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Introduction

Several simulation tools allow the impact of agricultural management on production 
activities in specific environments to be studied (e.g. Brisson et al. 2003; Keating 
et al. 2003; Jones et al. 2003; Stockle et al. 2003; Van Ittersum et al. 2003). Such 
tools are specialized, to different extents, to one or more specific production activities: 
arable crops or cropping systems, grassland, orchards, agro-forestry, livestock etc. 
Their outputs often only include estimates of a restricted range of system externalities 
which may have a negative environmental impact; these may include, for example, 
nitrogen leaching or the fate of pesticides. Very often, the structure of such systems 
neither allows for an easy plug-in of models for new agricultural production activities, 
nor the use of different approaches for the simulation of processes via alternate 
formulations. Furthermore, documentation of such tools may not be up-to-date, and 
may not follow a single standard, which makes it difficult to access information. 
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Finally, when such systems are proprietary systems of either research groups or 
projects, it may not be possible for third parties to re-use the system for further 
development.

A basic requirement of any biophysical model is that it must be able to simulate 
the processes which influence significantly the behaviour of a system, and particularly 
those aspects that relate to the purpose of the model. An obvious example is that 
the model must not be restricted to potential production if its intended use is to 
study water-limited agriculture This example, however, is at a “high” level, meaning 
that simulating water-limited production may require:

The simulation of a different number of approaches; and
Even different approaches for the simulation of the same process, when environ-
mental conditions change

As an example of the first point, studying the impact of mulching requires soil 
evaporation models which react to soil cover beyond that given by canopy cover, 
and the fate of the mulching material must also be simulated. An example of the 
second point can be simulating the water budget of conditions typified by peak 
evapotranspiration of 5 mm day−1 on a deep soil compared with conditions where 
the peak evapotranspiration is 12 mm day−1 on a shallow, cracking soil. The former 
case can be simulated with simpler, yet still adequate, approaches compared to the 
latter. Moreover, some approaches may demand inputs which may not be easily 
available, thus compromising its operational use. Also, as peer reviewed publications 
may propose alternative options for modelling processes with the same assumptions; 
tests need to be carried out to assess performance and reliability throughout the 
range of operational conditions. Finally, effective simulation of a biophysical 
system, no matter what level of simplification is chosen to simulate its behaviour, 
requires expertise in different domains. This is a demanding task that requires a 
multi-team effort for system analysis and model development. All these reasons, 
argue for a flexible and modular simulation system, and provide, in effect, a 
specification for the simulation system described in this chapter.

The advent of component-based software engineering has enabled the development 
of scalable, robust, large-scale applications in a variety of domains, including 
agro-ecological modelling. In systems analysis, it is common to deal with the 
complexity of an entire system by considering it to consist of linked sub-systems. 
This leads naturally to thinking of models as being made of sub-models. Such a 
conceptual model can be implemented as a computer model composed of connected 
component models. This type of implementation has at least two major advantages. 
First, new models can be constructed by connecting existing component models 
of known and guaranteed quality to new component models. This has the potential 
to increase the speed of development. Secondly, the predictive capabilities of 
two different component models can be compared, as opposed to only comparing 
whole simulation systems. Further, common and frequently used functionalities, 
such as numerical integration, visualization and statistical ex-post analysis, can 
be implemented as generic tools which are developed once and shared by all the 
model developers.
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In the past decade there has been an increasing demand for modularity and 
replaceability in biophysical models (e.g. Jones et al. 2001; David et al. 2002; 
Donatelli et al., 2003, 2004, 2006a), aimed both at improving the efficiency of use 
of resources and at fostering a higher quality of modelling through specialization 
of model builders in their specific domain. The modular approach developed in the 
software industry is based on the concept of encapsulating the solution of a model-
ling problem in discrete, replaceable, and interchangeable software units called 
components. A software component can be defined as “a unit of composition with 
contractually specified interfaces and explicit context dependencies only. A software 
component can be deployed independently and is subject by composition by third 
parties” (Szypersky et al. 2002). Component-oriented designs actually represent a 
natural choice for building scalable, robust, large-scale applications, and to maximize 
the ease of maintenance in a variety of domains, including agro-ecological modelling 
(Argent 2004). This concept has been applied to biophysical simulation and has led 
to the development of modelling frameworks such as Simile, MODCOM, IMA, 
TIME, OpenMI, SME, and OMS (Argent and Rizzoli 2004; Rizzoli et al. 2004), 
which allow use to be made of components by linking them either directly or 
through a simulation engine. Three major aspects of model implementation are 
specific to the modelling platform, demand consistent development resources, and 
are real barriers to reusability. These are:

Data input/output procedures (e.g. input/output data handling and file management)
Common services (e.g. state variable integrator, simulation event handler); and
Graphical user interfaces (GUI)

Modelling frameworks can play a key role in addressing these issues. First, the 
framework allows the application-specific parts of simulations to be segregated from 
the code employed to accomplish common tasks, thus greatly enhancing code re-use 
(Hillyer et al. 2003). Secondly, by defining those elements of the framework that 
actually contain the model implementation and how the elements are used, a designer 
can be presented with a clear path from conceptual model to simulation (Hillyer et al. 
2003). Furthermore, by avoiding the need to re-implement common services, 
resources can be concentrated on the development of simulation components.

Developing a simulation system based on the component-oriented paradigm poses 
specific challenges in terms of both biophysical model linkages and implementation 
architecture. Component-based architectures demand the definition and implementa-
tion of sub-systems which minimize the need for links to other components, and the 
need for repeated communication between components. However, even when a 
system to be simulated is divided into sub-systems with little need for communication 
between them, data exchange prior to integration within a time step is needed, thus 
an articulated interface is needed that allows such calls. Although being potentially 
prone to mix and match “everything” is often suggested as an intrinsic weakness of 
component-based systems, this problem can be overcome by shifting the focus to the 
components themselves using semantically rich interfaces which ensure that the 
linked variables are appropriate. To illustrate the concept, if a component makes 
available a variable characterized by units, range of use, type and description, and 
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another component requires the same variable as an input, the link can be considered 
correct if a check of the variable attributes show that these are identical, whereas the 
correctness of the variable as an input must be investigated within the component 
producing the output. The principle of applying “parsimony” is of course still valid 
in model building. For instance, there is no point in coupling two components in which 
strong assumptions (and thus the limitations) of one impose an unnecessary burden 
on the modelling capabilities of the other. This, however, applies both to monolithic 
and component-based system development. As always, the choice of model should be 
conditioned by both the intended application of the model and a comprehensive system 
analysis, and this is totally independent of the type of implementation.

The SEAMLESS project has developed a framework to integrate analyses of 
impacts on a wide range of aspects of sustainability and multi-functionality (Van 
Ittersum et al. 2008). This requires the evaluation of the agricultural outputs and 
system externalities for a wide range of production systems and environments. 
Although some indicators of system performance can be provided using static models 
derived from existing databases, estimating system behaviour for novel techniques 
or existing techniques applied to new environments requires process based simulation. 
Also, even for known systems, some of the externalities due to agricultural production 
are only available as observational data for a very small number of experimental 
sites. The analysis of the biophysical components of agricultural systems thus 
requires a simulation framework which can be extended and updated by research 
teams, which allows easy incorporation of research results into operational tools, 
and which is transparent with respect to its contents and its functionality. The problems 
and requirements outlined in the previous paragraph have formed the basis of the 
design of the Agricultural Production and Externalities Simulator (APES) which 
offers flexibility in being an open modelling environment that allows an extensible set 
of modelling choices. The emphasis in APES has been to provide a transparent and 
flexible modelling platform that can be adapted to different modelling goals. This 
is a quite different rationale from the specific biophysical modelling solutions that 
are currently implemented.

APES: The Agricultural Production and Externalities Simulator

APES is a simulation model system for estimating the biophysical behaviour of 
agricultural production systems in response to the interaction of weather, soil and 
agro-technical management options. The system allows the incorporation, at a later 
date, of other modules which might be needed to simulate processes not included 
in the existing version, such as the impact of plant pests (see also Fig. 4.1).

Biophysical processes are simulated in APES using deterministic approaches 
which are mostly based on mechanistic representations. The criteria to select 
modelling approaches were the need to:

Account for specific processes to simulate soil-land use interactions
Input data to run simulations, which may be a constraint at the European scale
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Simulate all agricultural production activities of interest (e.g. crops, grasses, 
vineyards, agro-forestry); and
Simulate agro-management and its impact on the system

Component Based Structure

There is no single solution to the problem of splitting complex systems into 
components. However, some divisions are more effective than others. The criteria 
used for doing this in APES were:

Consistency with knowledge about the organization of the real system
Consistency with the goal of encapsulating a useful/reusable set of modelling 
solutions relevant to the specific domain; and
Minimization of the need for communication between components within a 
time step

This has led to components being developed with different model granularities 
(from the whole system perspective) as one of the possible solutions to modularization 
of agricultural production systems. Figure 4.2 shows the APES model components 
included in the December 2008 release.

Fig. 4.1 Main typologies of models and outputs of APES. The details of both are described 
in the text
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Model Components

APES is composed of two main groups of software units: the simulation engine 
which uses the modelling framework MODCOM (Hillyer et al. 2003), and the 
model components, which include a cross-component unit to compute mass balance. 
Model components can be grouped into agricultural management, soil components, 
production enterprise components, and weather.

The description of the models, implemented is available in the help files of 
each component (see “Web resources”). Help files are in general divided into two 
sections: “models”, which contain the model description, targeted at model users, 
and “design and use” which contain component information targeted at develop-
ers. The components on public release also include a code documentation file and 
sample applications in a software development kit.

All models use a daily time step for integration and communication across 
modules, although calculations can be carried out with a shorter time step within a 
component. Each component contains one or more existing models which simulate 
the constituent processes. The relevant references are listed in the documentation of 
each component. A brief summary description of each component follows; the teams 
which have developed each component are detailed (refer to authors’ affiliation for 
explanation of the acronyms). Components are grouped with reference to Fig. 4.2.

