
Enabling knowledge-based software engineering

through semantic-object-relational mappings

Ioannis N. Athanasiadis1, Ferdinando Villa2, and Andrea-Emilio Rizzoli1

1 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Lugano, Switzerland
{ioannis,andrea}@idsia.ch

2 Ecoinformatics Collaboratory, University of Vermont, Burlington, VT, USA
fvilla@uvm.edu

Abstract. Domain-specific conceptualizations specified as formal on-
tologies increase rapidly, as part of ongoing efforts for enabling the se-
mantic web. So far, experience has shown that semantic models and
their incarnations into OWL structures, though powerful for express-
ing complex abstractions, remain difficult to utilize in conventional soft-
ware projects. In this paper we present our work for coupling ontologies
with conventional domain-centric data models and object-relational per-
sistence. The Semantic Rich Development Architecture methodology is
specified for assisting the software developer to build-up enterprise appli-
cations, starting from a formal domain specification expressed in OWL,
which are transcribed into object-oriented software programming inter-
face model and relational database schema.

1 Introduction

Taking advantage of rich semantics expressed in OWL/RDF domain models
in developing software projects remains a major challenge in knowledge-based
software engineering. Linking object-oriented models with semantic models is
required, with the goal of providing benefits for the software development pro-
cess. However this linking is neither straight-forward, nor trivial, as semantic
modeling and object-oriented modelling employ different conceptualizations as
their building blocks for expressing domain models, as discussed in [1]. To give
an example, while in O-O models classes are considered as types for instances, in
OWL Classes are regarded as sets of individuals. Obviously, there is a mismatch
between individuals and objects, though they both serve similar purposes. The
alignment across specification languages is a challenging task, and towards this
direction drives the Ontology Definition Metamodel [2] that lays the base for
aligning UML models with OWL, DL and relational databases.

When Knublauch et.al [1] were presenting the Semantic Web Primer for
object-oriented software developers, where the structural difference between se-
mantic and object-oriented models are discussed, at the same time Ted Neward
on his blog was characterizing object-relational mapping as the “Vietnam of
Computer Science” [3]. Object-Relational Mapping (ORM) is a similar case
with semantic-object mapping, that aims to put together object-orientation and

In Proceedings of the 3rd International Workshop on Semantic Web Enabled Software Engineering,
4th European Semantic Web Conference, (Kendall, Elisa F. and others, Eds.), Innsbruck, Austria, Knowl-
edgeWeb, June 2007, pp.16-30.

2 I. N. Athanasiadis, F. Villa and A. E. Rizzoli

databases. In the case of ORM too, there are mismatches between the structural
blocks of the two modelling paradigms. For example, in Object-Oriented pro-
gramming (O-O), classes specify the characteristics (members) of object types,
and there is a clear ownership of the members by the class. In the contrary, in
Relational Database Schemes (RDBS) entities (tables) specify relations among
things characteristics (columns); attributes are spanned among several tables,
and there is a weak notion of “ownership”. Typically in relational database sys-
tems, ownership is reconstructed via querying.

There have been enormous efforts from the scientific and the industrial com-
munities to put together O-O and relational models, is order to facilitate the
software development process. It is very well known that these two modelling
practices don’t match to each other, however each one brings along its benefits,
required for enterprise application development. Using the developed mapping
languages for object-relational integration, developers today are enabled, either
to start from an O-O specification and inject a relational database for storing per-
manently their objects, or, in the vice versa, starting from a relational database,
to extract programming interfaces for manipulating their content. Though some
conventions have been introduced, that limit the freedom of the developers in
both levels, at the very end it is a good practice that benefits from the advantages
of both object programming and database technologies.

This paper, makes a step ahead, by presenting how a third layer can be in-
troduced on top of conventional object programming and relational database
models, in order to integrate semantic modeling into the software development
process. The expected benefit is to enable semantic-rich software development
and use of reasoning through description logics in enterprise applications. A
knowledge-based software engineering environment is specified, where seman-
tic models, object programming and relational databases are coupled smoothly
(again at a price of some limitations), in order for the developer to enjoy the
benefits of each technology: rich semantics and reasoning at the ontology layer,
procedural behavior and state management through object-oriented program-
ming and efficient permanent content storage in the database layer.

