
 
 

 

  

Abstract—Accurate and on-line decision-making is required 
by decision support systems including those ones used for envi-
ronmental information management. This paper focuses on air 
quality assessment and demonstrates the added value of apply-
ing data mining techniques in operational decision-making. 
More specifically, the application of Fuzzy Lattice Reasoning 
(FLR) classifier is investigated. An enhanced FLR learning 
algorithm is presented that employs a sigmoid valuation func-
tion for introducing tunable non-linearities. The FLR classifier 
is applied here beyond the unit-hypercube. The FLR with a 
sigmoid positive valuation function demonstrates an improved 
performance on a dataset from the region of Valencia, Spain 
regarding an environmental problem. Descriptive decision-
making knowledge (i.e. rules) for classification is also induced. 
 
 

I. INTRODUCTION 
MBIENT AIR QUALITY assessment and management is 
characterized by both complexity and uncertainty 

mainly due to the difficulties of atmospheric chemistry and 
physics and the stochastic processes involved in air pollutant 
generation. These boundaries raise the major obstacles in 
building simple models capable for dependable prediction. 
In most cases, decision making relies on human expertise 
and experience, as analytical models are too complex and 
slow for operational decision support. Legislation in Europe 
and the US define environmental quality indicators, which 
could be communicated to the public on-time (or even in 
advance) for informing population about air quality, espe-
cially in urban areas.   

As a consequence, simple, yet dependable prediction 
models are required for achieving both the requirements of 
accurate air quality assessment and capabilities for fast deci-
sion making (in contrast with the analytical complex mod-
els). These properties can be realized by learning from data, 
using knowledge discovery techniques [1], [2]. In this con-
text, quantitative data-driven decision support models are 
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challenged by difficulties in handling dynamic and uncertain 
real-world environments. 

This paper tackles the problem of operational decision 
support in air quality assessment by utilizing a machine 
learning approach. Specifically, the Fuzzy Lattice Reasoning 
(FLR) classifier is presented here and used for prediction of 
ozone pollutant concentration levels, in a rural area in Va-
lencia, Spain. A simplified version of the FLR classifier has 
been presented previously implemented as a neural network, 
namely σ-FLN [6], [7]. This work focuses on the ‘learning 
algorithm’ rather than on a specific implementation. An ad-
ditional novelty here is the employment of a non-linear posi-
tive valuation function. Finally, a real world application is 
demonstrated regarding an environmental air quality as-
sessment. The proposed methods produce better results 
comparatively. 

 

II. MATHEMATICAL BACKGROUND 
This section summarizes briefly the required mathematics. 
A lattice L is a partially ordered set (poset), so that any two 
of its elements a,b∈L have both a greatest lower bound (or 
meet) denoted by a∧b:=inf{a,b} and a least upper bound (or 
join) denoted by a∨b:=sup{a,b}. A lattice L is called 
complete when each of its subsets has both a least upper 
bound and a greatest lower bound in L. A non-void complete 
lattice has a least element and a greatest element denoted by 
O and I, respectively. 

The Cartesian product L= L1×…×LN of N constituent lat-
tices L1,…,LN is a lattice [1]. In a product lattice L= 
L1×…×LN inclusion can be defined as: 
(x1,…xN) ≤ (y1,…,yN) if and only if x1 ≤ y1,…, xN ≤ yN. 

The meet in a product lattice L= L1×…×LN is given by 
(x1,…xN)∧( y1,…,yN)= (x1∧y1,…,xN∧yN), whereas the join in 
L is given by  
(x1,…xN)∨( y1,…,yN)= (x1∨y1,…,xN∨yN) [1], [4]. 

A product lattice could combine diverse constituent 
lattices thus implying the potential to deal either separately 
and/or jointly, in any combination, with disparate types of 
data such as vectors of real numbers, propositions, (fuzzy) 
sets, events in a probability space, symbols, graphs, etc. 

A fuzzy lattice is a pair 〈L,µ〉, where L is a lattice and 
(L×L,µ) is a fuzzy set with membership function 
µ: L×L→[0,1] such that µ(a,b) = 1 if and only if a≤b [6]. 

A valuation function v: L → R is defined on a lattice L as 
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a real function that satisfies: v(a)+v(b) = v(a∧b)+v(a∨b), 
a,b∈L. A valuation function, is called positive if and only if 
a<b ⇒ v(a)<v(b) [4]. A positive valuation function has been 
used in previous works for defining an inclusion measure 
(σ) in a complete lattice L.  