APES - Agricultural Production and Externalities Simulator
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Fig. 4.2 The APES “coarse” component diagram. Note that there are alternate options for 
simulating soil water, soil nitrogen, and crops; also, within each of the components there can be 
alternate approaches for simulating processes
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Agro-management Components

AgroManagement: Rule Based Modelling of Technical Management

The AgroManagement component was developed by CRA and is designed to 
implement field management actions during simulation. An agricultural activity is 
defined, in this context, as a production enterprise such as a crop rotation, i.e. an 
assemblage of crops, an orchard etc., associated with a production system charac-
terized in terms of outputs and inputs such as high input, high output (e.g., irrigated, 
high nitrogen fertilization, minimum tillage). Such an integrated system must be 
implemented in a way that imitates as closely as possible farmers’ behaviour. 
Limiting the drivers of the decision making process to the biophysical system 
implies that each action must be triggered at run time via a set of rules which can 
be based on the state of the system, on constraints of resource availability, or on the 
physical characteristics of the system. However, simulating management in a 
component-based system poses challenges in defining a re-usable framework 
which is able to account for the complete range of agricultural management 
technologies applied to particular enterprises. Finally, the implementation of 
management must allow different approaches to be used for modelling its impact 
on different model components.

The AgroManagement component formalizes the decision making process in 
models called rules, and the drivers of the implementation of the impact on the 
biophysical system as a set of parameters encapsulated in data-types called impacts. 
Rules and impacts are both easily extendable, thus allowing a wide range of model-
ling approaches to be used. Furthermore, the information on the biophysical system is 
passed through a data-type called states, which can also be extended in case new 
rules require additional variables. The outputs from the management actions, applied 
as a result of rules evaluated at run-time, needed to provide the simulation output 
(output to a text file, an XML file or a database are all currently available) can be 
fully customized by the user and added to without recompiling the component.

Currently, the management actions which can be implemented are nitrogen 
fertilization (mineral and organic), tillage, irrigation, pesticide application, and crop, 
tree, and grassland operations. The software implementation is such that new agro-
management typologies, and new actions within the typologies, can be easily added.

The rule-based model is characterized by three main sections:

Inputs: states of the system and time –
Parameters specific for each rule (values are compared to states of the system via the  –
rule model)
A model which returns a true/false output –

Rules, which are based on relative date or on a set of state variables, are 
implemented as a class encapsulating their parameter declarations and tests of 
pre-conditions (this also allows management configuration files to be validated using 
pre-condition tests). One feature of interest is that implementing the rule approach 
allows the formalization of what is generically referred to as “expert knowledge”. 
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For example, expert knowledge which suggests that in a specific environment, a 
farmer will “plant maize on a date later than April first, if it has not rained for the 
last three days, and when average air temperature has been above five °C for seven 
days continuously” can be formalized and used in simulations. The italicized words 
are the parameters of the rule to be compared with system states/exogenous 
variables at run-time (e.g. the condition “no rain for the last seven days” is tested 
against the values of rain at run time starting from April first as in this example). 
The possible uses of such formalization include building a consistent quantitative 
database of agricultural management across Europe, optimising parameters in climate 
change scenarios as an adaptation strategy and using such metrics in climate change 
impact assessments, and improving technical management in current conditions 
through rule-parameter optimization. Parameters are needed by model components 
to implement the impact of management actions. Some are common to many 
management events (e.g. management type) while others apply to a specific man-
agement event (e.g. amount of water for irrigation, tillage depth for tillage). Other 
parameters are needed by specific modelling approaches and generally differ even 
within specific management event types (e.g. implement type and an associated set 
of eight parameters is needed for modelling tillage according to the WEPP (Water 
Erosion Prediction Project) approach, Alberts et al. 1995, as opposed to other 
approaches which do not need such information). All model components reference 
the AgroManagement data-types to trigger management impact models at run-
time. An example of the graphical representation of a management configuration 
for a 3-year rotation is shown in Fig. 4.3.

Fig. 4.3 Agro-management scheduled actions in a 3 year rotation. For simulations longer than 
this, the sequence is repeated. Vertical bars in the upper section of the graph are actions scheduled 
at a relative (to year) date; horizontal bars are actions scheduled in a time window, if other conditions 
are met; horizontal bars with a shading gradient are actions scheduled with an end date but 
associated with a phenological event (the width of gradient boxes is arbitrarily fixed as 30 days in 
this graphical representation)
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Production Enterprise Components

AbioticDamage: Damage on Plants by Abiotic Factors

The AbioticDamage component was developed jointly by JRC and CRA. It implements 
several approaches for the simulation of abiotic damage to crops. Models are 
implemented with a fine granularity. The constituent models currently belong to 
five categories: lodging, frost, cold-induced spikelet sterility, ozone, and salinity.

Lodging implements the approach proposed by Baker et al.  – (1998), modified by 
Acutis et al. (2008), assuming that the dominant parameter that affects lodging 
is the wind-induced bending moment at the stem base.
Frost (Ritchie  – 1991) calculates crown temperature, hardening and de-hardening 
index, a killing temperature, the possible reduction in leaf area index, and evaluates 
if the crop has been killed by the frost.
SpikeletSterility implements two different approaches, proposed by Confalonieri  –
et al. (2006) and Shimono et al. (2005). An option model allows an automatic 
choice between them according to input availability. The Confalonieri approach 
is based on the computation of hourly stresses which are summed to compute the 
daily stress. The Shimono approach computes daily stress directly, but it requires 
the calibration of empirical parameters. The different susceptibility to sterility 
in the period between spikelet initiation and heading is accounted for by both 
models.
Ozone contains a complex model for the simulation of the damage due to  –
ozone. It models leaf aerodynamic and boundary layer resistance (Spiker et al. 
1992), calculates average leaf conductance using the method of Georgiadis 
et al. (1995), and calculates the fractional reduction of plant production as a 
function of the ozone flux through the stomata and the leaf conductance of water 
using the approach of Sitch et al. (2007).
Salinity implements two different approaches, proposed respectively by   –
Ferrer-Alegre and Stockle (1999) and by Karlberg et al. (2006). The Ferrer-
Alegre approach is based on the calculation of plant conductance and then of a 
function for the estimation of salinity stress in different layers of the vegetation. The 
Karlberg approach calculates the reduction of nutrients partitioned to the leaves 
due to salinity stress on the roots.

AgroChemicals: Pesticide Fate

The Agrochemicals component was developed by UNICATT, and is a one-dimension 
model that simulates the pesticide fate at field scale with a daily time step for 
communication with other modules; this component was developed by using new 
knowledge (Jantunen et al. 2005; Balderacchi et al. 2007) to modify earlier models 
(Carsel et al. 1988; Tiktak et al. 2001). The model considers five environmental 
compartments where the pesticide can be stored:
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Canopy surface: represents the pesticide deposit on branches, leaves, fruits,  –
shoots and green parts (hence the outer part of the plant)
Plant: represents the agrochemical stored inside the plant –
Soil available fraction: the pesticide quantity which can move and can be  –
transformed by biotic processes
Soil aged fraction: the pesticide trapped within soil micro pores and organic  –
matter and not available for transformation
Soil bound fraction: the pesticide fraction that cannot be extracted from the soil  –
without altering its physical-chemical structure and therefore not available for 
transformation

The models were implemented in four modules, representing environmental 
compartments:

Air considers the processes that happen before the product reaches the soil  –
including drift and plant interception.
Crop simulates only the plant mass balance, although in this first prototype plant  –
is only a sink of pesticide.
Canopy simulates the processes that happen on the leaf surface. –
Soil describes the pesticide flow through the soil profile. Each soil profile has to  –
be split in numerical layers; the equations which describe the fate of pesticides 
differ for the top and bottom layers, because there are different boundary 
conditions.

The processes that redistribute the pesticide into the system connect two compartments 
and are:

Penetration: from canopy surface to plant –
Wash off; from canopy surface to soil available fraction –
Ageing: from soil available fraction to soil aged fraction and vice versa –
Binding: from soil available fraction to soil bound fraction –
Plant uptake: from soil available fraction to plant –
Transport in liquid and gaseous phase: between the soil available fraction  –
compartments of different layers

The output variables of greatest interest due to their importance for environmental 
pollution are: amount of pesticide lost due to drift; amount of pesticide volatilized, 
amount of pesticide lost due to run off, amount of pesticide lost to the drain system 
when present, amount of pesticide leached, and amount of pesticide remaining in 
the soil profile.

Crop: Crop Development and Growth

The crop component was developed by PPS and CIRAD. It simulates crop growth 
and development for the major crops of Europe. Tropical crops are currently 
being added. Crop growth is based on the interception of radiation by green plant 
parts and its conversion into dry matter. Crop development goes through vegetative 
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and, for some crops, reproductive phenological stages, at a rate that depends on 
physiological time, expressed as a temperature sum. The timing of readiness for 
harvest is also simulated. Potential crop growth is defined by temperature, radiation 
and crop phenology. The crop growth and development model simulates both 
potential growth and attainable growth, which is limited by water and nitrogen 
availability. The crop component uses a generic crop simulator in which parameters 
and modelling approaches can differ according to the crop simulated.

The crop component has been based on the concept of light interception and 
utilization from the Lintul model. However, modifications and additions have 
been introduced to extend the list of crop types for which the model can be used. 
These changes include the implementation of alternative modelling approaches 
for each of the main crop physiological processes, such as:

Leaf area expansion –
Biomass accumulation (Monteith  – 1977)
Biomass partitioning (van Keulen and Seligman  – 1987)
Phenology (van Keulen and Seligman  – 1987; Streck et al. 2003; Hearn 1994)
Senescence –
N dynamics (Shibu et al.,  – 2009)

The model set-up allows new approaches for modelling these processes to be 
included easily. Parameter sets for 19 crops are currently available, including cereals, 
legumes, roots and tuber crops, and comprising determinate and indeterminate, and 
winter and spring crop types. The crop list can be extended not only by adding new 
crops but also varieties suitable for a particular environment, by editing existing 
parameter sets of the relevant crop type. In SEAMLESS-IF, these parameters are 
fine-tuned for regional applications by defining two correction factors that adjust 
crop cycle duration and crop radiation use efficiency.

CropML: Crop Development and Growth

The CropML (Crop Model Library) was developed by JRC, CRA, and UNIMI. 
The component implements alternative modelling solutions from those in the Crop 
component using different generic and crop-specific crop models. The architecture 
adopted allows easy extension of the component through the incorporation of other 
models. In fact, the fine granularity used for coding the different processes related 
to crop growth and development allow the re-use of the same strategies for other 
modelling approaches where common algorithms are present.