The rest of the paper is structured as follows; Section 2 summarizes related
work on linking ontologies and databases, and object-oriented programmatic
interfaces with ontologies. Based on these findings, we present in section 3 an
abstract knowledge-based software engineering architecture that consists of the
three aforementioned layers: semantic, object-oriented, and relational. Section 4
specifies how an ontology-based domain model can be transliterated to an object-
oriented model and a relational model. Our experiences using this methodology
are discussed in Section 5, and the main findings of this paper are summarized
in section 6.

2 Related work

Ontologies and database cross-disciplinary efforts have so far focused in two
directions: 1) persistent storage of newly created knowledge bases, and 2) popu-

Enabling knowledge-based software engineering 3

lating ontologies with instances initially stored in relational databases. Various
software tools and libraries exist to enable (1), e.g. Jena [4], Protégé [5] and
KAON [6]. All of these allow storing OWL/RDF content in databases, making
no difference between storage of OWL/RDF Classes and Individuals. Both the
conceptual specification and the actual content (i.e. instances) of a semantic
model are made persistent following a native ‘triple-store’ approach (i.e. in the
form of subject-predicate-object tables). This design choice is suitable for ac-
cessing and storing ontology-specified content and is optimal for reasoning on
the knowledge base [7]. Yet, it is quite inefficient for accessing and querying indi-
viduals following traditional database techniques and very cumbersome to build
enterprise software applications upon. However in the Semantic Web era, not
only reasoning on concepts will be necessary, but also reasoning at the instance
level and efficient instance retrieval [8]. Therefore, alternative kinds of OWL
instances storage that are optimized for indexing and retrieval are required.
Roldan Garcia and Aldana-Montes [8] propose alternative storage models based
on generated relational database schemata.

Tools are also available to populate ontologies with content from existing
databases. E.g, the D2R translator and server [9, 10] enables mapping an exist-
ing database schema to RDF structures, which can be made available through
a web server, and also supports querying. The Protégé DBOM plugin [11, 12]
can be used for the same purpose. The Dartgrid toolkit, which won the Best
Paper Award at the ”Semantic Web in Use” track at the 2006 International
Semantic Web Conference, is also worth mentioning. Dartgrid is an application
development framework including a set of semantic tools that facilitate the in-
tegration of heterogeneous relational databases using semantic web technologies
[13]. Finally, Musa-K is another ontology-mediated database querying platform
[14] that employs advanced semantics for integrating sparse data sources.

Several toolkits are available for translating OWL structures into Java classes
for supporting coding support for semantic applications, apart the ontology de-
velopment toolkits mentioned above. One of the first translators was the Protégé
Bean Generator [15], which transforms conventional frame-based Protégé ontolo-
gies into Java source code for developing JADE agents [16]. Also, Protégé-OWL
incorporates code generation plugins that export Java source code following the
Eclipse Modelling Framework (EMF), the Kazuki or the Java Beans conven-
tions; cf. [17]. RDFReactor [18] is a toolkit for dynamically accessing an RDF
model through domain-centric methods (getters and setters). A more sophisti-
cated approach was presented by Kalyanpur et.al. [19], that deals with issues as
multiple inheritance. However, both of them still store the generated instances
as triple-stores.

3 Towards a knowledge-based software engineering

architecture

In Knublauch’s vision of ontology-driven software development, [20], it is under-
lined that that runtime access to ontologies has advantages (related to the exe-

4 I. N. Athanasiadis, F. Villa and A. E. Rizzoli

Persistency Layer

DB Storage

EJB Business Layer Enterpise Applications

Knowledge Base Layer

(OWL-enabled)
Reasoner

Hibernate

Java reflection

E
n
ti
ty
-r
e
la
ti
o
n
s
h
ip

m
o
d
e
ll
in
g

O
b
je
c
t-
o
ri
e
n
te
d

m
o
d
e
ll
in
g

s
e
m
a
n
ti
c

m
o
d
e
ll
in
g

Fig. 1. The semantic-rich programming platform architecture

cution of reasoners), however it should be combined with object-oriented source
code generated from OWL, so that ontology-defined structures can be smoothly
integrated with object-oriented code. Going a step further, Knublauch envisions
a programming practice that instead of relying on UML defines the domain
model in OWL. Towards this direction drives the Semantic-Rich Development
Architecture (SeRiDA) presented here, that combines object-oriented program-
ming and relational databases, with semantic models. SeRiDA objective is to
synthesize pertinent tools for each task: OWL models for expressing rich seman-
tics and connecting to an external reasoner for logical operations, Enterprise Java
Beans for end-user application development, and normalized relational databases
for content persistence. These three layers can be combined all together in a
semantic-rich development architecture illustrated in Fig. 1.