In general, an inclusion measure on a lattice L is defined 
as a real function σ: L×L→[0,1], such that for each a,b,x∈L 
the following conditions are satisfied: 
σ(a,O) = 0, a≠O (C0) 
σ(a,a) = 1, ∀a∈L (C1) 
a ≤ b ⇒ σ(x,a) ≤ σ(x,b)  −  Consistency Property (C2) 
a∧b < a ⇒ σ(a,b) < 1. (C3) 

Condition (C0) is required only for complete lattices. 
Given a lattice L and an inclusion measure σ: L×L→[0,1] it 
turns out that 〈L,σ〉 is a fuzzy lattice.  

Another useful tool implied by a positive valuation in a 
general lattice L is a metric distance function d: L×L→R 
defined as d(x,y)= v(x∨y)-v(x∧y).  

A positive valuation function v: L→R in a lattice L, with 
v(O)=0, is a sufficient condition for two inclusion measures: 

k(a,b)= 
)(

)(
bav

bv
∨

, and (IM1) 

s(a,b)= 
)(

)(
av

bav ∧ . (IM2) 

Ultimately, given a lattice L, for which a positive valua-
tion function v: L→R can be defined, both 〈L,k〉 and 〈L,s〉  
are fuzzy lattices.  

The set of fuzzy lattices 〈L,µ〉 is called framework of fuzzy 
lattices [6]. The framework of fuzzy lattices has been used 
for decision-making in various applications [5]–[9]. This 
paper approaches the fuzzy lattice framework from a rule-
based perspective presented below. 

 
 

III. FUZZY LATTICE REASONING (FLR) CLASSIFIER 
Many data structures of practical interest are lattice ordered. 
The objective here is to present a classifier for inducing a 
rule-based inference engine from data. 

A fuzzy lattice rule is a pair 〈a,c〉 where a is an element in 
a fuzzy lattice 〈L,µ〉 and c∈C is a categorical label. In this 
sense, a fuzzy lattice rule can be interpreted as the mapping 
a→c of a fuzzy lattice 〈L,µ〉 element a to a categorical label 
c.  

Let a and b be two lattice L elements, and function k, as 
defined in (IM1) be a fuzzy membership function in L×L. 
The degree of truth of the fuzzy lattice rule a→c against an 
evidence (antecedent) b is: 

µ(b,a) = k(b,a) = 
)(

)(
abv

av
∨

. 

A fuzzy lattice rule engine E〈L,µ〉 can be thought of as a set 
of fuzzy lattice rules {ai→ci: ai∈〈L,µ〉}, that are commonly 

activated.  Reasoning with a fuzzy lattice rule engine implies 
the calculation of the degree of truth for each one of en-
gine’s rules. For example consider the following engine that 
consists of three rules: 
E〈L,σ〉 ={a1→c1, a2→c2, a3→c3},  
where a1, a2, a3, are elements of the fuzzy lattice 〈L,σ〉. 
In response to an input element a0, the engine will compute 
the following degrees of truth for each consequence: 
c1 = σ(a0, a1), c2 = σ(a0, a2), and c3 = σ(a0, a3). In this way, a 
fuzzy lattice reasoning engine can be used for generaliza-
tion. 

A. Fuzzy Lattice Rule induction (FLR classifier) 
The task of inducing a fuzzy lattice rule engine is described 
as follows: Let M be a training set of partially ordered ob-
jects {u1, u2, …, uM}⊆U, each one of which is associated 
with a class label c∈C, where C={c1, c2, …, cK} is a set of K 
predefined labels (classes). The objective is to induce a set 
of fuzzy lattice rules that implement a function h:U→C, the 
latter associates an object u∈U to a classification label c∈C.  

In general, the universe U of the training objects can in-
clude any type of complex data structures, as vectors of real 
numbers, graphs or sets. We are interested in applications 
where U is a lattice. Given a positive valuation function v: 
U→R, an inclusion measure σ: U×U→[0,1] can be defined 
in U, as shown above, for implying a fuzzy membership 
function µ: U×U→[0,1]. In this respect, 〈U,µ〉 is a fuzzy 
lattice. The classifier to be built is equivalent to a map h’: 
〈U,µ〉→C, which is a set of fuzzy lattice rules. 

