
Predictor Importance for Hydrological Fluxes of Global
Hydrological and Land Surface Models
João Paulo L. F. Brêda1 , Lieke A. Melsen1 , Ioannis Athanasiadis2 , Albert Van Dijk3 ,
Vinícius A. Siqueira4 , Anne Verhoef5 , Yijian Zeng6 , and Martine van der Ploeg1

1Hydrology and Quantitative Water Management, Wageningen University & Research, Wageningen, Netherlands, 2Data
Competence Centre, Wageningen University & Research, Wageningen, Netherlands, 3The Fenner School of Environment
& Society, Australia National University, Canberra, ACT, Australia, 4Instituto de Pesquisas Hidráulicas, Universidade
Federal do Rio Grande do Sul, Farroupilha, Brazil, 5Department of Geography and Environmental Science, University of
Reading, Reading, England, 6Department of Water Resources, University of Twente, Enschede, Netherlands

Abstract Global Hydrological and Land Surface Models (GHM/LSMs) embody numerous interacting
predictors and equations, complicating the understanding of primary hydrological relationships. We propose a
model diagnostic approach based on Random Forest (RF) feature importance to detect the input variables that
most influence simulated hydrological fluxes. We analyzed the JULES, ORCHIDEE, HTESSEL, SURFEX,
and PCR‐GLOBWB models for the relative importance of precipitation, climate, soil, land cover and
topographic slope as predictors of simulated average evaporation, runoff, and surface and subsurface runoff. RF
models functioned as a metamodel and could reproduce GHM/LSMs outputs with a coefficient of determination
(R2) over 0.85 in all cases and often considerably better. The GHM/LSMs agreed that precipitation, climate and
land cover share equal importance for evaporation prediction, and mean precipitation is the most important
predictor of runoff, while topographic slope and soil texture have no influence on the total variance of the water
balance. However, the GHM/LSMs disagreed on which features determine surface and subsurface runoff
processes, especially with regard to the relative importance of soil texture and topographic slope. Finally, the
selection of soil maps was only important for target variables of which soil is a relevant predictor. We conclude
that estimating feature importance is a useful diagnostic approach for model intercomparison projects.

Plain Language Summary Simulations of hydrological fluxes such as evaporation and runoff at a
global scale are uncertain. This happens because the models that produce global simulations are different in
terms of structure, parametrization and meteorological data. So, several model intercomparison projects (MIP)
have tried to identify where the hydrological fluxes estimates are most discrepant. In order to make MIPs even
more useful, we are proposing an additional method focusing on understanding why the models disagree. This
method consists of replacing the original global model with a random forest model and then identifying which
input variables are more relevant using the feature importance functionality. More specifically, we detected how
important meteorological variables, soil properties, land cover and topography are for each global model. We
observed that the models agree that precipitation, climate and land cover are equally important for evaporation
and that precipitation is the most important feature for estimating runoff. When partitioning runoff into quick
and slow flow, we observed that the models disagree on the importance of features, especially topographic slope
and soil.

1. Introduction
Global Hydrological Models (GHMs) and Land Surface Models (LSMs) embody the current state of knowledge
in simulating the water cycle on land and its interactions with the atmosphere (Döll et al., 2016; Fisher &
Koven, 2020). LSMs are often coupled with atmospheric and ocean models for numerical weather predictions
(Pappenberger et al., 2010; Zhang et al., 2011) and climate projections (Collins et al., 2011; Dufresne et al., 2013),
thus acting as key components in providing short‐to long‐term forecasts, as well as reanalysis (Hersbach
et al., 2020). In addition, GHMs characterize the global water balance, quantifying the amount of freshwater that
reaches the oceans, the anomalies of groundwater storage and anthropogenic water use (E. A. Clark et al., 2015;
Müller Schmied et al., 2021).

However, global simulations present significant uncertainties. Global models oversimplify the hydrological cycle
by reducing a complex environmental system to a limited set of equations calculated over a grid that has a
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horizontal spatial resolution in the order of kilometers (10–100) (Bierkens et al., 2015; M. P. Clark et al., 2015). In
addition, the uncertainty related to input parameters and driving data propagates to the model results. Conse-
quently, different models frequently provide diverging or even conflicting predictions. Climate change impact
assessments show that the GHM/LSMs model selection is a major source of uncertainty for projections of
evaporation (Hagemann et al., 2013) and low discharge (Giuntoli et al., 2015; Krysanova et al., 2017), and that the
ensemble spread of GHM/LSMs is considerably larger than the ensemble spread of catchment hydrological
models for discharge (Gosling et al., 2017).