The SeRiDA enterprise application development environment employs a con-
ventional object-oriented domain modelling practice, as Enterprise Java Beans
specifications [21], for developing server-client software modules. Data are stored
persistently in a relational database, through object-relational mapping, as for
example those provided by EJB 3.0 Persistence or Hibernate [22]. On top of
these two layers, a semantic layer is added that feeds the persistent objects into
a knowledge manager and through it to a reasoner for applying logical opera-
tions. In SeRiDA we identify two modes of operation explained below.

In the first mode, we start from the top level of semantic modeling. Let an
ontology be given, that specifies the conceptualization of a domain. Part of this
semantic model specifies the (concrete) concepts involved, and can be trans-
lated into data structures and entities specifications, while a second part defines
the logics that pertains to these concepts. Using some conventions presented in
the following section, from an ontology-specification, we can derive to an object
model, that can be used for programming enterprise applications, which in turn
can be mapped into a relational storage. This means that based on the struc-
tures defined in the domain ontology, we can generate both the programming

Enabling knowledge-based software engineering 5

interface source code and a persistence storage in a database. Having generated
both the programming interface and the relational schema, the platform enables
a semantic-rich framework for software development, employs OWL instead of
UML and turns out with a object oriented domain model and a database schema
for adding behavior to individuals, storing then in relational databases and de-
veloping client applications.

In the second mode, by keeping track of the original OWL Classes used
for generating the programming interface, we can connect the Java objects at
runtime back to the semantic layer (e.g. through Java reflection) and apply a
reasoner on them. So for example, we can classify an object of a generated Java
class according to logical definitions that were not present when source code
was generated. In this way, logical specifications of classifications specified in a
domain ontology using description logics can be considered as an upper layer for
storing part of the business intelligence that can be updated at runtime, without
affecting the conventional APIs for software coding and application development.

The main expected benefit from the SeRiDA architecture is to enable semantic-
rich operations. Then comes the added value of using standard APIs for end-user
application development. End-user applications can be smoothly integrated with
industrial standard technologies, that do not need to be modified for enabling
semantic rich computing. Client applications can be developed on top of the O-O
layer, without any transition costs. Similarly, legacy data storages do not need
any additional effort for becoming available in a semantic aware applications (for
example to be “triplized”), apart from the conventional object-relational map-
ping that that is an accepted industrial standard procedure. However, there is a
price to be paid by using this architecture. The major limitation is that, we keep
detached ontology classes from individuals. This implies that a reasoner can be
used for unidirectional inferences (from individuals to classes). For example, we
can query the reasoner for the logical definitions satisfied by a certain individ-
ual, rather than asking for all inferred individuals of a certain class. Though the
latter is not prohibited by this architecture, it is definitely a costly operation
which a native “triplestore” storage should be preferred in large scale projects.
On the contrary, we benefit from a handy object-oriented domain model, that
can be used directly for enterprise application development.

4 Aligning Semantic-Object-Relational models

Though it is known that the notion of an individual in an ontology is semantically
different from the definition of a class instance in object-oriented programming
[19], and a tuple in a relation, we have pointed out the added value of using
standard APIs for end-user application development. Here we show how from
an OWL ontology we may generate a programming interface using Enterprise
Java Beans with Hibernate object-relational mappings for database persistence,
while taking into account important aspects of OWL as inverse properties and
anonymous classes. The approach introduced below is presented in alignment

6 I. N. Athanasiadis, F. Villa and A. E. Rizzoli

with the object-relational mapping specifications as adopted by EJB 3.0 [21]
and realized by Hibernate [22,?].