Each object u of the training set is an element of U and 
each training pair 〈u,c〉 can be expressed as a fuzzy lattice 
rule 〈u,c〉, where u is an element of the fuzzy lattice 〈U,µ〉 
and c is the corresponding class. This means that the in-
stances of a training set could be treated as fuzzy lattice 
rules. For example consider the simple case where the uni-
verse of the training instances is a closed interval of real 
numbers [O,I]. Then any training pair (x,c) where x∈[O,I] 
and c∈C can be expressed as a fuzzy lattice rule consisted 
from a trivial point lattice mapping it to class c, i.e. 〈x,c〉 ≡ 
〈[x,x],c〉. Likewise for alternative universes of discourse.  

A naive fuzzy lattice rule classifier that can be induced di-
rectly from a set of M training pairs {(u1,c1), …, (uM,cM)}, 
ui∈U, and ci∈C, is the one that memorizes all training in-
stances as fuzzy lattice rules. Given a positive valuation 
function v, each training element ui is an element of the 
fuzzy lattice 〈U,σ〉, where σ is an inclusion measure defined 
by either (IM1) or (IM2). In this way, the most simple fuzzy 
lattice rule engine will consist at most of M (trivial) rules 
and will be: 
E ={u1→c1, …, ui→ci, …, uM→cM},  
where u∈〈U,σ〉 and ci∈C. 

The training process for inducing a fuzzy lattice rule en-
gine is based on joining ‘similar’ lattice rules pointing  
to the same class for formulating lattice rules of higher  size,  
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BOX 1.  
THE INDUCTION OF A FUZZY LATTICE REASONING CLASSIFIER 

Step-0: Let E〈L,σ〉={a1→c1,…, aR→cR} be a fuzzy lattice 
rule engine. 

 
Note that E〈L,σ〉 could initially be empty, i.e. R=0. 
Step-1: Present the next training pair (u,c), in the form 

of a fuzzy lattice rule u→c to the initially “set” 
rules in E〈L,σ〉. 

Step-2: If no more rules in E are “set” then: 
 Include input rule u→c in E; 
 R←R+1; 
 Go to Step-1. 
 Else, compute the fuzzy degree of inclusion 

σ(u≤ar), l∈{1,…,R} of antecedent u to the an-
tecedents of all the “set” rules in E〈L,σ〉. 

Step-3: Competition among the “set” rules in E〈L,σ〉. 
Winner is the rule aJ→cJ, where J= 
arg

R}{1,
max

K∈r
σ(u≤ar). 

Step-4: The Assimilation Condition: Test whether both 
diag(u∨aJ) is less than a maximum user-defined 
threshold size Dcrit and c = cJ. 

Step-5: If the assimilation condition is satisfied then re-
place the antecedent aJ of the winner rule aJ→cJ 
by the join-lattice u∨aJ, i.e. with the rule 
u∨aJ→cJ.  
Else, “reset” the winner rule aJ→cJ, and go to 
Step-2. 

 
 

 
 
 
and potentially higher ability for generalization. A ‘similar-
ity’ is computed in an inclusion measure sense. The training 
procedure for inducing a rule engine E〈L,σ〉 is accomplished in 
a single iteration over all training instances as shown in Box 
1. 

Previous work has employed for tuning the dimensionless 
vigilance parameter: 

ρcrit= 
critDN

N
+

 ⇔ Dcrit= 
crit

critN
ρ

ρ )1( −
  

instead of Dcrit. Note that ρcrit varies in the interval [0.5,1] for 
any number of dimensions N as shown in [6]. In the 
experiments below ρcrit has been employed. 

The decision making process (testing phase) of an in-
duced fuzzy rule engine E〈L,σ〉 of size R, involves 
competition of its rules over an evidence (antecedent) x∈U, 
of unknown label. In an iterative process, the element x is 
presented to each rule of the engine: ar→cr, and the inclu-
sion measure σ(x,ar) is calculated. Finally, x is assigned to 
the category cJ, where J = arg

R}{1,
max

K∈r
σ(x≤ar). 

In principal, the Fuzzy Lattice Reasoning (FLR) classifier 
can be applied on any universe of partially ordered objects, 
as that of ℜN, graphs or sets. Note that a similar lattice algo-
rithm, namely Find-S algorithm, has been presented in a 
machine learning context (Mitchell 1997) but without an 
employment of positive valuation functions. 

