT to end century under RCP 8.5. Similarly, maize yields dur-

ing LR season increased by 4.2% with APSIM and by 9.9% with DSSAT. The magnitude of

projected change in yields under climate change is higher with DSSAT relative to APSIM.

In all climate change scenarios, higher nitrogen levels increased maize yields. DSSAT simu-

lations indicate 16–20% increase in SR season maize yields with fertilizer application up to 80

kg N/ha. While, APSIM simulations indicate less than 2% increase. In case of LR season.

DSSAT simulated less than 2% reduction in the yields of maize with application of nitrogen up

to 80 kg/ha. APSIM simulated yields to end century under RCP 8.5 increased by 2.6% with

0–20 kg N/ha and declined by 2% with 20-40kg N/ha and by 7% with 40–80 kg N/ha compared

to the corresponding baseline yields.

3.3 Adaptation strategies

The differential impacts of climate change on maize under different management strategies in

the five AEZs were further examined and used to frame an adaptation strategy by making

adjustments to the current management by avoiding practices that are negatively impacted

and adopting those positively responded to the projected changes in climate. Given that the

impacts of climate change are going to be largely positive, the focus of this adaptation strategy

is more on capitalizing on the benefits offered by changing climatic conditions. Accordingly,

adaptation strategies were developed for each AEZ by identifying a set of management prac-

tices that included best performing maize cultivar, planting time, plant population and fertil-

izer amount (Table 7). Performance of this strategy under climate change was assessed by

repeating the simulation analysis with both APSIM and DSSAT using the downscaled climate

change scenarios from the 20 CMIP5 GCMs for mid and end century periods under RCPs 4.5

and 8.5.

DSSAT simulated maize yields with adapted crop management practices under all climate

change scenarios are considerably higher than the current yields in all AEZs (Fig 9). However,
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there are differences in the magnitude of the projected increase with GCM and RCP. In all the

AEZs, the magnitude of this increase is higher under RCP 8.5 compared to 4.5 and by end cen-

tury compared to mid-century. For example, maize yields in LM3 under RCP 4.5 increased by

140.7% during mid-century and by 156% during end century, while under RCP 8.5 yields

Fig 9. Changes in maize yields (%) from baseline as simulated by APSIM (above) and DSSAT (below) with future

climate projections from 20 GCMs by end Century under RCP 8.5 in different agro-ecological zones of Embu county,

Kenya with elevated CO2.

https://doi.org/10.1371/journal.pone.0241147.g009
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increased by 241.1% during mid-century and by 256% to end century. Among the AEZs, high-

est increase is observed in LM3 in which maize yield increased by more than 250% while the

lowest increase is in UM2 in which yields went up by about 50% over the current levels with

climate change by end century under RCP 8.5. Among the RCPs, yields simulated with projec-

tions under RCP 8.5 by GCMs MRI-CGCM3, MIROC-ESM, BNU-ESM and IPSL-CM5A-LR

tend to fall in the upper quartile (75% percentile) and those simulated by NorESM1-M,

MPI-ESM-MR, INMCM4 and GFDL-ESM2G tend to fall in the lower quartile (25 percentile).

Simulations with APSIM suggest that highest increase in maize yields will be in LM5 and

lowest in LM3. According to DSSAT simulations, highest increase is in LM5 and least in LM3.

Under climate change with the proposed adaptation strategies yields are expected to increase

by about 128.2% in LM5, 121.1% in LM4, 64.7% in UM2, 85.2% LM3 and 61.1% in UM3 by

end century under RCP 8.5 compared to the yields under current climate with current man-

agement as depicted in Fig 10. In case of APSIM, the difference in maize yields under climate

change with adaptation to mid and end-century periods in all AEZs except LM3 is less than

54%. No clear trend in the response of maize to differences in the climatic conditions predicted

by different GCMs is noted. The GCMs in the lower and upper percentiles in relation to

change in maize yields are different for different AEZs and also for different emission scenar-

ios. Maize yields with projections by NoRESM1-M for UM3 and LM3 and projections by

CCSM4 for UM2, LM4 and LM5 are in the upper percentile while those with projections by

BNU-ESM-4-5 and CANESM2 for UM3 and LM3 and by GFDL-ESM2G for UM2, LM4 and

LM5 are in the lower percentile.