4.1 From OWL Classes to Java Classes and Entities

An OWL Class specifies both the structural features of a concept and the logical
constraints that it should respect. Therefore, in a persistent storage of individuals
it is not required to accommodate all classes in an ontology, rather those that
define the structural extensions. It is quite common to have OWL classes that
do not assign additional data properties to their parent class, but only specify
restrictions. These classes are mainly intended for defining classifications for
categorizing the instances of the father class. Similarly, we may have a class that
inherits more than two classes, i.e. simply defining a union of several ancestors.
Such union classes include the anonymous classes used to define owl:Property
domains and ranges. Both these ontology class patterns are consider part of the
“business” logic of the ontology, and do not contribute axioms of relevance to
the concrete classes and the relational model.

We consider eligible for persistent storage only those non-anonymous OWL
classes that contribute with additional attribute specifications in the class inher-
itance. Each of these classes extend the structural specification of the semantic
model and is considered to represent an entity in the relational model, which
ultimately can be assigned to a database table. To give an example, for an OWL
Class cs:Person defined as <owl:Class id="cs:Person"> a unique relation
is defined for persisting its instances: csPerson=(id), where id is the unique
identifier of each stored instance, therefore a primary key of table csPerson.
Along with this table comes an Entity Java Bean class that contains a single
member: the id. Both the Entity class Person, and table csPerson will be ex-
tended with attributes and relations that derive from the OWL Properties of
Class cs:Person.

By introducing the persistence layer, we overcome the obstacle of the “identify-
ability” of the objects, which was pointed out in [1]. In contrary with conventional
objects, where class instances reside only in memory, and are no longer available
after the code execution, using a persistent storage in SeRiDA, objects are stored
permanently in a database that assigns a unique identifier (the id). Therefore,
instances are traceable in the long run through a unique URI that combines the
database with the table and the id. For example it could be something like the
following URI: jbdc:postgresql://someserver/Database#csPerson:12).

Next comes the transliteration of OWL properties into entity attributes and
Java Class members. Properties in OWL can be (a) Literal properties and (b)
Object properties. Literal properties (defined through owl:DatatypeProperty)
define data attributes of an entity, while object properties (owl:ObjectProperty)
assign relations among tables. In the following we present how OWL properties
can be mapped to table attributes and relations, with respect to OWL specific
features as inverse properties, that will be discussed in par. 4.3.

Enabling knowledge-based software engineering 7

4.2 Literal properties

Literal properties simply specify data type attributes of an entity, which can
be easily transformed among the three layers. For example a literal of type
&xsd;string in OWL, defines a member of type String in a concrete class, or
a VARCHAR attribute of an entity. ODM provides with such a full list of these
alignments.

We identify two cases, depending on the cardinality constraint of the prop-
erty. Note that there in OWL there are two ways of specifying the cardinality
constraint of a property, as OWL properties are primal structures, independent
from OWL classes. The cardinality can be defined universally at the OWL Prop-
erty level, by assigning it to be a functional or non-functional property. Or it
can be specified at the class level, having a cardinality constraint attached to
the OWL class. In the followings functional and single-cardinality properties are
treated in the same way, as in object-oriented programming properties are owned
by classes.

I-a: Functional or single-cardinality literal property. A literal property with a
maximum cardinality restriction equal to one defines a unary attribute within
the relation of the entity (i.e. the table of the OWL Class). Following the above
example of class cs:Person, the functional property called cs:name:

<owl:DatatypeProperty rdf:ID="name">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

is assigned as an attribute to the Person relation:
csPerson=(id,name).

The specified JavaBean would look as the following one, exposing a member
name of type String.

getID()
setID(Long id)
getName()
setName(String name)

Long id
String name

Person

I-b: Multiple cardinality literal property. A literal property of multiple cardinality
identifies a multi-valued attribute of an entity, dependent only upon the primary
key. Multi-valued attributes in normalized database systems are implemented is
separate tables as associate entities, through an one-to-many relationship. In
the cs:Person example, lets include a literal property cs:phone (without any
additional cardinality constraints) as:

<owl:DatatypeProperty rdf:ID="phone">

<rdfs:domain rdf:resource="#Person"/>

8 I. N. Athanasiadis, F. Villa and A. E. Rizzoli

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

In this case, an associated table is needed for storing the list of phones of
each person through an one-to-many relationship.