 
 

B. FLR classifier with a sigmoid valuation function 
The application of a FLR classifier depends on an appropri-
ate valuation function in U, which is used to compute an 
inclusion measure such as those defined in (IM1), (IM2). 
This remark holds also for other decision making schemes 
built upon the framework of fuzzy lattices that map data to 
lattices. Typically, prior works [5]–[10] have focused in 
forming fuzzy lattices from numerical datasets by employing 
linear valuation functions. In cases that data reside in the N–
dimensional unit hypercube IN=[0,1]×[0,1]× …×[0,1], the 
positive valuation function selected for each consistuent 
lattice is the simple function vi(x)=x. In other cases, where 
data reside in ℜN the training dataset can be formulated as 
T=[O1,I1]×[O2,I2]× …×[ON,IN],  and the positive valuation 
function for each constituent lattice is vi(x)= (x–O)/(I–O), 
which linearly scales T to the N–dimensional unit hupercube 
IN. 
In this paper, both linear and non-linear positive valuation 
functions are considered for applying the FLR classifier on a 
numerical dataset. The sigmoid function is an example of 
non-linear increasing function with range [0,1] that could be 
used as a positive valuation function for mapping an interval 
of real numbers to a fuzzy lattice. Specifically, in the case of 
data residing in I, a positive valuation function is defined by 
the sigmoid function  

vλ(x) = )5.0(1
1

−−+ xe λ .  (V1) 

In the generic case of data residing of the interval [Xmin, 
Xmax], a positive valuation function is defined by the sigmoid 
function 

vς(x) = )(1
1

medxxe −−+ λ  ,  (V2) 

where 2
minmax XX

medx += ,  and λ
minmax XX −= ς , ς>0. The single 

parameter λ, or the normalized equivalent ς can be used for 
tuning the slope of vλ(x) and vς(x). Figure 1 plots function  
vς(x) for various values of the normalized slope ς, in contrast 
with the linear valuation function v(x)= 

minmax

min
XX

Xx
−

− , where 

x∈[Xmin, Xmax]. 
The capacity of non-linear positive valuation functions to 

improve performance has been demonstrated lately in classi-
fication and regression applications [11]–[13]. In the follow-
ing section we demonstrate experimental results of applying the 
FLR classifier on air quality data. 
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Fig. 1. Sigmoid positive valuation functions vς(x)  illustrated in the interval 
[Xmin, Xmax] in contrast with the linear positive valuation function vL(x) for 
various values of the normalized parameter ς. (a) ς=1, (b) ς=3, (c) ς=5,  
(d) ς=10, (e) ς=15, and (f) ς=25. 

 

IV. APPLICATION ON AIR QUALITY DATA 

A. The problem and data preprocessing 
The FLR classifier was applied on an air quality data set 
recorded in the region of Valencia, Spain. Eight variables, 
including both meteorological attributes and air-pollutant 
concentrations, have been sampled on a quarter-hourly basis 
during the year 2001. The target variable is the level of 
ozone concentration, a critical photochemical pollutant in 
urban areas, which is commonly used as an indicator of the 
overall ambient air quality. Ozone is a secondary pollutant 
formed as a result of catalytic reactions between pollutants 
emitted from industrial sources and automobiles. In the 
presence of sunlight (ultra-violet radiation) and, under suit-
able meteorological conditions, the precursors react photo-
chemically to “produce” ozone. Due to the chemical reaction 
dynamics, the models analytical models for describing ozone 
formation in ambient air are very complex. To tackle this 
problem we employed a machine learning approach for es-
timating ozone concentration levels by classification in the 
available dataset. 

In total there are available 35,040 data vectors, out of 
which 565 records have the ozone label missing, and thus 
where excluded in the analysis below. Values were missing 

in other attributes, and in total there are 6,020 records (that 
is around 17% of the total) with at least one missing value. 
In the following we used both the original dataset with 
missing values and a preprocessed one that included  all 
records with no missing values. The attributes of the dataset 
are summarized in Table I.  

B. Experimental results 
For estimating the ozone concentration level we employed 
three classifiers in our experiments: 
a. The C4.5 classifier 
b. The FLR classifier, with a linear positive valuation 

function 
c. The FLR classifier, with a sigmoid positive valuation 

function 
Two series of experiments have been carried out: first, 

using the dataset without missing values and, second, the 
original set including the ones with missing values. In both 
aforementioned series of experiments the data collected 
from January 1, 2001 until mid June have been used for 
training, whereas the remaining data until year end have 
been used for testing. The corresponding numbers of data 
vectors available in classes ‘low’ and ‘med’, respectively, 
are shown in Table II.  