Since the 90's, Model Intercomparison Projects (MIPs) have been proposed to evaluate LSMs (Henderson‐Sellers
et al., 1993) usually by comparing model outputs to an observation database (Best et al., 2015). Throughout the
years, MIPs have contributed to improved closure of the water and energy balance, and to improving soil wetness
for climate predictions (Dirmeyer, 2011; van den Hurk et al., 2011). Recent MIPs have identified reduced per-
formance of GHM/LSMs in snow and tropical regions (Giuntoli et al., 2015; Haddeland et al., 2011; Schellekens
et al., 2017) and a general overestimation of runoff from GHMs (Beck, Van Dijk, De Roo, et al., 2017; Zaherpour
et al., 2018). As such, conventional modeling comparisons have shown to be valuable approaches for identifying
modeling weaknesses. However, it is complicated to address the detected issues when there is a limited under-
standing of the multitude of processes and variables' interactions within a GHM/LSM.

In that sense, a more in‐depth analysis should be considered in addition to the conventional assessment of
matching simulated outputs to observations (De Boer‐Euser et al., 2017; Gleeson et al., 2021). For example,
Wagener et al. (2022) suggested using global sensitivity analysis to evaluate models in terms of their ability to
represent dominant processes and input‐output responses. Similarly, M. P. Clark et al. (2011) discuss their
concerns about the abundance of hydrological models and argue that models' scrutiny should be focused on their
adequacy to multiple hypotheses in order to achieve greater physical representation. Following this path, Gnann
et al. (2023) proposed an alternative approach for model intercomparisons that shifts from the fitness to historical
observations to a process‐oriented evaluation. The authors assessed the accuracy of GHM/LSMs in representing
functional hydrological relationships, such as the Budyko framework and elasticities to streamflow
(Chiew, 2006), and pointed out that the energy balance was poorly represented. In an effort to provide a better
understanding of GHM/LSMs, Telteu et al. (2021) described and compared the hydrological structure of 16
models, from the number of water storage compartments to the human water use sectors. Their approach was
limited due to the models' complexity and the authors recommended extended assessments to MIPs such as
workshops for multi‐model parameterization experiments. Thus, diagnostic evaluation approaches are currently
being sought for advances in global modeling, providing more informative avenues for model improvements.

Progressively, data‐driven techniques have been assuming a leading role in hydrological modeling (Nearing
et al., 2021). Machine learning (ML) models have already been successful in predicting surface water and
groundwater stores and flows at the catchment level (Shen, 2018; Zounemat‐Kermani et al., 2021) and at global
scales within a hybrid hydrological model (Kraft et al., 2022). Besides its primary purpose of prediction, ML
models can provide important statistical information and process understanding (McGovern et al., 2019). Spe-
cifically, detecting features' importance is a secondary outcome that can indicate the most relevant input features
of an ML model (Hastie et al., 2009). In the hydrological field, the ML input features are equivalent to predictors
(Beck et al., 2015), attributes (Kratzert et al., 2019), and variables (Li et al., 2021), while feature importance has
also been termed variable ranking (Laimighofer et al., 2022; Li et al., 2021). Since the early work of Beck
et al. (2015), studies have used ML to identify the most important predictors for hydrological signatures (Addor
et al., 2018), time series of discharge (Kratzert et al., 2019), flooding (Schmidt et al., 2020; Stein et al., 2021) and
streamflow trends (Zeng et al., 2021).

Given the complexity of GHM/LSMs, the use of surrogate models (Razavi et al., 2012) might become an easier
path for deciphering the global models' behavior. ML models have been successful in replicating GHM/LSMs
(Gu et al., 2020; Sun et al., 2023) and favoring model interpretability (Cappelli et al., 2022; Wang et al., 2022). In
particular, Random Forests are suitable alternatives for an explainable ML model (De la Fuente et al., 2023; Stein
et al., 2021), due to the practicality and diversity of approaches for estimating feature importance (Huang
et al., 2023). Antoniadis et al. (2021) concluded that, whenever RF can be used as a surrogate model, feature
importance becomes an efficient alternative for global sensitivity analysis. In this paper, we are proposing to use
RF as a surrogate model for GHM/LSMs and estimate the respective features' importance as a new diagnostic
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approach for global model comparison. This analysis can indicate which variables and processes are being
overlooked by the GHM/LSMs and provide guidance on further model development.