csPerson=(id,name)

csPerson phone=(id,phone), fkey: id=csPerson.id

At the programming level the phones of a person will be accessed through
the phones member, which is a set of integers, as in the the following JavaBean:

Person

getID()
setID(Long id)
getPhone()
setPhone(Set<Integer> name)

Long id
Set<Integer> phone

4.3 Object properties

OWL object properties specify relationships among OWL classes, which can
be translated into relationships between entities in the relational schema. We
identify two kinds for object properties in OWL, based on whether there is an
inverse property defined or not. The issue of being or not an inverse property
emerges, as the in object-oriented programming properties are owned by classes,
and the updating of inverse relations need to be specified in the source code. Also,
note that there is a semantic difference in the definition of a functional property
in OWL and in relational databases: in OWL, a functional property implies
a universal (cross-concept) cardinality constraint equal to one. In a relational
database, a functional field implies that a value is required for each tuple (i.e
should not be null). In the following, we consider functional OWL properties as
properties with a singular cardinality constraint.

Non-inverse object properties

II-a Non-inverse functional (singular cardinality) object property. An non-inverse
functional of singular cardinality object property can be translated as one-to-one
unidirectional relationship, which is added as an attribute in the owning entity.
For example, let cs:Person have a functional property birthplace with range
of type cs:Location, as shown below:

<owl:ObjectProperty rdf:ID="birthplace">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Location"/>

</owl:ObjectProperty>

Enabling knowledge-based software engineering 9

This property can be stored in a relational schema as:

csPerson =(id,birthplace) fkey:birthplace=csLocation.id

csLocation=(id,...)

Using the Person JavaBean shown below, the birthplace property can be
accessed as:

getI
setI
getBirthplace()
setBirthpalce(Location birthplace)

Long id
Location birthplace

Person

getID()
setID(Long id)

Long id
Location

II-b Non-inverse object property. In this case, an non-inverse multi-cardinality
object property defines a many-to-many unidirectional relationship between two
entities. For example, an object property hasAddressmay associate each cs:Person

class to several cs:Address classes (we assume here that the cs:Address is not
aware of its inhabitants).

<owl:ObjectProperty rdf:ID="hasAddress">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Address"/>

</owl:ObjectProperty>

In a normalized database, this relation can be implemented using an inter-
mediate relationship table, as:

csPerson =(id,...)

csAddress=(id,...)

csPerson hasAddresses=(person,address) fkey: person=csPerson.id,

address=csAddress.id.

These tables are accessible through Hibernate using the Person and Location

JavaBeans:

getID()
setID(Long id)
getAddresses()
setAddresses(Set<Address> addresses)

Long id
Set<Address> addresses

P

getID()
setID(Long id)

Long id
Address

Inverse object properties

Using the owl:inverse-of declaration we can specify relationships among
OWL classes, that are bi-directional, i.e. can be accessed by both entities in-
volved. This does have an impact on the schema of the database, has impli-
cation on the cascading of commands, as delete, insert and so on, and for the
programming interface. Here we identify three kinds of relationships:

10 I. N. Athanasiadis, F. Villa and A. E. Rizzoli

II-c Functional (singular cardinality) property inverse of a functional (singular
cardinality) property. specifies an one-to-one bidirectional association. This can
be implemented similarly with one-to-one unidirectional association in the DB
level. However now it specifies one property in each Java class, i.e. there are two
entry-points to this piece of information. To give an example, let’s imagine that
each cs:Person is able to own up to one Cat. We specify two properties cs:owns
and cs:hasOwner, as:

<owl:ObjectProperty rdf:ID="owns">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Cat"/>

<owl:inverseOf rdf:resource="#hasOwner"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOwner">

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

<rdfs:domain rdf:resource="#Cat"/>

<rdfs:range rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#owns"/>

</owl:ObjectProperty>

In this example,the owl:FunctionalProperty construct is used for OWL
code simplicity, instead of a cardinality constraint. The content of both cs:owns

and cs:hasOwner properties can be peristed as an extra attribute of any of the
two entities, as:

csPerson =(id,...)