CropML is implemented as two separate components, CropML and CropML.
Interfaces. The first includes all the algorithms (the models), the second interfaces, 
domain classes, and information about crop model parameters. Three versions of 
the component were developed: CropML, CropML.WaterLimited, and CropML.
NitrogenLimited. The last two extend, respectively, CropML – CropML.Interfaces 
and CropML.WaterLimited – CropML.WaterLimited.Interfaces.

The models currently implemented are the plant growth and development approaches 
of CropSyst (Stockle et al. 2003), WOFOST (van Keulen and Wolf 1986), and WARM 
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(Confalonieri et al. 2006). The first two models are generic crop simulators, based 
respectively on the simulation of net and gross photosynthesis; the latter is a model 
specifically for rice simulations. CropSyst simulates net daily biomass accumulation 
using two approaches: the first is based on the concept of radiation use efficiency 
(RUE); the second is a vapour pressure – corrected Transpiration Use Efficiency 
approach. Each day, the minimum of the two biomasses is taken. CropSyst simulates 
daily biomass partitioning as a function of Specific Leaf Area at emergence, 
cumulated biomass, and an empiric parameter representing the partitioning of 
biomass between stems and leaves. WOFOST simulates the daily fixation of CO2 
(gross photosynthesis), the growth and maintenance respirations and a dynamic 
partitioning between leaves, stems and storage organs. WARM is based on the RUE 
approach, accounting for limitations to RUE due to temperature, senescence, 
saturation of the enzymatic chains and diseases. A dynamic approach for biomass 
partitioning of assimilates into stems, leaves and storage organs is also adopted in 
this case, driven by a single input parameter.

The CropML – WARM component uses a micrometeorological component, 
TRIS (Temperature in paddy-RIce Simulation). The TRIS component simulates the 
floodwater effect on the vertical soil thermal profile in paddy rice fields. TRIS is 
particularly important for rice simulations in temperate environments, where there 
is a significant effect of floodwater on temperature (one of the main driving 
variables in cropping systems models). Two alternative models were implemented, 
a mechanistic and an empirical one, for use according to data availability. The first 
is based on the solution of surface energy balance equations and estimates the 
temperature of floodwater, of each 10 cm canopy layer from the air–water interface 
to the top of the canopy, of the meristematic apex, and of the canopy. The model 
has an hourly time step. Context strategies allow also the generation or estimation 
of canopy and meteorological variables according to their availability in the domain 
classes. If needed, hourly inputs can be generated using the CLIMA libraries 
(Fig. 4.2). Maximum and minimum daily temperatures of floodwater, meristematic 
apex, and mid-canopy are calculated. The empirical model is based on modified 
Gaussian filters which reproduce the smoothing effect of water on daily thermal 
extremes, and the water heat storage capacity.

The component can be extended through the implementation of alternative 
approaches, e.g. for the simulation of meteorological variables into the canopy 
profile.

Diseases: Air-Borne Plant Diseases

The Diseases component was developed by CRA and UNICATT. It allows the 
impact of plant disease epidemics on plant growth and yield to be estimated. It consists 
of four modules providing a generic frame to simulate disease development:

Disease progress –
Inoculum pressure (initial conditions) –
Impact on plants –
Agricultural management impact on pathogen populations –
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The Disease progress module simulates the epidemics of a generic air-borne 
fungal pathogen, considering the following components of the infection process: 
infection (Analytis 1977; Magarey et al. 2005), incubation, latency, infectiousness 
(Blaise and Gessler 1992; Wadia and Butler 1994), sporulation (Analytis 1977), 
and spores dispersal (Aylor 1982; Waggoner 1973; Waggoner and Horsfall 1969). 
These processes, which are driven by weather conditions and interactions with the 
host plant (Zadoks and Schein 1979), are modelled as a function of meteorological 
variables, temperature, air relative humidity, vapour pressure deficit, leaf wetness 
duration, rain, and wind speed – hourly values estimated/generated from the CLIMA 
libraries (Fig. 4.2), and parameters specific for each host-pathogen combination. 
As output, the Disease progress module returns the proportion of host tissue affected 
compared to the total host tissue.

The initial conditions for infections are derived from a pool of models which use 
information about the preceding crops, site-specific potential, and a random compo-
nent obtained by sampling from a distribution, either provided by default or fitted 
from historical data. Impact on plants is currently implemented as a reduction of the 
photosynthesizing host tissue according to the Bastiaans’ model (1991), but it will be 
extended to a more direct interaction with plant simulation as some air-borne pathogens 
such as rusts inhibit the conversion of solar radiation to dry matter. Finally, agro-
management is accounted for through the impact of fungicide applications and other 
disease control actions on the fungal population. Prototype study applications have 
been made for vineyard diseases and powdery mildew of wheat (Blumeria graminis 
f.sp. tritici). The component also contains a model to simulate the pathogen rice blast 
(Pyricularia orize) and its impact on the rice crop, and a generic model for potential 
infection (Magarey et al. 2005), with parameters for more than 80 diseases.

Grasses: Grassland Growth and Quality

The grassland component was developed by INRA. It allows a wide diversity of 
grassland types to be simulated: (i) sown grass species including tall fescue 
(Festuca arundinacea), perennial ryegrass (Lolium perenne) and cocksfoot 
(Dactylis glomerata), sown legumes such as alfalfa (Medicago sativa), permanent 
grasslands ranging from plant communities growing under nutrient-poor to those 
from nutrient-rich conditions, and mixtures of grasses and alfalfa or white clover 
(Trifolium repens). For species-rich permanent grasslands the approach is based on 
plant functional traits (Lavorel and Garnier 2002; Duru et al. 2009).

The grass growth module is similar to that of the crops component except that 
additional functionalities are included:

The calculation of the herbage feeding value: (i) protein content using the standing  –
herbage mass and the crop nitrogen index; (ii) digestibility from herbage age, 
nitrogen index and plant type (Duru 2008; Duru et al. 2008).
A detailed phenological sub-model (McCall and Bishop-Hurley  – 2003), for 
which parameters are specific to vegetation type in order to simulate a large 
range of defoliation regimes (cutting, grazing, short and long regrowth periods), 
over the vegetative or the reproductive phase.
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In comparison to crops, some simplifications have been made:

Leaf area is calculated only as a function of environmental factors and species  –
type and not of dry matter accumulation.
Over the reproductive phase, stem biomass accumulation is calculated as a fraction  –
of the above-ground herbage mass (Calvière and Duru 1999).
The root mass is considered constant over the growing season (as in many herbage  –
growth models, e.g. Schapendonk et al. 1998; Barrett et al. 2005); i.e. root growth 
rate is assumed to be the same as the root death rate.

In grass-legume mixtures, the competition between the two components is not 
simulated. An a priori sward composition is defined that depends on the nitrogen 
and defoliation management.

FieldManager: Spatial Information for Multiple Plant Species

The FieldManager component, which was developed by INRA, provides field 
dimension information for heterogeneous stands such as agroforestry plots or 
vineyards where rows of trees or other woody perennials separate cultivated strips 
of either crop or grassland. Field configuration is defined by three parameters: 
WidthIntraRow (distance between trees in a row), WidthInterRow (distance 
between rows), WidthCultivatedStrip (width of cultivated strip between each row). 
Three field configurations are currently available: for crop alone, for a continuous 
row of grapevine with a cultivated strip of Crop or Grassland, for a row of timber 
trees with a cultivated strip of crop.

LightInterception: Light Interception and Competition by Canopies

The LightInterception component, which was developed by INRA, implements 
models that estimate the daily interception of solar radiation partitioned between 
one or two types of plant and the soil. From the daily solar radiation, a simple 
field description (from FieldManager) and a small number of plant parameters 
that characterize canopy dimensions (LAI, crown dimension), this component 
estimates the fraction and amount of PAR (Photosynthetic Active Radiation) 
intercepted by the tree canopy, any crop or grassland canopy below, and the soil. 
Three models are available in the current version, all derived from the geometrical 
model of Pronk et al. (2003), but corresponding to different field configurations 
(continuous rows, rows of cubes, or rows of cuboids). These models assume 
homogeneity in the light transmission properties of leaves and uniform 
canopies (this assumption is needed to permit the one-dimension simplification 
of canopy structure in other parts of the model). In the case of a single crop 
the model follows the Beer-Lambert law (Monteith and Unsworth 1990) for light 
interception.
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MassBalance: A Library of Mass Balance Tests

The MassBalance component was developed by CRA. It implements equations of 
balance in discrete code units (strategies). The water and the nitrogen balance are 
currently implemented. At each time step the component computes the active balances, 
and outputs the values. Each balance has a threshold parameter as maximum departure 
from zero allowed; this threshold can activate a flag at run time. The component, 
which can be extended, is designed to be used either in the test phase of a new 
modelling solution, or permanently as a check on correct functioning.

RootDistribution: Roots Growth and Distribution

The RootDistribution component, which was developed by INRA, estimates the 
partitioning of fine roots between layers in the soil profile. Only one model is currently 
available, derived from Hi-sAFe 3D model (Root Voxel Automaton, Mulia 2005; 
Mulia and Dupraz 2006). From the daily fine root growth and death, the soil layer 
thickness and the water extraction of the previous day, the allocation of root length 
and biomass to the different soil layers is estimated using an opportunistic growth 
paradigm. Parameters can be fitted to adjust the water and distance to collar sensitivity 
so that root profiles of most species can be simulated. It is assumed that the 
horizontal distribution of crop roots is homogeneous, given that the root distribution 
is a one-dimensional simplification of the system.