4. Discussion

4.1 Climate variability

Understanding the trends in historical observed climate is important for two reasons. Firstly,

they help in understanding the sensitivity and robustness of the target systems to climate vari-

ability based on which impacts of projected changes in climate can be more realistically

assessed. Secondly, they serve as a basis to evaluate the future projections generated by climate

models (GCMs) which is an essential first step to assess the impacts of climate change on target

systems. The results from the trends analysis have clearly highlighted the high variability in the

rainfall and a clear increasing trend in Tmax and Tmin, particularly, during the last two

decades across the study locations.

While no clear declining or increasing trend either in annual or seasonal rainfall was

observed, evidence indicates increasing variability in rainfall during the past two decades.

Increase in the variability of rainfall and more frequent occurrence of extreme events was also

reported by some recent studies which are based on observed long-term rainfall data [45–47].

Evidence suggests that rainfall during SR season is relatively low and more variable compared

to that during LR season. The increase in ten-year moving CV of SR rainfall from 30% in

1980s to 50% during 2000–10 is a major change with a potential to impact the productive

potential of many crops. Assorted studies have cited similar patterns in seasonal rainfall over

lower eastern Kenya [48–51]. The study has also established that surface temperatures are

warming at the rate of up to 0.03˚C/decade. Increasing variability in rainfall together with

warmer temperatures will have strong impact on seed germination, length of growing season,

flowering and grain filling of most crops grown in lower eastern Kenya.

4.2 Climate change scenarios

Given the large uncertainty in the GCM projections from unknown future trajectories of CO2

and CH4 emissions and highly simplified representation of reality encoded in these models
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[39], use of multiple models was suggested to provide more reliable assessment of impacts of

climate change on weather sensitive sectors like agriculture [26,37,38]. In this study, we used

outputs from 20 GCMs under two emission scenarios (RCP 4.5 and 8.5).

CMIP5 downscaled future climate projections have indicated significant increase in surface

temperatures under the RCPs 4.5 and 8.5 to the end of 21st century. These projections are

based on the expected changes in atmospheric CO2 concentration which will be 499 ppm by

mid-century under RCP 4.5 and 801 ppm by end century under RCP 8.5. The projected

increase in temperatures is generally in the order of 4.5-mid<4.5-end<8.5-mid<8.5-end. The

magnitude of increase in Tmin and Tmax projected by majority of the models to end century

Fig 10. Projected increase in maize productivity with adaptation compared to non-adoption in different agro-

ecological zones under different climate change scenarios based on APSIM (above) and DSSAT (below) simulated

yields. The deviation is the percent increase in current yields com pared to average yield with projections by 20 GCMs.

https://doi.org/10.1371/journal.pone.0241147.g010
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under RCP 4.5 is equivalent to the predictions to mid-century under 8.5. All GCMs predicted

a substantial warming by end century under RCP 8.5 which is almost double to what the mod-

els predicted to end century under RCP 4.5 or to mid-century under RCP 8.5. A sharp increase

in the temperature under RCP 8.5 by end century was also reported in AR5 [9] which is based

on the comprehensive review and synthesis of all available information. The report concludes

that the multimodal median increase in Tmax over global land by end of the century will be

2.7˚C under RCP 4.5 and 5.4˚C under RCP 8.5. Surface temperatures over Africa are expected

to rise faster than the rest of the world, by about 2.00˚C during mid-century and by 4.00˚C to

end of 21st century [52]. However, there are differences in the magnitude of these increases

between Tmax and Tmin and between annual and seasonal averages.

Majority of the GCMs project higher increase in Tmin than in Tmax. While Tmax is pro-

jected to increase by about 4.80˚C under RCP 8.5 to end of 21st century, the projected increase

in Tmin under similar conditions is 5.80˚C. Further, the warming is more during SR season

compared to that during LR season. Asymmetric changes in Tmin and Tmax and associated

deviations in Diurnal Temperature Range (DTR) have been reported over the past three to five

decades mainly because of the relatively stronger increases in daily Tmin than daily Tmax.

This result closely corroborates the earlier findings which reported that the temperature is

likely to increase by 3.00–5.00˚C in the African tropics during 2071–2100 relative to 1961–

1990 under the high emission scenario [50–57].