csCat=(id,person,...) fkey: person=csPerson.id

Or alternatively can be realized as an associate entity table which has as a
primary key a unique combination of person and cat ids.

csPerson =(id,...)

csCat=(id,...)

csPerson owns=(person,cat) fkey: person=csPerson.id

cat=csCat.id

Either of the two equivalents is the DB schema, the Person JavaBean will
have a member called owns that will refer to a Cat object and the vice versa, as:

getID()
setID(Long id)
getOwns()
setOwns(Cat cat)

Long id
Cat owns

P

getID()
setID(Long id)
getOwner()
setOwner(Person person)

Long id
Person owner

Cat

Enabling knowledge-based software engineering 11

II-d Functional (singular cardinality) property inverse of a non-functional prop-
erty. It specifies a bi-directional one-to-many relationship, that can be imple-
mented with an associate entity table, which has a primary key only the id of
the entity at the singular side of the relationship.

In the same example as in the previous case, let’s allow each cs:Person to
own several cats, while each cs:Cat has only one owner. In OWL this relationship
is expressed as:

<owl:ObjectProperty rdf:ID="owns">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Cat"/>

<owl:inverseOf rdf:resource="#hasOwner"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOwner">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Cat"/>

<rdfs:range rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#owns"/>

</owl:ObjectProperty>

In a relational schema we need have an associate entity table to store this
relation that has as primary key only person=csPerson.id, for expressing an
one-to-many relationship as:

csPerson =(id,...)

csCat=(id,...)

csPerson owns=(person,cat) fkey: person=csPerson.id

cat=csCat.id

In the object-oriented layer level, the Person class has an member owns that
refers to a set of Cat objects, and the Cat class has a member owner of type
Person.

getID()
setID(Long id)
getOwns()
setOwns(Set<Cat> cat)

Long id
Set<Cat> owns

Person

getID()
setID(Long id)
getOwner()
setOwner(Person person)

Long id
Person owner

Cat

II-e Object property inverse of a object property. In the generic case that there
are not any cardinality restrictions present, two inverse object properties define
a many-to-many bidirectional relationship. Following the previous example of
Person and Cats, lets assume that a Person may own many Cats and a Cat
could have several owners. This is expressed in OWL as:

<owl:ObjectProperty rdf:ID="owns">

<rdfs:domain rdf:resource="#Person"/>

12 I. N. Athanasiadis, F. Villa and A. E. Rizzoli

<rdfs:range rdf:resource="#Cat"/>

<owl:inverseOf rdf:resource="#hasOwner"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOwner">

<rdfs:domain rdf:resource="#Cat"/>

<rdfs:range rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#owns"/>

</owl:ObjectProperty>

The many-to-many relationship is stored in a normalized database through an
associate entity table that has foreign key references to both person=csPerson.id

and cat=csCat.id, as:

csPerson =(id,...)

csCat=(id,...)

csPerson owns=(id,person,cat) fkey: person=csPerson.id

cat=csCat.id

Finally, through object-relational mapping these tables can be accessed by
Person and Cat JavaBeans that expose the members Set<Cat> and Set<Cat>

respectively.

getID()
setID(Long id)
getOwns()
setOwns(Set<Cat> cat)

Long id
Set<Cat> owns

Person

getID()
setID(Long id)
getOwner()
setOwner(Set<Person> person)

Long id
Set<Person> owner

Cat

5 Implementation with EJB 3.0 and Hibernate

5.1 Inheritance and classifications

Another very important issue that OWL conceptualizations, programming do-
main models and relational databases do not fit together is the issue of inher-
itance and association. Current software development practice favors composi-
tion versus inheritance, for enabling software maintenance, code extensibility
and reuse. On the contrary, in OWL, and especially OWL-DL, inheritance is
preferred for favoring logical operations. Also, in object-oriented modelling in-
heritance through subclassing is restricted to one ancestor, while OWL allows
multiple ancestors. This obstacle can be overcome at the object-oriented layer
by implementing IS-A kind of relations by using Java interfaces (as each java
class can implement several interfaces).