2. Methodology
The methodology is summarized as follows: (a) We selected five GHM/LSMs from the Earth2Observe
(Schellekens et al., 2017) project for intercomparison. Time‐dependent variables were averaged to create static
maps. Thus, each grid cell in the global domain contains both input features and outputs of a given GHM/LSM.
(b) We fed this information to a RF model, which would act as a surrogate model. The surrogate models were
trained to reproduce average hydrological fluxes of the GHM/LSMs, namely evaporation, runoff, and surface and
subsurface runoff. To enable comparison between the GHM/LSMs, the input features were grouped into climate,
precipitation, soil, land cover and topographic slope. (c) We evaluated the fitness of the surrogate models to the
original outputs of the GHM/LSMs. Finally, we estimated the importance of the feature groups for each GHM/
LSM and analyzed how they differed.

In the following sections, we describe each step in more detail.

2.1. E2O Models Selection

Earth2Observe—E2O (Schellekens et al., 2017) was a European Union‐funded project to integrate different Earth
Observations techniques and obtain an extensive re‐analysis of global water resources. The project legacy pro-
vides an organized data set with a common spatial‐temporal resolution that facilitates comparisons and evalua-
tions. We specifically used the Tier‐2 data set from the E2O project consisting of 8 GHM/LSMs simulated using
the same forcing data. For this study, we selected the GHM/LSMs that were not regionally calibrated (according
to the model description) so that the ML model could capture the response of global features without spatial
biases. The selected global models are JULES (Walters et al., 2014), ORCHIDEE (Krinner et al., 2005),
HTESSEL (Balsamo et al., 2009), SURFEX (Le Moigne, 2018) and PCR‐GLOBWB (Van Beek & Bierk-
ens, 2008). How surface hydrology processes were represented by the models during the E2O project is briefly
described below:

JULES: The soil column is 3 m deep and is discretized into 4 layers. The hydraulic relationships are determined
according to Van Genuchten (1980). Surface runoff generation and the heterogeneity of soil moisture are based on
the TOPMODEL (Beven & Kirkby, 1979) which is formulated according to hydrological concepts such as partial
area contributions and saturation excess overland flow (Dunne & Black, 1970).

ORCHIDEE: The soil column is 2 m deep and is discretized into 11 layers. The hydraulic relationships are
determined according to van Genuchten. Soil infiltration is inspired by the Green‐Ampt model, which considers a
wet front on the soil like a piston. The precipitated water that is not able to infiltrate during a time step generates
surface runoff, therefore, runoff generation is based on an infiltration excess or Hortonian mechanism.

HTESSEL: The soil column is 3 m deep and it is discretized into 9 layers. The hydraulic relationships are
determined according to van Genuchten. The surface runoff scheme is similar to the ARNOmodel (Todini, 1996)
which estimates runoff based on a fraction of the catchment that is saturated (saturation excess mechanism).

SURFEX: The soil column is 12 m deep and it is discretized into 14 layers. The hydraulic relationships are
determined according to Brooks and Corey (1966). The runoff generation is composed of infiltration excess and
saturation excess mechanisms. The saturation‐excess runoff is based on the TOPMODEL, while the infiltration‐
excess runoff depends on the maximum infiltration capacity which is computed via a Green‐Ampt approach near
the surface (10 cm).

PCR‐GLOBWB: The soil is represented by a leak‐bucket scheme with two vertically stacked layers and a third
layer that accounts for the groundwater. The hydraulic relationships guide the vertical water exchanges between
the layers and are based on Clapp and Hornberger (1978). The surface runoff scheme is similar to the ARNO
model, thus a saturation excess mechanism.

In Tier‐2, both forcing and model spatial resolution is 0.25°, with daily and monthly data available from 1980 to
2014. We downloaded GHM/LSMs monthly aggregated outputs and the respective meteorological data used to

Water Resources Research 10.1029/2023WR036418

BRÊDA ET AL. 3 of 15

 19447973, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036418 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [20/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



force the models. The precipitation data was from MSWEP (Beck, Van Dijk, Levizzani, et al., 2017) and the
remaining meteorological data was from the ERA‐Interim data set (Dee et al., 2011).

2.2. Input and Output Data

In this study, both inputs and outputs correspond to static variables, most commonly long‐term average values.
The hydrological fluxes (outputs) we analyzed are long‐term mean evaporation (Evap), runoff (Q), surface runoff
(Qs), and subsurface runoff (Qsb) obtained from the E2O data sets. The E2O project definesQ as the average total
liquid water draining from land (in a grid cell), Qs as the runoff from the land surface and/or subsurface
stormflow, and Qsb as the gravity drainage and/or slow lateral response. We also calculated the long‐term mean
of the following meteorological variables: wind speed, temperature, specific humidity, air pressure at the surface,
incident shortwave radiation, incident longwave radiation and precipitation. Because of its expected importance,
we consider precipitation separately from the other meteorological variables, which we together term climate
features. Our data domain is the common simulation domain among the GHM/LSMs, corresponding to 226,654
grid cells.