Compared to temperature, it is more difficult to predict changes in rainfall due to high nat-

ural variability associated with it. It is for this reason AR5 assigns medium to low confidence

to the past trends and future projections of rainfall. Most GCMs projected an increase in rain-

fall at all locations in both SR and LR seasons which is consistent with the projections for East

Africa and to the locations close to equator [9,52,58]. IPCC AR5 report suggests the future pre-

cipitation projections are likely to increase in the eastern Africa and decrease in the southern

part [52]. Various other studies have projected that rainfall over east Africa will increase

[46,47,59]. Our results followed the reported trends for the region, with increase in rainfall in

all zones. The increase is higher under RCP 8.5 than that under RCP 4.5. The projected

changes in rainfall varied from -25% to 111% under RCP 8.5 by end of 21st century with

greater increase during SR season compared to LR season. Although the projected changes in

rainfall seem to favour the agro-ecological sector, associated variability in rainfall and warming

also play an important role in determining the overall impact of changed conditions on crop

production. For instance, despite projecting an increase in rainfall, [60] indicated that reduc-

tion in soil moisture content as a result of increased temperatures have contributed to a reduc-

tion in crop yields. An increase in rainfall without corresponding increase in number of rainy

days leads to an increase in extreme rainfall events that can contribute to environmental degra-

dation through increased runoff and erosion.

4.3 Impacts of climate variability and change on maize production

Our assessment of impacts of climate change on maize production using process-based models

has provided useful insights into the climate sensitivity of the crop and how the projected

changes in climate impact the productivity of the system along with associated uncertainties.

These insights are extremely useful not only in understanding the impacts of climate change

but also in developing locally relevant adaptation strategies. Under considerable uncertainty

relating to future climate change and its consequences [61], this study offered a unique oppor-

tunity to assess impacts of climate change on highly diverse small holder agriculture under five

AEZs. Significant variability is observed in the current maize yields in all the five AEZs and

across all the farms mainly due to variation in the soil, cultivar and crop management
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practices. Much of the past work on assessing the impacts of climate change on agriculture was

carried out at national and continental level using statistical and empirical models that fail to

account for the full range of complex interactions between various factors that contribute to

the production and productivity of the agricultural systems and climate [13,62,63]. The key

messages that emerged out of these large-scale assessments are about 65% of the current maize

growing areas in Africa will experience yield losses [11] and the predicted production losses

for most crops are in the range of 10–25% by 2050 [64]. These assessments are extremely useful

in understanding the overall impacts of climate change on food security and suitable for devel-

oping adaptation strategies to overcome the projected losses. However, they will not be able to

provide detailed information on how, where and when these impacts will occur and which

environments gain or lose.

This assessment highlighted the differential impacts of climate change on maize yields

across the growing environments and management practices which can serve as a useful basis

in developing appropriate and well-targeted adaptation strategies. Among the growing envi-

ronments, our study suggests that maize yields are going to increase in the high potential envi-

ronments represented by AEZs of UM2, UM3 and LM3 and decline in low potential

environments represented by AEZs of LM4 and LM5. The increase in maize yields in the high

potential AEZs is mainly due to the temperatures remaining within the optimal range for

maize production even with an increase of 2.50 to 4.80˚C. In UM2, UM3 and LM3 the current

Tmax are around 24–25˚C which with climate change is moving closer to the optimal temper-

ature of 30˚C [65]. Similar results were also noticed in a study by [66] in Ethiopia using

APSIM and CERES maize models under 20 GCMs and RCP 4.5 and 8.5 reported an increase

in maize yields between 1.7% and 4.2%. Based on the analysis of maize yields from a data set of

more than 20,000 historical maize trials in Africa along with daily weather data, [11] concluded

that each degree day spent above 30.00˚C reduced the final yield by 1% under optimal rain-fed

conditions, and by 1.7% under stressed conditions. In addition to changes in temperatures, the

GCMs on an average are projecting a 25–50% increase in rainfall by end century which is also

a major contributor to the observed increase in maize yields under climate change.

The analysis further suggests that the impacts are more positive during SR season compared

to LR season which is attributed to the higher increase and longer duration of rainfall. Under

the current climatic conditions, SR season receives 20–30% higher rainfall than that during LR

season and is more dependable with lower CV. Under climate change this difference will

increase further since most GCMs project greater increase in rainfall during SR season com-

pared to LR season. The average increase in rainfall projected by 20 GCMs under RCP 8.5 by

the end century is close to 190 mm during SR season which is approximately double to the

increase projected for LR season (105 mm). The duration of the rainfall is another important

variable contributing to the seasonal differences in maize yield. In the target county Embu, the

duration of SR season is longer with rainfall distributed over 120 days compared to LR season

which receives rains over a 60-day period (Fig 11).