Tree: Woody Plant Growth and Quality

The Tree component was developed by INRA. It is a generic woody plant 
model designed to simulate grapevines, fruit trees and timber trees; it is currently 
parameterized for grapevines. It simulates crop growth, production and product 
quality. Its basic features are similar to those implemented in the Crop component: 
temperature drives crop development, and intercepted radiation determines the 
potential growth rate that can be reduced by water or nitrogen limitations. Dry 
matter and nitrogen are partitioned between the growing organs on the basis of 
partitioning tables (Nendel and Kersebaum 2004; Vivin et al. 2002; Wermelinger 
and Koblet 1990). Some features are specific to woody crops. Where these crops 
are planted in rows, as is generally the case, their canopy is heterogeneous and 
the Tree component converts the daily carbon increment into an increase in crown 
dimensions (needed in the Light interception component, Pronk et al. 2003). Woody 
crops are perennial so carbon and nitrogen can be stored during the annual crop 
cycle and used during the next cycle (particularly at bud break) (Castelan-Estrada 
2001). The Tree component calculates variables that define fruit crop quality, 
which is important for crops such as grapevines or apple trees. For grapevines, 
the dynamics of fruit water and sugar contents depend on the thermal time during 
the phase of grape growth after the onset of ripening (veraison) (Ollat et al. 2002). 
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The tree component does not use fixed partitioning tables for timber trees because 
this would prevent the modelling of the impact of branch or root pruning on the 
tree growth. The tree component includes a dynamic module of C allocation for 
timber trees, governed by two types of rule:

Teleonomic allocation rules based on allometric equations define the relative  –
sizes of above-ground sub-compartments, e.g. the relationship between Diameter 
at Breast Height (DBH) and tree height. Such allometric relationships capture 
internal constraints not explicitly dealt with in the model (e.g. architectural 
model and structural stability constraints limiting amount of leaf biomass for a 
given amount of wood biomass) in relation to the tree dimensions.
An optimal allocation assumption (‘functional balance’) between above- and  –
below-ground biomass mediated through stress indices, which assume that a 
plant allocates its biomass so as to maximise its growth rate under the given 
environmental conditions. This approach has been extended to the ratio between 
coarse and fine roots, with a dynamic allocation procedure that avoids the need 
for fixed partitioning tables.

WaterUptake: Plant Water Uptake

The WaterUptake component was developed by INRA. It allows daily plant water 
extraction to be estimated from each of the soil layers and for each plant species 
(one or two possible) in the field from the plant water demand, the soil description, 
and the root distribution in the soil. Roots are assumed to be homogeneously distrib-
uted horizontally. Two types of model have been implemented. The simple model for 
cases with up to two plant species, assumes that the water demand is met as long as 
water is available in the soil layers containing roots (water content above wilting point). 
The second model is the more complex one used in the His-AFe model for mixed 
vegetation. This model estimates the amount of water that each plant can extract from 
the soil by integrating the matric flux potential for each plant in each rooted layer.

Soil Components

SoilCarbonNitrogen: Soil Carbon and Nitrogen Dynamics

The SoilCarbonNitrogen component was developed by CIRAD and INRA. 
The models implemented describe N mineralization-immobilization turnover and 
the interactions between C and N dynamics in decomposing plant residues and soil 
organic matter (SOM). It includes above- and below-ground plant residue pools and 
three soil organic matter pools (microbial biomass, young and old SOM) with different 
turnover times (Fig. 4.4). Rates of decomposition are modified by temperature, 
moisture, lignin content of the residues and N availability. Stabilization of SOM is 
simulated by transferring fractions of decomposed microbial biomass and young 
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SOM into more recalcitrant forms (respectively into young and old SOM). Nitrogen 
is mineralized to, or immobilized from, the soil inorganic N pool to maintain the 
N:C ratio of decomposing microbial biomass within a specified range. Balancing 
potential microbial N demand against inorganic N availability determines whether 
the activity of decomposers is limited by N. If so, then simulated decomposition 
fluxes are reduced. The maximum rate of microbial N uptake is proportional to 
soil inorganic N content. Lignin incorporation in the young SOM pool results in 
additional N immobilization in the young SOM pool, which simulates the process 
of chemical N immobilization.

SoilErosion: Water Runoff and Soil Erosion by Water

The runoff-erosion component was developed by UNIMI. It simulates surface 
runoff and erosion, and handles irrigation events. The same soil description as in 
the SoilW component can be used. Runoff and erosion can be simulated daily when 
only daily rainfall is available, or for shorter time periods, if hourly or more 
frequent data are available. The following four processes are simulated, allowing 
for easy interchangeability and extension of options:

Interception of rain by vegetation; two approaches (von Hoyningen-Huene 
1981; Brisson et al. 1988) are available, both of which calculate interception as 
a function of Leaf Area Index.
Interception of rain by mulch.
Runoff using either the Curve Number approach, which is suitable for daily rain 
data (SCS 1972) or the kinematic wave approach, when hourly or more detailed 
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Fig. 4.4 Pools and fluxes of (a) carbon and (b) nitrogen in the new decomposition model. MP: 
metabolic pool; HCP: holocellulosic pool; LCP: ligno-cellulosic pool; L: lignin; SOM: soil 
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young SOM (From Corbeels et al. 2005)
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data are available. Infiltration of water in soil is simulated using either Smith and 
Parlange (1978) equation or Green and Ampt (1914) equation. Peak runoff is 
estimated with an empirical equation from EPIC (Williams et al. 1989), or is 
intrinsic in the Kinematic Wave approach.
Erosion is estimated using the MUSLE (Modified Universal Soil Loss Equation, 
Williams and Berndt 1977) which is suitable for single rain events. The EUROSEM 
(Morgan et al. 1998) and Kineros (Woolhiser et al. 1990) models use a differen-
tial dynamic balance between splash erosion, shear stress of runoff water, carry-
ing capacity of runoff water and deposition. RUSLE (Revised Universal Soil 
Loss Equation) using the adaptation of Cooley (1980) for single storm events 
is currently being developed for SoilErosion.

The SoilErosion component can also be used to simulate small hydrological basins 
because each simulation unit can accept as input runoff from an adjacent unit of 
simulation and can be either a plane or a channel.

SoilNitrogen: Soil Nitrogen Dynamics

This component was developed by UNIMI and is an implementation of SOILN 
(Johnsson et al. 1987), simulates the transformation of organic carbon and of organic 
and inorganic nitrogen in the soil. The model uses three pools to represent organic 
C and N: one is slow cycling (humus), and two are labile (litter and manure). Dead 
roots and incorporated crop residues are added to the litter pool, while animal faeces 
are added to the manure pool. Each input of organic matter is characterised by a 
specific N:C ratio and humification and ammonification coefficients, and is assigned 
to a “litter” or “manure” category. Inorganic N is represented by two pools, 
ammonium and nitrate. All transformations of C and N (except denitrification) are 
simulated with first-order kinetics, using environmental controls (soil temperature 
and water content) to modify decomposition rate constants. Denitrification is 
simulated with a zero-order kinetic. Potential decomposition of organic matter is 
simulated by calculating C flows from litter and manure to humus and from all pools 
to CO2. Soil microbial biomass is implicitly represented as part of the two labile 
pools, which therefore represent the association of added organic materials with 
their decomposers. The following sources and sinks of ammonium and nitrate are 
simulated by the component: urea hydrolysis, nitrification, denitrification, 
atmospheric deposition, nitrate leaching, crop uptake, and ammonia volatilisation. 
Although denitrification and ammonia volatilization are implemented following the 
strategy pattern, there are no alternative approaches currently available.

SoilTemperature: Simulation of Temperature in the Soil Profile

The soil temperature component was developed by UNIMI. It allows soil temperature 
to be simulated down a one dimensional profile. The following processes are 
simulated:
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Surface temperature: The empirical approach of Parton  – (2004) and the mechanistic 
approach of Campbell (1985) based on the energy balance at the soil surface are 
both available.
Transmission of heat in the profile: The Campbell  – (1985) approach based on a 
one-dimensional differential equation of heat transfer is available. The empirical 
approach of SWAT (Neitsch et al. 2002) is being developed.

SoilReader: Accessing Soil Data at Initialization

The SoilReader component was developed by CRA and UNIMI. It has four 
functions:

1. To load data (soil parameters, soil initial conditions, water table presence)
2. To estimate parameters which are either missing or which need to be estimated 

using pedo-transfer functions
3. To create soil layering from soil horizon data
4. To create daily values of water table depth

The component uses the PedoTransferFunctions (PTF) component (Fig. 4.2) to make 
estimates both of soil hydrological properties and of soil parameters needed by soil 
water retention curve models from the available soil information. The PTF compo-
nent is implemented using the same design as other APES dynamic components.

SoilWater: Soil Water and Hydrologic Characteristics Dynamics

The Soil water component was developed by UNIMI (Acutis et al. 2007). It allows 
one dimensional water redistribution in the soil to be simulated, and the changes in 
soil physical characteristic after a soil tillage operation. A soil profile is represented 
as a series of superimposed horizontal layers. For each layer, hydrological properties 
are provided by specifying the parameters of the appropriate hydraulic functions. 
Alternatively, the HYPRESS pedotransfer functions (Wosten et al. 1999) can be 
used to calculate hydrologic parameters from soil texture, bulk density, and SOM, 
or the PTF component (see SoilReader) that includes a large collection of 
Pedotransfer functions can be used to provide estimates. In addition, it is possible 
to provide the soil water contents corresponding to field capacity and wilting point. 
When, for numerical reasons (i.e. a finite difference approach for water dynamics 
simulation), a finer soil layer definition is needed, a method is available to split 
existing pedological horizons into thinner soil layers. The following processes are 
simulated, allowing for selection of alternate approaches:

Soil water distribution: three approaches are available, an empirical cascading  –
model, a cascading model with travel time taken allowing for water contents 
greater than field capacity but preserving the speed of calculation of the cascading 
method itself, and a finite difference solution of the Richards’ equation.
Water evaporation: two approaches, CropSyst (Stockle et al.  – 2003) and Ritchie 
(1972) have been adopted.
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Water uptake by roots: five approaches have been used, CropSyst (Stockle et al.  –
2003), Ceres (Ritchie and Otter 1985), Swap (van Dam et al. 1997), EPIC 
(Williams et al. 1989), and “control” where water uptake is an external input, as a 
total amount or by layers. “Control” only checks if the external water requirement 
is consistent with the actual soil water content.
Tillage: the WEPP approach (Alberts et al.  – 1995) is implemented.