The relational model does not support any sort of polymorphism [3]. In
object-relational mapping standards [21,?], object inheritance is mapped in three
ways: (a) through a single table, that contains the attributes of all subclasses,

Enabling knowledge-based software engineering 13

(b) using join tables for each class, where the ancestor attributes are stored in
a single table for all entities, and (c) by assigning one table per class, where
each entity duplicates the common attributes. In each approach there are pros
and cons, that have been discussed in detail in the object-relational mapping
community. In the SeRiDA framework, all three options are enabled, as this
feature depends on the ORM strategy suitable for each application. This choice
has no impact on the the framework, as it accesses the content through the
persistent objects.

5.2 Source code and Object-relational mapping generation

Using the conventions detailed above, we implemented a software tool that start-
ing from an OWL ontology generates the Entity Beans following the 3.0 En-
terprise Java Beans specifications [21]. Also for each entity, a Hibernate object-
relational mapping is generated using the aforementioned conventions. Code gen-
erations is performed through an one pass traversing through the OWL graph,
where each OWL class is visited only once. For persisting a single OWL class
in the database, all the Classes associated through object properties have to be
mapped as well.

In our implementation we favoured the Hibernate option for specifying the
object-relational mappings using XML instead of EJB annotations, as this pro-
vides a clear separation between the relational and the object-oriented layers,
and allows the potential of adapting the ORM mappings to existing DBs without
changing the Java code.

These issues are documented in the prototype that will become available on
the Internet3. The translator is a plugin for the integrated knowledge manage-
ment toolkit ThinkLab4, which provides a simplified interface for programming
with Protege and Jena packages. A future version of the translator may be de-
veloped as a Protege plugin.

5.3 Experinces with SeRiDA methodology

The SeRiDA methodology is currently evaluated in the software development
life-cycle of the Seamless-IP EU-funded project. Seamless-IP project aims to
link agronomic models and environmental data across scales and disciplines,
through the Seamframe framework [23]. In Seamframe, several environmental
models are required to be linked together, each one of which exposes its domain
conceptualizations using ontologies. On top of this framework a client-server end-
user application is being developed using Abode Flex for enabling the end users
to parametrize models and visualize results. Our experiences in this context are
encouraging, as in the agile application development process is has improved
significantly through the generation of the Enterprise Java Beans and object-
relational mappings sources. Also we experienced the advantages of having a

3 http://imt.svn.sourceforge.net/svnroot/imt/Thinklab/
4 http://www.integratedmodelling.org

14 I. N. Athanasiadis, F. Villa and A. E. Rizzoli

single entry point to the data types specification of the application, i.e. the
ontologies, that fosters the collaboration of people with different backgrounds
(database experts, programmers, environmental modellers). A demonstration
applied in modelling farming systems and management alternatives of a farm
household is also presented in [24].

6 Discussion

In this paper we specified a methodology, called SeRiDA, for enabling a three-tier
mapping along ontologies, object-oriented Java beans and relational databases.
Though there are certain limitations, due to the conceptual mismatches among
the three modeling paradigms, there a certain advantages for the software devel-
opment process that can benefit from adding a semantic layer on top of the exist-
ing object-relational architectures. Through the methodology presented, starting
from a domain conceptualization expressed in OWL both the object-oriented and
the relational models can be derived, as semantic models are richer, containing
all the information required for such an activity. Also, we have implemented a
prototype that generates programming interfaces as Enterprise Java Beans and
Hibernate object-relational mappings from OWL ontologies, and we are currently
using it for the supporting the software life-cycle in the Seamless-IP European
Project. Future efforts will concentrate on issues related to performance testing
of the SeRiDA architecture in a large-scale, data intensive application, as that
one of Seamless-IP.

Acknowledgements Authors would like to thank David Huber (AntOptima
SA) for his comments related to the practical applications of this work. This pub-
lication has been partially funded by the EU 6th FP IP SEAMLESS (SUSTDEV-
10036), and the NSF award DBI-0640837 (ARIES). Also we express our gratitude
to the two anonymous reviewer for their valuable comments.