First, the C4.5 classifier has been employed on a standard 
software platform (WEKA platform [15]), for generating 
decision trees, in which the internal nodes specify 
inequalities for the values of environmental attributes, 
moreover the tree leaves specify an output class. Initially, 
the C4.5 classifier has been applied on the data without 
missing values, without pruning, resulting in a decision tree 
with  

1393 leaves (rules). The corresponding classification 
accuracy on the training set reached 94.8%, whereas on the 
testing set it was only 64.85% (Table III). Similar results 
have been obtained for the dataset with no missing values.  
Obviously, C4.5 overfits the training data, therefore two 
pruning methods have been employed: (1) Confidence 
Factor Pruning (CFP), and (2) Reduced Error Pruning 
(REP).  
 

 
TABLE I 

DATASET ATTRIBUTES  

 
Data Attribute 

Name Symbol Data Type Units 
1 Sulfur dioxide SO2 real number µg/m3 
2 Nitrogen oxide NO real number µg/m3 
3 Nitrogen dioxide NO2 real number µg/m3 
4 Nitrogen oxides NOx real number µg/m3 
5 Wind velocity VEL real number m/s 
6 Temperature TEM real number oC 
7 Relative humidity HR real number % 
8 Ozone 

Concentration 
Level 

O3 class label 
‘low’ (0–60 µg/m3) 
‘medium’ (60–100 µg/m3) 
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TABLE II 
DATASET STATISTICS  

 Records in class 
 low medium 

DATASET WITHOUT MISSING VALUES 
Training 6,865 4,761 
Testing 12,256 5,138 

DATASET WITH MISSING VALUES 
Training 9,472 6,074 
Testing 13,483 5,446 

 
 

Results are shown in Tables III and VI for selected pruning 
parameter values. The highest accuracy achieved on the 
testing split was 73.74% and 77.56% respectively for each 
dataset. 

The FLR classifier has been implemented on the same 
software platform (WEKA) using both linear and sigmoid 
valuation functions. Initially, the FLR Classifier has been 
employed using a linear valuation function. In this case, the 
valuation function used was vi(x)= (x–O)/(I–O), where [O, I] 
are the minimum and maximum values of the training data 
in each dimension. Results are presented in Tables IV and 
VII for selected values of the vigilance parameter ρ. The 
FLR Classifier achieved a classification accuracy of 83.23% 
with only three rules for the dataset without missing values 
and 84.60% with 19 rules for the dataset with missing val-
ues. Note that the FLR classifier outperforms C4.5. 

Then, experiments have been conducted for the FLR Clas-
sifier using the sigmoid function of Equation (V2) on both 
datasets. In this case the FLR Classifier has been tuned using 
two parameters: The vigilance parameter ρ and the slope 
parameter of the sigmoid valuation function ς. Results ob-
tained by FLR with sigmoid valuation function are presented 
in Tables V and VIII. For the dataset without missing values 
the FLR with sigmoid positive valuation function achieved a 
classification accuracy of 85.22% with three rules. Note that 
using the sigmoid positive valuation function the best per-
formance has improved by 2% without increasing the num-
ber of induced rules. For the dataset with missing values, the 
best accuracy improved by nearly 1%, again without in-
creasing the number of rules, as shown in Tables VII and 
VIII. 

V. DISCUSSION 
This paper introduced the Fuzzy Lattice Reasoning (FLR) 
classifier and demonstrated its usage for assessing ambient 
air quality.  Results obtained with FLR Classifier have com-
pared favorably with the results obtained by C4.5 decision 
trees. The FLR classifier with linear positive valuation func-
tion, compared to C4.5, improved classification accuracy by 
9.5% for the dataset without missing values and by 7% for 
the dataset with missing values. Furthermore, the employ-
ment of a sigmoid positive valuation function by the FLR 
classifier achieved further improvement without increasing 
the complexity (number of induced rules) of the model.  