The tillage model simulates the effect of tillage and the successive soil settling 
using a database of over 80 implements. According to the characteristics of the 
different tillage implements, SoilW reacts to the “Tillage” event by: (i) redistributing 
soil particles if layers with different textural composition are included in the 
tillage depth; (ii) redistributing organic matter; (iii) burying crop residues; 
(iv) redistributing water; (v) calculating a new soil bulk density and consequent 
changes in layer thickness; (vi) changing the retention and conductivity functions, 
and field capacity and wilting point; (vii) simulating the time course of soil settling 
with its effect on soil characteristics according to the amount of rain and time 
elapsed after the tillage event.

SoilWater 2: Soil Water and Hydrologic Characteristics Dynamics

The SoilWater2 component was developed by CIRAD and LIRMM. It mainly 
differs from SoilWater by taking account of preferential water flow through the soil 
profile. The model considers three structural levels within the soil profile, the 
pedostructure, the primary peds and the primary particles (Braudeau and Mohtar 
2009). The clayey plasma of the primary peds, micro-porosity, and the inter-ped 
pore space, macro-porosity, are represented by two compartments which are in contact 
through a transitional zone at the surface of the primary peds. Water is distributed 
between these two compartments whose volume varies with water content. Water 
fluxes between compartments and from one pedostructure unit to the other result 
from an alteration in the hydrostatic equilibrium due to water supply (rain, irrigation) 
and evapotranspiration. Fluxes are simulated using Richards equations.

The functionality of the pedostructure is quantitatively described by equations 
that originate in the measurement of four soil characteristic curves: the shrinkage 
curve, the swelling curve (Braudeau and Mohtar 2006), the conductivity curve, and 
the soil water potential curve (Braudeau 2006; Martin et al. 2006; Braudeau 
and Mohtar 2009). Those four equations are described using 15 parameters which 
can be estimated using specific pedotransfer functions gathered by Saxton and 
Rawls (2006) and available in the PTF component, thus allowing model runs to be 
carried out with the same soil information used by conventional soil-water models. 
The SoilWater 2 component simulates the dynamics and interactions of soil structure 
and soil water. The profile consists of a surface layer and underlying horizons. 
The impacts of technical practices like tillage, or the effect of a soil surface crust, are 
on water infiltration and evaporation. Surface hydraulic conductivity, layer thickness 
and maximum surface storage are the three principal factors that are modified. 
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Each horizon has a pedo-structure, a homogeneous zone in terms of structure 
and organization of particles. The soil is divided into homogeneous layers.

The equations used allow the uniformity of the layer’s depth in each horizon and 
the differences between horizons to be represented (Braudeau and Mohtar 2009).

Weather Data Components

WeatherReader: Accessing Weather Data and Estimating Missing Values

The WeatherReader component was developed by CRA. It has two functions: 
(1) to estimate missing weather data, and (2) to provide access at run time to 
location and weather data. The component is associated with components of  an 
application provided as a separate tool (CLIMA), which allow missing weather 
variables to be estimated and weather to be generated from a rich library of alterna-
tive models implemented in six categories: AirTemperature, Evapotranspiration, 
LeafWetness, SolarRadiation, Rainfall, and Wind. The CLIMA application is 
described in the following paragraphs. Some estimation capabilities from the 
CLIMA components which are encapsulated in the WeatherReader and are active 
at run time, estimate weather data which are never available from weather data 
records (e.g. vapour pressure deficit, day length, extraterrestrial radiation)

The Intended Use of APES

Version 1.0 of APES allows rotations of crops and vineyards to be simulated for 
water- and nitrogen-limited conditions. The current modelling solutions allow one 
dimensional fluxes to be estimated. It is primarily a prototype for evaluating the 
adequacy of APES in terms of:

The model framework, and in particular its ability to link operationally different  –
model constructs within the simulation tool. Such an evaluation includes 
conceptual evaluation (criteria and needs for combining models implemented in 
discrete units), and a technical evaluation (adequacy of the modelling framework 
for linking components).
The Graphical User Interfaces. This evaluation involves seeking feed-back from  –
APES users on the stand-alone application. Users of the SEAMLESS integrated 
framework with a biophysical background are also able to test APES using a 
specialized user interface.

The system allows water, nitrogen, and pesticide dynamics to be simulated at 
the field scale in response to agro-management in the range of environments 
(soil-weather combinations) characteristic of the agricultural parts of Europe. 
The choice of spatial scale has been a direct consequence of the goals of the 
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simulation, namely to estimate production and system externalities in response to 
detailed agricultural management applied in specific soil-weather combinations. 
Modelling approaches selected and implemented in APES were mostly developed 
at field scale. Simulation outputs at this scale have been used in the literature to 
provide outputs at the regional scale by linking to Geographical Information 
Systems holding information on the spatial distribution of soils and weather. In such 
cases the most frequent recommendation is to use simulation outputs to make 
relative comparisons between different agro-management options. Other options 
are to use simulation outputs at the field scale as “cell” data to be integrated in 
spatially explicit models, as in some catchment models. In this case, the increased 
number of inputs needed generally limits the use of these models to case studies. 
All uses at scales other than the field scale involve additional assumptions that may 
be difficult to justify. Moving across scales is being addressed in SEAMLESS with 
specific actions, but it is outside the modelling domain of APES.
The optimum temporal scale is still a matter of debate, as opinions differ about the 
significance of possible drift in multi-year simulations without the re-initialization 
of state variables. However, this use is both a given and implicit in the simulation 
of multi-year crop rotations and is accepted in peer-reviewed publications on the 
use of tools like APES. In any case, the issue is not about APES itself, but about all 
model tools built with modelling approaches similar to APES.

As the simulation tool has been developed with a focus on modularity, APES 
versions including different modelling engines and components (modelling solutions) 
can be made available as “closed” modelling solutions to be used for situations 
where the assumptions made by their developers (modellers) apply. A set of options 
may be made accessible (e.g. to simulate reference evapotranspiration using 
different approaches), but in order to protect system integrity, APES users will not 
be able to access model composition (in their role of model users). However, APES 
is an open system so that the same individual, with a different role, may access 
model building, in this case taking the responsibility for the choices made. This is 
the expected use beyond the end of the SEAMLESS project. Simulations can be run 
using long series of either generated or observational weather data, to account for 
the stochastic variability of weather. Outputs can be evaluated as means and deriving 
measures of variability.

Inputs

Whenever alternative options are available to simulate a given process and such 
options perform almost equally well, the less demanding model in terms of 
parameters and inputs should be selected. However, data availability and quality 
cannot be allowed to limit the implementation of model capabilities when it 
prevents the achievement of the goals of SEAMLESS. APES releases minimize 
data requirements and use options, such as pedo-transfer functions and weather 
generators, to estimate missing variables and parameters from the available data. 
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The operational use of APES will highlight data gaps that need to be filled if it is 
to be used throughout the EU (both in absolute terms and in specific areas/countries). 
Such an analysis can be considered a side-product of the APES development action, 
but of specific importance. For instance, the formalization of agro-management 
using a common framework for current agricultural practices is a need which goes 
beyond its use in APES.

Current APES inputs can be grouped in six file types (the detail is provided in 
the documentation):

Site data (e.g. latitude, elevation, …)
Daily weather
Soil data (e.g. clay, silt, and organic carbon percentages, horizon thickness) by 
soil horizon; slope, field length – unique values
Soil initialization data (initial conditions for state variables; if missing, default 
values are used)
Soil water table (if missing, the assumption is that no water table affects the 
root zone)
Planned agro-management (see AgroManagement component)

Site and weather data are loaded at run-time from the WeatherReader component, 
which allows missing data to be estimated using CLIMA. Soil data are loaded 
at run time from the SoilReader component, which allows missing data and 
hydraulic parameters to be estimated using the PedoTransferFunctions 
component. Agro-management has proved to be the most challenging problem, 
because the lack of a common formalism to store information beyond its use in 
agricultural statistics (i.e. a static, summary description) makes it difficult 
to develop rules to simulate the dynamic part of farmers’ decision making 
processes based on bio-physical drivers. APES development, and specifically the 
AgroManagement component has, however, provided a framework to formalize 
such data, making them of use for simulation of current and alternative agricultural 
management at field level.

Parameters

Parameters are defined as quantities that do not change value during either the whole 
simulation or parts of it. For example, crop parameters change when a crop is 
changed during the simulation, but their values do not change during the time a given 
crop is simulated. A simulation system which allows the use of more than one modelling 
approach cannot define a constant set of parameters for two reasons. First, some 
simulation approaches may need to model a parameter which then becomes a 
variable. For instance, a simulation system which does not model impact of 
tillage on soil physical properties will probably consider soil bulk density as a 
parameter; whereas bulk density will be modelled as a variable if the goal of simula-
tion is to estimate the impact of tillage on soil hydrological characteristics. Secondly, 
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modelling approaches may differ in the number and type of parameters required. 
Model components encapsulate the knowledge of their own parameters and 
handle them in response to either initialization or agro-management events. 
Sets of parameters can be edited via a dynamic, generic parameter editor (see 
the paragraph about the application Model Parameter Editor). Default values are 
part of the definition of the parameter together with minimum and maximum values, 
as is the case for variables.

Software Architecture

One critical issue in model linking to assemble model components into a composite 
model, is the difficulty of finding a component design that satisfies the requirement 
of ‘third-party composition’. In order to integrate my work with yours, my component 
must be compatible with your component, but frequently this is not the case: 
components are designed for a specific architecture or framework, and they are not 
usable outside it. Component design choices, rather than being peculiar to a specific 
architecture, should promote re-usability by including design traits which represent 
a compromise between level re-usability and complexity of the design chosen to 
maximize adaptability of components. Using a pragmatic approach, simplification 
can be obtained if the target use of components is within a specific knowledge 
domain. This has an impact not only on simplifying the design of components, 
but on clearly defining the scope of the knowledge domain which is embedded 
in the modelling exercise. Yet, restricting to a particular knowledge domain has 
often also meant restricting to a particular framework, where implementations of 
model components strongly depend on the modelling framework core. Targeting 
model component design to match a specific interface requested by a modelling 
framework decreases its re-usability. This explains why modelling frameworks, 
although in theory a great advance with respect to traditional model code develop-
ment, are rarely adopted by groups other than the ones developing them (Rizzoli 
et al. 2005). One way to overcome this problem is to adopt a component design 
which targets intrinsic re-usability and interchangeability of model components 
(e.g. Carlini et al., 2006; Donatelli et al., 2009; Donatelli and Rizzoli 2008). Such 
components can be used in a specific modelling framework by encapsulating them 
using dedicated classes called “adapters”. Such classes act as bridges between 
the framework and the component interface. The disadvantage of this solution is 
the creation of another “layer” in the implementation, which adds to the already 
implemented machinery in the framework. However, if components are correctly 
designed, there is a negligible, if any, penalty in performance, and the adapter 
does not add complexity. A further argument in favour of framework-independent 
components is that they allow modelling knowledge to be shared in a form which 
makes it easily re-usable.