The analysis further highlighted the potential role soil and crop management practices can

play in moderating the impacts of climate change. Among the management practices, impacts

of cultivar, soil fertility and plant population were found to be quite important. Short duration

maize cultivar such as katumani were found to be more negatively impacted compared to the

longer duration maize cultivars H511 and H513. Temperature is a major determinant of the

rate of plant development and, under climate change, warmer temperatures shorten the devel-

opment stages, leads to earlier maturing of crops, which reduces time to accumulate biomass

and form economic yield [67–70]. This results in a shorter life cycle leading to smaller plants,

shorter reproductive duration, and lower yield potential [71]. According to the results from

the simulation analysis the duration of the crop is expected to decline by about six days with
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every one-degree increase in Tmax between 25.00 and 30.00˚C which in case of short duration

varieties is leading to a reduction in their yield potential. Under climate change, yields are

increasing with increasing plant population in all AEZs. This can be attributed to either

increasing environmental potential or reduced plant potential [72] both have a positive associ-

ation with the required plant population. The other management factor that contributed sig-

nificantly to the productivity of maize is the soil fertility. Highest increase is observed in fertile

soils with high organic carbon content under low doses of fertilizer application. Similar

increase in sorghum yields under low input systems was also reported by [73]. This was attrib-

uted to the greater availability of nitrogen with increased mineralization under warmer and

wetter future climatic conditions.

5. Conclusions

In this paper we presented a robust approach to assess the impacts of climate change on maize

production under a range of agro-ecological and management conditions. Despite the limita-

tions in climate and crop models to simulate the systems accurately, this assessment has dem-

onstrated that it is possible to make credible assessment of impacts of climate variability and

change on smallholder farming systems that can aid in planning for adaptation. It helped in

highlighting the impacts of variability in the current climate and projected changes to mid and

end century periods on maize crop performance which formed the basis for developing strate-

gies to adopt to the current and projected changes in climate. One important aspect of this

study is in highlighting the differential impacts of climate change which contradicts the general

perception that climate change always leads to negative consequences. The impacts of climate

Fig 11. Average cumulative rainfall during SR (Oct-Dec period) and LR (Mar-May) seasons at Embu, Kenya.

https://doi.org/10.1371/journal.pone.0241147.g011
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change are different in different AEZs, seasons and management conditions. It also stresses

the need for changing current management practices which are inadequate to capitalize on the

changes in climate which in most AEZs are turning to be more favourable for maize cultiva-

tion. Significant productivity gains are possible by adopting available technologies and recom-

mended management practices even under current climatic conditions. We used the

household survey data and noticed that more than 50% of the farmers are using a plant popula-

tion of 30,000 plants/ha and less than 25 Kg N/ha, much below the recommended population

of 50,000/ha and 40 kg N/ha. Hence, the gain in maize yield with the use of adaptation strategy,

which includes higher plant population, increased amount of nitrogen fertilizer and long-

duration maize cultivar is partly due to the improved management and partly due to the

changes in the environment which turned out to be more favourable for maize production

with climate change than under current climate. There is a need for policy makers and practi-

tioners to understand the differential impacts of climate change on maize cropping system in

Embu county and prioritize the interventions aimed at adapting to climate change in a way

that helps on capitalizing the positive changes and minimizing the negative impacts. Our study

emphasizes the need for careful assessment of impacts of climate change with due consider-

ation to the diversity in smallholder farm resources and developed adaptation strategies that

are tailored to the local specific needs. Though the current assessment is limited to maize, the

same can be extended to other crop enterprises and cropping system. Substantial progress is

needed in CSMs to make them more robust for simulating the influence of weeds, pest and dis-

eases on crop growth and development. Crop simulation models do not account for damage

caused by pests and diseases on agricultural systems which is an important element in under-

standing the potential impacts of climate change on agricultural systems. Climate change is

one factor driving the spread of pests and diseases and is expected to further increase surface

temperatures along with rainfall favouring the growth and distribution of most pest and dis-

eases by providing a warm and humid environment necessary for their growth and multiplica-

tion. Improving the capabilities of CSMs for estimating the pest population, damage level will

enable researches to address possible impacts of biotic stress along with abiotic stress under

changing climate. These efforts should go beyond the crop model community and include

expertise on pests and diseases to enable capabilities of CSMs in assessing the impacts of cli-

mate change more accurately.
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