TABLE III 
C4.5 RESULTS FOR THE DATASET WITHOUT MISSING VALUES 

Classification  
Accuracy (%) 

 
 

Pruning 
Method 

Para-
meter 
value 

Training Testing 

Number 
of Rules 

(Tree 
leaves) 

Unpruned – 94.80 64.85 1393
0.1 91.33 67.31 575
0.2 92.87 66.71 823
0.3 93.92 67.40 1055
0.4 94.10 67.39 1101

C
on

fid
en

ce
 

Fa
ct

or
  P

a-
ra

m
et

er
:  

C
F 

0.5 94.31 67.19 1169
2 89.31 63.71 507

10 89.01 71.85 465
50 85.05 60.62 251
100 83.33 73.74 131
300 81.55 69.98 75

R
ed

uc
ed

 E
rr

or
 

Pr
un

in
g 

Pa
ra

m
e-

te
r: 

 
no

. o
f F

ol
ds

 

500 77.73 72.48 31
 
 
 
 
 

TABLE IV 
FLR WITH LINEAR VALUATION FUNCTION RESULTS  

FOR THE DATASET WITHOUT MISSING VALUES 
Classification  
Accuracy (%) 

Para-
meter 
value 

(ρ) 
Training 

Set 
Testing 

Set 

Number 
of 

Rules 
0.5 59.16 70.46 2
0.6 64.73 83.23 3
0.7 73.68 74.85 20
0.8 67.43 72.59 139

 
 
 
 

TABLE V 
FLR WITH SIGMOID VALUATION FUNCTION RESULTS   

FOR THE DATASET WITHOUT MISSING VALUES 
Classification  
Accuracy (%) 

Para-
meter 
value 

(ς) 

Para-
meter 
value 

(ρ) 
Train-
ing Set 

Test-
ing 
Set 

Number 
of Rules 

0.5 59.16 70.46 2
0.6 59.16 70.46 2
0.7 59.16 70.46 21 

0.8 62.73 85.22 3
0.5 59.16 70.46 2
0.6 65.40 82.70 3
0.7 70.48 79.64 19

5 

0.8 67.53 78.72 40
0.5 59.16 70.46 2
0.6 64.27 83.43 3
0.7 65.77 74.89 34

10 

0.8 69.56 82.87 115
0.5 59.16 70.46 2
0.6 64.73 83.24 3
0.7 68.85 78.88 23

15 

0.8 70.39 81.54 112
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TABLE VI 
C4.5 RESULTS FOR THE DATASET WITH MISSING VALUES 

Classification  
Accuracy (%) 

 
 

Pruning 
Method 

Para-
meter 
value 

Training Testing  

Number 
of Rules 

(Tree 
leaves) 

Unpruned - 92.18 58.67 798
0.1 89.14 60.26 279
0.2 89.98 59.19 368
0.3 90.81 59.44 463
0.4 91.37 59.30 542

C
on

fid
en

ce
 

Fa
ct

or
  P

a-
ra

m
et

er
:  

C
F 

0.5 91.59 59.32 598
2 88.14 64.91 318

10 88.28 59.19 288
50 85.44 60.17 144
100 84.01 61.36 84
300 82.48 77.56 44

R
ed

uc
ed

 E
rr

or
 

Pr
un

in
g 

Pa
ra

m
e-

te
r: 

 
no

. o
f F

ol
ds

 

500 81.33 70.19 32
 
 
 
 
 

TABLE VII 
FLR WITH LINEAR VALUATION FUNCTION RESULTS  

FOR THE DATASET WITH MISSING VALUES  
Classification  
Accuracy (%) 

Para-
meter 
value 

(ρ) 
Training 

Set 
Testing 

Set 

Number 
of 

Rules 
0.5 60.99 71.22 5 
0.6 60.99 71.22 8 
0.7 63.48 84.60 19 
0.8 69.00 66.54 43 

 
 
 
 

TABLE VIII 
FLR WITH SIGMOID VALUATION FUNCTION RESULTS   

FOR THE DATASET WITH MISSING VALUES 
Classification  
Accuracy (%) 

Para-
meter 
value 

(ς) 

Para-
meter 
value 

(ρ) 
Train-
ing Set 

Test-
ing 
Set 

Number 
of Rules 

0.5 60.99 73.37 2
0.6 60.99 73.37 2
0.7 60.99 73.37 31 

0.8 60.99 73.37 4 
0.5 60.99 71.22 4
0.6 60.99 71.22 6
0.7 60.99 71.23 95 

0.8 65.34 85.53 19
0.5 60.99 71.22 6
0.6 60.99 71.23 9
0.7 60.99 71.22 14

10 

0.8 63.55 82.55 26
0.5 60.99 71.22 6
0.6 60.99 71.23 10
0.7 60.99 71.23 17

15 

0.8 64.00 82.59 31
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