Model components developed in SEAMLESS for use in APES are based on the 
above design paradigm: framework-independent components which can be linked 
to different modelling frameworks. A proof-of-concept of this claim has been 
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shown by Argent and Rizzoli (2004). MODCOM (Hillyer et al. 2003) is the linking 
framework used in the current release of APES.

Component Design

Components are discrete software units used for composition. Hence, components 
cannot be used in isolation. Further, the reason for adopting a component-based 
paradigm for implementing models as computer programs is to achieve specific 
functionalities not available with monolithic structures. Consequently, the component 
architecture and its implementation are crucial in developing a component based 
system for biophysical simulations that enables solutions to biophysical modelling 
problems to be implemented using different designs and technologies. Developing 
a design for a component architecture and selecting a technology for its implemen-
tation should be the result of a careful definition of requirements. The following 
requirements were defined for the APES model components:

Functional requirements:

Estimation and generation of variables from different models –
Estimation of parameters from observational data –
Provision of data at run time, accessing either observational or generated data,  –
and making available model outputs
Provision of quality checks on imported data –
Provision of quality checks on outputs –
Robust behaviour of the component that degrades gracefully, raising appropriate  –
exceptions
Traceable component behaviour with traces that are scaleable, i.e. browsable at  –
different debug levels

Non-functional requirements:

Ease of use: the components must be easily usable by clients; this has an impact  –
on technology and on documentation.
Extensibility: the capability to easily add alternative processing capabilities to  –
the ones of the component from the side of the component user, without needing 
to recompile the component, and using the same interface.
Re-usability: the practical possibility of using the component in different software  –
systems; ease of use and solution to a common modelling problem are the 
pre-requisites.
Replaceability: the capability for components to be replaced by a different  –
component conforming to the same specification. “Different” here means either a 
newer version of the same component, or an implementation from a different party.
Availability of fit-for-purpose documentation of models, software design, and  –
code.
Successful unit tests: unit tests for each public method, input-output tests should  –
be reported in the documentation.
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Technological requirements:

The component software implementation must be made using technologies with  –
a widespread adoption.

There are several ways of matching the above requirements via software design and 
implementation. In the next sections we list the major choices made for the design 
and implementation of static and dynamic components developed for APES.

Ontology

A pre-condition of the successful integration and re-use of an existing component 
is that the modeller understands the meaning of the data elaborated by the model. 
Understanding means associating a variable with a shared concept, knowing its 
spatio-temporal extent, its dimension and units and so on. In order to facilitate this, 
the components must contain information, possibly extracted from a public ontology, 
which describes the variables/parameters used, and allows checks on input-output 
links and data quality tests at run time. Information consists of concepts (variables 
in this case, which can be seen as instances of the concepts) and of attributes for each 
variable, encapsulated using the VarInfo type implemented in a utility component. 
VarInfo attributes are: Name, Description, Minimum/Maximum/Default value, 
Units (Athanasiadis et al. 2006). The properties with respect to data flow are not 
included among these attributes as they are not an intrinsic attribute of the variable. 
In other words, a variable can be an input to one model, and an output from another.

This information from VarInfo is used in the domain classes described below. 
The components also contain internal information about parameters and variables, 
using the same VarInfo type. Such information is defined in the component and used 
as described in the section on pre- and post-conditions. Collections of variables 
that are associated with particular domains define the Domain Classes (Del Furia 
et al. 1995). For instance, we could define SoilStates as the collection of all measure-
ments relevant to a specific goal chosen for soil modelling. Such collections can be 
manually entered by a user or automatically created, using the built-in reasoning 
features of the ontology. The definition of domain classes in the component 
interface allows the dependency of the model to be abstracted from the data and the 
extensibility of models fostered using design patterns (Mesketer 2004; Bishop 2008). 
The importance of domain classes goes beyond their meaning as software imple-
mentation items. In fact they provide a detailed description of the domain of interest. 
Using domain classes, a modeller can exploit the knowledge structured in the ontology 
in different modelling frameworks and programming languages. The adoption of an 
ontology-driven approach for defining a model interface has clear advantages as it 
enables the reusability of models in an easier way, while common problems related 
to poor semantics of model interfaces can be effectively tackled.

The APES ontology is browsable on the web at a dedicated page (see Web 
resources) in which each domain class and strategy is described using the VarInfo 
values of their variables and parameters.
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Model Granularity in Components

One definition of a model is that it is a conceptualization of a process. From a 
software point of view a model can be implemented in a class that offers a method for 
computing a variable (or a set of interrelated variables), thus obtaining the desired 
level of granularity. There might be more than one way to do this. If two different 
models estimate the same variable A, we can implement both of them as alternative 
methods for estimating variable A even if they have different input requirements 
and different parameters. To do this, the two models must be made available as 
separate units, and their input, parameters and output must be defined. Such units 
are here called “strategies”, from the related design pattern introduced below.

A set of alternative models can be implemented in the same component using 
the design patterns Strategy and Composite. These designs offer the component 
user alternative algorithms (strategies) for doing the same thing. When building 
a biophysical model component, this allows in principle alternative options to be 
offered for estimating a variable or, more generally, for modelling a process. This 
often-needed feature in the implementation of biophysical models comes with two 
very welcome benefits on the software side: (1) it allows easier maintenance of the 
component, by facilitating the addition of other algorithms, (2) it allows the easy 
addition of further algorithms from the client side, without the need to recompile 
the component, while keeping the same interface and the same method signature.

In summary, the strategy (a model class) encapsulates a model, the ontology of 
its parameters and the test of its pre- and post-conditions. It can be used either 
directly as a strategy (in this case we call it “simple strategy”, where simple indicates 
that does not use other strategies as part of its implementation), or it can be used as 
a unit of composition. A composite strategy differs from a simple strategy because 
it needs other (simple) strategies to provide its output(s). A sequence of calls might 
be implemented inside a composite class. The list of inputs includes all the inputs 
of all classes involved (except those which are matched internally). The list of 
outputs includes all outputs produced by each strategy and the ones specific to the 
composite class (if any). The list of parameters needed includes those of the classes 
associated with and the ones (if any) defined in the composite class. When the value 
of a parameter is set, if the parameter belongs to an associated class, it is set in that 
class. The test of pre- and post-conditions (see following paragraph) makes use of 
the methods available in each associated simple strategy class, plus the new tests 
specified in the composite class. If a violation of pre- and post-conditions occurs in 
one of the associated classes, the message informs the user not only about the violation 
that has occurred, but also in what class it has occurred. Composite strategies do 
not differ in their use compared to simple strategies.

A different type of composite strategy is the context strategy. Such classes 
implement an internal model to select the appropriate strategy (either simple or 
composite) based on the context, that is, on the inputs received at each call. 
An example of a context strategy is the one which estimates reference evapotrans-
piration by the Penman-Monteith, Priestley-Taylor, or Hargreaves method depending 
on the inputs available.
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The sample class diagram of a generic component in Fig. 4.5 shows the different 
type of strategies and the common interface which allows the design patterns 
described above to be implemented. The common interface IStrategyComponent and 
the capability to inherit from DomainClasses to extend them allows extending the 
component independently by third parties, and still using the original ComponentAPI.

The interface used for models is the same for all modelling solutions in the 
component and can be seen as an implementation of the Façade design pattern 
(Bishop 2008) to hide the complexity of model solutions based on composite strate-
gies. This leads to their being a single signature for internal and extended models. 
An example of simple and composite strategies is given by Villa et al. (2006). 
Composite strategies too can be added to the components without requiring a re-
compilation of their code, thus providing a way to extend component models fully 
autonomously by third parties. Composite strategies are solutions to modelling 
problems at a coarser granularity (in principle) than that of simple strategies. As an 
example, a composite strategy may be built to simulate “crop potential production” 
and be developed by putting together simple strategies such as “light interception”, 
“crop development”, “leaf area expansion”, etc. In other terms, a composite strategy 
is a “closed” solution which makes use of selected models of finer granularity as units 
of composition. Such a closed solution is not proposed as the unique solution for a 
specific modelling problem in a component as other options can co-exist or be added 
by third parties. Referring to the example above, two composite strategies may use 
different simple strategies to simulate “light interception” depending on whether they 
target the simulation of homogeneous canopies or wide-row crops. Even though such 
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Fig. 4.5 Class diagram of a generic component according to the design used in APES components
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differences in light interception models may not lead to noticeable differences in 
simulated potential yield, they may lead to sharp differences when simulating water-
limited production, particularly in arid environments. Further, two alternative 
approaches to modelling light interception, say for “homogeneous canopies”, could be 
implemented as two composite strategies, and this would allow modelling approaches 
to be compared at finer granularity. This kind of composite model provides a sound 
foundation for selecting modelling approaches to be used operationally.

Formalizing models in basic units of composition (simple strategies) and in 
aggregated units (composite strategies), with the same interface, and decoupling 
interfaces and data from modelling equations provides the design infrastructure to 
link and populate a knowledge base. The use of semantically rich interfaces fosters 
safe re-usability of components as discussed in the introduction. Finally, both 
simple and composite strategies are discrete units of code which can be used either 
to build components, or even as “full” simulation models to be used in stand-alone 
mode, in the latter case still preserving the benefits of a modular system as 
described in the introduction. By imposing the same interface on simple, composite 
and context strategies, the components obtain the full benefits of the Strategy and 
Composite design patterns, making re-use simpler and allowing full extensibility.