References

1. Knublauch, H., Oberle, D., Tetlow, P., Wallace, E., Pan, J.Z., Uschold, M.: A
semantic web primer for object-oriented software developers. W3C Working group
note, W3C (2006)

2. OMG: Ontology definition metamodel OMG Document ad/2005-08-01, OMG
(2005)

3. Neward, T.: The vietnam of computer science. Blog post, The Blog Ride, (2006)
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

4. McBride, B.: Jena: A semantic web toolkit. IEEE Internet Computing 6(6) (2002)
55–59

5. Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C.: A practical guide
to building owl ontologies using the Protégé-OWL plugin and CO-ODE tools.
Online tutorial, The University Of Manchester and Stanford University (2004)

6. KAON: The Karlsruhe ontology and semantic web framework developer’s guide
for kaon 1.2.7. Technical report, University of Karlsruhe, Germany (2004)

Enabling knowledge-based software engineering 15

7. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient rdf storage and re-
trieval in Jena2. In: VLDB Workshop on Semantic Web and Databases. (2003)
131–150

8. Roldan Garcia, M.d.M., Aldana-Montes, J.F.: A tool for storing owl using database
technology. In Grau, B.C., Horrocks, I., Parsia, B., Patel-Schneider, P., eds.: First
Int’l Workshop on OWL Experiences and Directions, Galway, Ireland (2005)

9. Bizer, C.: D2R map: A database to RDF mapping language. In: Twelfth Interna-
tional World Wide Web Conference (WWW2003), Budapest, Hungary (2003)

10. Bizer, C., Cyganiak, R.: D2R-server:publishing relational databases on the web
as SPARQL-endpoints. In: 15th International World Wide Web Conference
(WWW2006), Edinburgh, UK (2006)

11. Curé, O., Squelbut, R.: Semantic mapping to synchronize data and knowledge
bases at the instance level. In: European Semantic Web Conference. (2006)

12. Squelbut, R., Curé, O.: Integrating data into an owl knowledge base via the dbom
protege plug-in. In: 8th Intl. Protégé Conference. (2006)

13. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.:
Towards a semantic web of relational databases: A practical semantic toolkit and
an in-use case from traditional chinese medicine. In Cruz, I.F., et.al, eds.: 5th In-
ternational Semantic Web Conference. Lecture Notes in Computer Science (4273),
Springer (2006) 750–763

14. Moreno, N., Navas, I., Aldana, J.: Putting the semantic web to work with db
technology. IEEE Technical Committee on Data Engineering Bull. 26(4) (2003)
49–54

15. van Aart, C., Pels, R., Caire, G., Bergenti, F.: Creating and using ontologies in
agent communication. In Cranefield, S., et.al, eds.: Ontologies in Agent Systems,
AAMAS, Bologna, Italy (2002)

16. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE-A white paper. EXP in
search of innovation 3(3) (2003) 6–19

17. Sharma, D.K., Johnson, T.M., Solbrig, H.R., Chute, C.G.: Transformation of
protégé ontologies into the eclipse modeling framework: A practical use case based
on the foundational model of anatomy. In: 8th Intl. Protégé Conference, Madrid,
Spain (2005)

18. Völkel, M.: RDFReactor - from ontologies to programmatic data access. In: Inter-
national Semantic Web Conference (ISWC). (2005)

19. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.: Automatic mapping of owl
ontologies into java. In: 16th Int’l Conference on Software Engineering and Knowl-
edge Engineering, Banff, Canada (June 2004)

20. Knublauch, H.: Ramblings on agile methodologies and ontology-driven software
development. In: Workshop on Semantic Web Enabled Software Engineering, In-
ternational Semantic Web Conference, Galway, Ireland (2005)

21. DeMichiel, L., et al.: Enterprise javabeans 3.0 specifications. JSR 220, JCP (2006)
22. JBoss: Hibernate reference documentation. Online documentation, JBoss (2006)
23. Rizzoli, A., Athanasiadis, I., Donatelli, M., Huber, D., Muetzelfeldt, R., van Evert,

F., van den Broek, M., van der Wal, M., Villa, F.: Overall architectural design of
SeamFrame. SEAMLESS-IP Report 7, (2005)

24. Athanasiadis, I.N., Janssen, S., Huber, D., Rizzoli, A.E., van Ittersum, M.: Seman-
tic modelling in farming systems researchInformation Technology in Environmental
Engineering, Springer-Verlag (2007) 417–432