Test of Pre- and Post-conditions

Implementing tests of pre- and post-conditions is the central idea of the Design-by-
Contract approach (Meyer 1991). In DBC software, entities have obligations to 
other entities based upon formalized rules between them. A functional specification, 
or ‘contract’, is created for each module. Program execution is then viewed as the 
interaction between the various modules bound by these contracts. In general, 
routines have explicit pre-conditions that the caller must satisfy before calling 
them, and explicit post-conditions that describe the conditions that the routine will 
guarantee to be true after the routine finishes. When building biophysical models, 
the DBC approach not only ensures the correct functionality of the software, but 
also specifies the limits of valid use of the model, which is knowledge about the 
model itself. It also allows data of uncertain quality to be used: if an input (either 
an exogenous variable or the output of another component) is out of the expected 
range, an exception can be raised, both informing the user of the problem and 
allowing for exception handling. The DBC approach is implemented in APES via 
a utility component developed for the purpose, called Preconditions.

Exception Handling

Exception handling is a programming language construct designed to handle 
runtime errors or other problems (exceptions) which occur during the execution of 
a computer program. Handling exceptions is of crucial importance in a component 
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based system as it allows users of the applications and subsystems using the 
components to know precisely the source of the error and thus to choose what to 
do in response, preventing hard-crashes of the whole application. Components raise 
and propagate exceptions and provide a customised message informing users which 
component and class are the source of the error. If an unhandled exception occurs, 
an informative message describes the error, and model and component source of the 
exception, allowing for continuing execution of the client if the user chooses.

Tracing

The traceability of component behaviour is implemented in.NET versions using the 
TraceSource class in an implementation that allows the client to set receivers of 
the messages  called listeners. Various levels of tracing (critical, error, warning, 
information, and verbose) can be pooled in one or more listeners with all the traces 
from other components and from the client. Traceability is used in components to 
provide a log of execution shown at run-time in the APES stand-alone application.

Unit Tests

In computer programming, a unit test is a procedure used to verify that a particular 
module of source code is working properly. The principle underlying unit tests is to 
write test cases for all functions and methods so that whenever a change causes a 
deterioration, the cause can be quickly identified and fixed. The goal of unit testing 
is to isolate each part of the program and show that the individual parts are correct. 
Unit testing provides a strict, written contract that the piece of code must satisfy. 
Beyond the general benefits which derive from unit test implementation in software 
development, implementing unit tests to test model implementation and make 
available the relevant input-outputs in the documentation allows the user of 
the components to have sample application results for the specific model.

Model and Software Design and User Documentation

Each component requires a help file which contains detailed documentation about 
the models implemented, and information about the design and use of the component. 
The test of documentation adequacy is that it should allow re-implementation of all 
the models that comprise the component, although the characteristics of re-usability 
of the component make it much easier to use it again rather than to duplicate it. 
The code of each component should also be thoroughly documented, so that 
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automated documentation processing utilities, such as those available for the .NET 
development environment, can generate the documentation reports.

Component Public Interface

One of the key elements for component adoption by third parties is simplicity of 
default usage cases via the Application Programming Interface (API). The usage 
model for component-oriented design follows a pattern of instantiating a type (a class) 
with a default or relatively simple constructor, setting some instance properties, 
and finally calling some simple instance method. This “Create-Set-Call” pattern 
(Cwalina and Abrams 2006) has been implemented in the APES components.

The component API contains one method for each of the strategies using the 
same signature (see the paragraph Model granularity in components). Each of the 
strategies uses the same signature. Domain classes and strategy inputs, parameters, 
and outputs can be found using the Model Component Explorer application 
described below.

Technology Used

The technology used is based on the Object Oriented Programming (OOP) 
paradigm as implemented in the Microsoft .NET 2.0 framework. However, the 
object model of.NET allows easy migration to the Sun Java platform. Such 
migration has been realized for some of the components referenced. Most of the 
components have been made available as discrete units inclusive of a software 
development kit with example projects in which to use the component by desktop 
clients, by web services and applications, so that components can be extended 
independently of their source code.

Model Component Diagram

Each of the model components represented in Fig. 4.2 is actually a package 
of discrete units. Figure 4.6 shows the component diagram of a generic APES 
model component.

If a component implements models to simulate agro-management, then it 
must have a dependency on the components CRA.AgroManagement and CRA.
AgroManagement.Impacts. A component may have dependencies also on other 
components, such as numerical or statistical libraries, but must have no dependency 
on any modelling framework. Descriptions of model architecture are available in 
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the documentation of each component. Note that in APES, model components are 
encapsulated in an adapter class inheriting from a MODCOM class so that the 
MODCOM framework can be used, as described in the following section.

The MODCOM Engine

Components exchange data via the modelling-framework MODCOM (Van Evert 
and Lamaker 2007), which was developed by PRI. MODCOM is a software 
framework that facilitates the assembly of simulation models from previously and 
independently developed component models. It offers connectivity, time and state 
events, and numerical integration. APES components are registered via adapters to 
the MODCOM application which serves as the model engine, implementing the 
Adapter pattern as shown in Fig. 4.7.
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Data Exchange Between Components

Data are exchanged at a time step of 1 day, but within each time step components can 
communicate up to three times. Within a time step, components can communicate, for 
instance to meet supply and demand computed by two different components, thus 
allowing estimation of actual rates besides the potential ones which do not need to 
match supply (e.g. for water and nitrogen). The multiple calls within the time step also 
permit arbitration of a source between two or more sinks. Details are provided in 
the MODCOM documentation. The fine granularity, strategy-based discretization of 
models has been shown to be adequate for accommodating multiple calls for different 
purposes within a time step, and allowing each component to be developed 
without any dependency on other components or on the modelling framework itself.

The APES Stand-Alone Application

The APES stand-alone application allows different instances of the modelling 
engine to be run using the following conventions:

APES modelling solutions using alternative components (e.g. SoilWater or  –
SoilWater2) are kept separate and can be loaded by the user.
Once an APES modelling solution is loaded, a user interface page is dynamically  –
built allowing modelling options to be set within components (e.g. potential 
growth or water limited growth options in the Crop component; the curve number 
or the kinematic wave approach for runoff).

«library»
Framework

«library»
Component

«library»
Framework Application

Framework Component

ComponentAdapter

Framework Independent Component

Fig. 4.7 Linkage of a generic component via the Adapter pattern in APES applications using 
MODCOM
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The APES stand-alone allows new applications to be added as supporting 
tools (plug-ins) independently by third parties. An example is provided inclusive 
of source code.

The application is also built using the component-oriented paradigm; single 
components can be re-used independently of APES. Figure 4.8 shows the main 
components of the December 2008 version.

The AgroManagement Configuration Generator

The AgroManagement Configuration Generator is an application developed by 
CRA to build XML files containing a set of planned agricultural management 
actions, and to visualize configurations. Such files can be used by the CRA.
AgroManagement component at run-time to simulate the decision making 
process to implement agro-management actions in a field. As described in the 
documentation for the AgroManagement component, agro-management is 
simulated by parameterizing rules (classes implementing the interface IRule) 
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Fig. 4.8 The main components and packages of the APES stand-alone application. Connections 
represent dependencies. The package “APES Models” represents different realizations (modelling 
solutions) developed using the items of Fig. 4.2. All application tools (third row from the top) are 
reusable independently by third parties in custom developed applications. The component “Data 
Quality” is the component Preconditions cited in the paragraph Ontology
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and testing them against the state of the system. If a rule is satisfied, the coupled 
impact (a class implementing the interface IManagement) is published. The ACG 
uses rules and impacts to build sets of rule-impact couples. ACG allows also files to 
be merged and uses the component CRA.AgroManagement.AFD to display 
planned agro-management actions using a graphical metaphor (see Fig. 4.3).

The Model Parameter Editor

Developing and maintaining a simulation system implies, among other things, that 
the parameters used can change. Composite models are made of simpler models, 
which can be often replaced by alternative formulations. This means that the 
development and management of a simulation system requires the ability to deal 
with changing the number and type of the parameters of the composite model when 
a sub-model is substituted. If the system consists of interchangeable components, 
the need for dealing with different sets of parameters is an inherent feature of the 
system; an alternative component may model the same domain variables, but its 
approaches may demand different, model-specific, parameters.

The need for changing parameters has a primary impact on the Graphical User 
Interfaces developed for the system: such user interfaces must be easily maintainable, 
and ideally present the same look and feel to the user when different sets of para-
meters are in use. Moreover, there should be a facility to check the accuracy of all 
parameter values. A parameter editor with these features must allow the parameters 
to be edited to be changed without changing the code, hence without a need for 
re-compilation of the editor.

The Model Parameter Editor (MPE) is an application developed by CRA 
(Di Guardo et al., 2007) which allows a dedicated user interface to be generated 
for each available parameter definition. It groups interfaces in different tabs either 
according to user criteria, or according to the model components which originate the 
parameter definitions. The application allows selection of parameter definitions, or 
it loads automatically parameter definitions from a folder of choice. MPE can be 
used as a stand-alone application, but it is meant to be used primarily in a simula-
tion system like APES, becoming one object of the Graphical User Interface.

The Graphic Data Display Component

Providing data views from Graphical User Interfaces is a common need for applications 
built to make use of models. If model output is generated by a modular system 
in which model components are interchangeable, output variables may change. 
Thus, maintaining GUIs can be challenging and resource demanding. A tool which 
can load datasets with various schemas and which helps the user to visualize data 
in a range of ways speeds up application development, allowing the user to focus 
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on the models, rather than on the user interfaces. Whenever flexibility of use is 
important, providing domain specific views of data adds value to such a tool, both in 
operational usage and in model development.

The component GDD (Graphic Data Display) is a Microsoft .NET component 
developed by CRA (Di Guardo et al., 2007), which has the specific purpose of 
retrieving a set of output variables and allowing values to be displayed either as 
textual tables or as graphs. GDD can be used as a stand-alone tool or as a compo-
nent inside an application. In the former case it provides access to a file dialogue 
that allows the user to select a file, whereas in the latter case it can be opened 
inside a modelling framework to directly load the current dataset. GDD accepts 
inputs in three different formats: XML, MS Excel, and the more compact and 
faster binary form (another available component also allows I/O operations with 
the binary format). Readers can however be extended by third parties implement-
ing the proper interface. Each variable can be either a table column, or an entire 
table of the dataset, depending on whether it is either only time-variant or time and 
one-dimensional space-variant (the latter are variables that vary down soil profiles, 
such as soil temperature). GDD has seven tab pages supporting data views such as 
tabular views (which can be saved using the Microsoft Excel format), scatter 
graphs, time courses, histograms, soil profiles (water, temperature, nitrates, agro-
chemicals), ‘Micale’ graphics, frequency histograms, and probability of exce-
dence. Also, GDD allows showing reference data against simulation outputs via 
configurations which can be saved. GDD can read APES GUI output files, in both 
XML and binary formats.

The Simulation Output Evaluator

The Simulation Output Evaluator (SOE) is a data analysis tool developed by CRA 
that provides easy access to model evaluation techniques. As the literature gives 
neither a standard theory on model evaluation, nor a standard “box of tools”, the 
emphasis is on statistical techniques for comparing estimates either with actual 
measurements, or two series of estimates, making use of an extensible library called 
IRENE (the.NET 2.0 version). Non-replicated estimates are mostly compared with 
the non-replicated measurements. The program also allows comparison of indi-
vidual estimates with replicated measurements (or vice versa) and replicated esti-
mates with replicated measurements. The program provides extensive statistical 
capabilities with tools for a variety of needs. Ready-to-use procedures handle a 
wide range of statistical indices and test statistics. Basic statistics allow a prelimi-
nary check of data quality. The evaluation of model performance is based on either 
the model residuals or on the correlation coefficient. In addition, model evaluation 
by probability distributions (i.e., probability of excedence), residual analysis (i.e., 
pattern indices), and fuzzy-based aggregation statistics are allowed both for indices 
produced internally by the component and for external numerical values. The fuzzy 
aggregation model is saved as an XML file. Graphics are included in most analytical 
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tasks and the user can request many types of graphs directly. SOE can read APES 
GUI output files, both in XML and binary format.

The CLIMA Weather Generator

CLIMA is a Windows application developed by CRA (Donatelli et al. 2009b) which 
generates and estimates daily and hourly values of weather and weather-related 
variables using several alternative models (Carlini et al. 2006; Donatelli et al. 
2006a and 2006b; Donatelli et al. 2009). It exports data in a format readable by 
APES, and custom writers can be added. CLIMA was built following the compo-
nent-oriented paradigm and it is an example of re-use of components developed for 
APES. The component architecture is the same as other APES components, 
hence allowing both for component extensibility autonomously by third parties 
and for their re-use in custom developed applications (Fig. 4.9). CLIMA allows for 
composition of models into a composite model which is then saved as a discrete 
DLL. Such DLLs can be used either for data generation within CLIMA, or sepa-
rately in a custom application.
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Fig. 4.9 CLIMA component diagram (main components shown)
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The Model Component Explorer

The Model Component Explorer (MCE) is a Windows application developed 
by CRA for inspecting model components to reveal interfaces, domain classes 
and VarInfo values for each variable, simple and composite strategies and their 
parameters, inputs, outputs, and associated strategies. Given the component 
architecture implemented, the tool can be used to show the input and output 
variables within the domain classes of any model. The tool also allows XML files 
to be saved with schemas for each domain class and strategy, allowing them to be 
uploaded into a shared ontology (see paragraph Web resources).

APES Tools for Integration in Broader Modelling Systems

Given its component-based structure, APES can be run not only from a user inter-
face, but also using a command line procedure. This allows the model to also be 
called from applications developed using languages which have no binary compat-
ibility with .NET (e.g. Java) provided these applications are on a machine running 
Windows. APES is used in the software system SeamFrame (Wien et al., this volume) 
as an external component. As SeamFrame is implemented in Java, it requires APES 
to run as executable files. Support for integration can also be provided if the appli-
cation which acts like a client is a web application, provided that such an application 
exposes web services and includes rich clients. In this case, some of the applications 
implementing a user interface can also be used. APES includes tools for integration.

The Parameter Estimator

Parameter estimation is a major aspect of crop modelling. Together with the functional 
forms of the equations, it is a major determinant of prediction quality. Parameter 
estimation is a difficult and time-consuming exercise and requires expertise not 
always available in a modelling project. The purpose of the Parameter Estimator 
(PE), developed by PRI and INRA, is to provide software to automate model 
parameter estimation. The Parameter Estimator consists of functions in the R 
statistical computing the language (R Development Core Team 2007). Models such 
as APES are coupled to the PE through specific functions. APES is written in the 
C# computer language and is, for the purposes of the PE, exposed as a Microsoft 
COM object. This makes it possible to use the R-to-COM bridge (Baier 2007) to 
execute an APES simulation run from within R statements. The R software requires 
the following information: the observed data, the name of the model to be run, the 
paths to the input files for the contexts of the data (for example climate, soil and 
management files for each context), the list of model parameters and indicators as 
to which are to be estimated and finally information related to the correspondence 
between the data and the model output. The R routine sets the parameter values 
of APES to the current values at each iteration, executes the model for each context, 
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retrieves the results, calculates the objective function to be minimized and deter-
mines the parameter values for the next iteration.

The current version of the PE has five different algorithms for parameter estimation. 
The different parameter estimation methods correspond to different hypotheses about 
model error.

The Sensitivity Analysis Component

Sensitivity analysis (SA) is a fundamental tool in the building, use and understanding 
of all types of mathematical model. SA provides information regarding the 
behaviour of the underlying simulated system. This information ranges from the 
identification of relevant model factors (parameters or inputs) to model reduction or 
simplification, better understanding of the model structure for given components of 
a system, model quality assurance, and model building in general. Among the most 
commonly used methods, it is possible to identify three classes: screening methods, 
regression-based methods, variance-based methods. The most used screening 
method is the one proposed by Morris, which is particularly effective in identifying 
the few important factors in models with many factors or with high computational 
requirements. The second class includes the regression methods, which are based on 
the computation of standard or partial regression coefficients quantifying the effects 
due to a change in a factor value while the others are kept constant. Within this class, 
different methods can be used to generate the sample of factors combinations neces-
sary to obtain the model evaluations and therefore to calculate the regression coef-
ficients; here, Latin Hypercube Sampling (LHS), Random, and Quasi-Random 
LpTau will be used. The last class, variance-based methods, includes the Fourier 
Amplitude Sensitivity Test (FAST), its evolution Extended FAST (E-FAST), and the 
method of Sobol’. All the methods belonging to this class compute total sensitivity 
indices for first and higher order effects and are demanding in terms of computa-
tional time because of the high number of model evaluations needed for each model 
factor. SensitivityAnalysis is a component developed by JRC and CRA (Donatelli 
et al., 2009c) with the goal of making available the sensitivity analysis models 
implemented in the SimLab library (Saltelli et al. 2004) via a user friendly applica-
tion programming interface, in the memory managed environment of the Microsoft.
NET platform (the Simlab library is available for C, C++, Matlab and Fortran). The 
component allows sensitivity analysis to be run on a model of choice using the 
methods mentioned above. It is implemented using C# under the Microsoft .NET v 
3.0 platform. Sample applications inclusive of source code are provided to allow an 
easy start to SensitivityAnalysis use via different software clients.

Remarks on APES Integration in Larger Systems

APES integration, although technically possible at even closer levels than the ones 
used in the integration into the SEAMLESS integrated framework should, however, 
be approached with caution, providing users means to access and verify results of 
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any operation involving simulations, such as simulation per se or finalizing parameter 
calibration. This is not because of the component based structure of APES, but 
rather because complex systems are being simulated with process-based models. 
Automated optimization procedures in model chains may produce results which are 
meaningless in biophysical terms. Such simulation anomalies due to either 
inappropriate input data or even the misuse of the simulation model might be 
evident working with the biophysical system simulation alone, but a misuse of 
APES (or of any other process based system) in model chains may be very difficult 
to spot and could have an unpredictable impact on final results of the analysis. 
When included in a model chain, it is advisable to link APES simulations to 
other models asynchronously, allowing for simulation results to be evaluated by 
an analyst prior to using APES outputs as inputs for further processing.

The paragraph above is not meant to suggest that a complex simulation system 
should not be integrated in model chains such as the SEAMLESS integrated frame-
work. Instead, it is meant to stress the importance of implementing procedures to 
facilitate the evaluation of intermediate results, both by domain experts and via 
specific utilities.

Concluding Remarks

APES development represents a paradigm shift for two reasons. First, APES is not 
proposed as “the” model. Instead it stresses the need for broadening modelling 
approaches and for comparing them at a finer granularity than for whole simulation 
systems. Secondly, compared to the first modelling frameworks for overcoming the 
problems of monolithic models, APES moves the focus onto components and their 
re-usability outside APES itself, even as stand-alone entities. A somewhat surprising 
result emerged during the initial development of APES. Contrary to past experience 
when implementation of complex systems has often been the most challenging 
task, the major difficulty has turned out to be thinking in “modular”, “multiple 
choices”, “transparent” modelling terms. The goal of making models available as 
discrete, re-usable units aimed at including ideally one process in each basic model 
unit has forced us to thoroughly analyze assumptions and the independence of each 
model from others. In fact, developing model components, even with the requirements 
listed in the previous paragraphs, is a modest challenge in terms of implementation, 
but it forces us to formalize modelling knowledge and the problem of model linkage 
and re-use. Technology is expected to move more and more towards declarative 
modelling in an operational way. The work carried out in creating fine-granularity, 
discrete model units, encapsulating a semantically-rich description of interfaces, has 
involved discussing and advancing understanding of many aspects of model 
assumptions and structures, and will be of great help in that direction.

APES development during the SEAMLESS project has led to an increasing 
opportunity to concentrate on modelling options by re-using expertise in different 
domains. APES is offered as a complete simulation tool, but also, and of no less 
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importance, as a loose collection of model objects which allow the modelling 
knowledge that APES teams have assembled to be shared operationally. Utilities 
and applications are also available as independent objects for re-use. A third 
party may want to use a single component or an extended set of them. They will be 
fully documented and extensible so they can be easily used in custom-developed 
applications.

Web Resources

The APES portal: http://www.apesimulator.org
Component and applications documentation pages: http://www.apesimulator.org/
help/
APES ontology: http://www.apesimulator.org/OntologyBrowser.aspx
SEAMLESS EU integrated project: http://www.seamless-ip.org, partly continued 
in the SEAMLESS Association (www.seamlessassociation.org) 
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