In addition to precipitation and climate features, there are input features that contribute to the spatial parame-
trization of a global model, such as soil properties, land cover and topographic slope. These input features were
not provided by the E2O project, but were mentioned in the E2O report to some extent (Dutra et al., 2017).
Therefore, we retrieved specific data sets used by each GHM/LSM individually. Since the E2O report was not
conclusive on the employed parameter data sets used by the different GHM/LSMs, we had to search in published
papers and contact modelers of the E2O project for confirmation. The land cover and soil properties features
selected for this study are summarized in Table S1 in Supporting Information S1.

We used the same topographic slope for every model, as we assumed that the differences between topographic
data sets at a global scale would be relatively small. We used 5‐min Gridded Global Relief Data ETOPO5
(National Geophysical Data Center, 1993) to obtain a “slope proxy” (m), estimated as the standard deviation of
the nine ETOPO5 cells within a 0.25° GHM/LSM cell.

Three land cover data sets and one soil texture data set needed to be resampled to be used as input features for the
MLmodel (S1). We followed a hybrid aggregation method: most dominant class for higher resolutions (<0.025°)
and class fractions for lower resolutions (≥0.025°). Due to computational limitations, maps with higher resolution
were first upscaled to 0.025° using the mode of the sample (dominant class) after which the classes' fractions were
calculated within the model grid resolution (0.25° × 0.25°). Note that the GHM/LSMs had their own approaches
to treat subgrid variability.

2.3. Random Forest and Feature Importance

Random Forest (RF) is essentially an ensemble of decision trees trained with sub‐samples of the training data and
a subset of the input features (Breiman, 2001). In parameterizing the algorithm, we specified an unlimited
maximum tree depth (i.e., the number of leaves and nodes was not limited); only 1/3 of the total input features
would be considered in each node splitting; and that the RF would consist of 200 decision trees. The first two
hyperparameters are standard (Hastie et al., 2009), while the number of decision trees was large enough to provide
a stable performance on every new run. We randomly split the data (grid cells) into 70% for training and 30% for
testing. Feature importance was estimated by the Mean Decrease in Impurity (MDI) algorithm, which gives
higher importance to the input features selected for the nodes of the decision trees that decrease the model im-
purity, that is, the modeling errors, by the highest amount. The RF and Feature Importance algorithms were
performed using the Python sklearn 1.2.1 library.

To increase confidence in our results, we performed a robustness test. We randomly split the whole data into
training and testing data sets three times and subsequently ran the RF algorithm with three different initializations
for bootstrapping and feature selection, using the same seed numbers for every GHM/LSMs. In total, the
robustness test included nine models (3 × 3) for each combination of hydrological fluxes (four) and GHM/LSM
(five). This approach allowed us to evaluate the sensitivity of the RF model performance and feature importance
to randomization. In general, the feature importance estimates were very robust (see Text S3 in Supporting
Information S1).
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The RF models function as metamodels of the GHM/LSMs, replicating their outputs. Given that the metamodels
have good performances, we assume that the feature importance estimated by the MDI algorithm also reproduces
the original GHM/LSM sensitivity to the input variables. Therefore, we evaluated the RF models' performance in
terms of coefficient of determination (R2) and root mean squared error (RMSE) see Section 3.1.

2.4. Correlated Features

Feature importance assessment is impacted by correlations (Dormann et al., 2013; Gregorutti et al., 2017). Highly
correlated features can each take a share of importance as both can reduce the “impurity” to a similar amount.
Ideally, we would like to use completely independent variables as input for the RF model, but our analysis in-
volves comparing climate and surface features that inevitably are naturally correlated (e.g., rainforest land cover
and precipitation). Thus removing all significantly correlated features is not an option, since important features
would be left out. For example, the average precipitation and wind speed correlation is − 0.55, and most of the
land cover classes of PCR‐GLOBWB correlate with precipitation (>0.5). In addition, eliminating too many
features would reduce the RF models' performance. Thus, we aimed to eliminate only excessive correlations
between input features from the same GHM/LSM. First, we excluded one of each pair of variables that presented a
Spearman correlation over 0.75 but belonged to different feature groups (e.g., elevation and air pressure). Second,
we excluded one of each pair of variables that presented a Spearman correlation over 0.9 and was within the same
feature group (e.g., incident longwave radiation and temperature). As our primary goal is to evaluate the
importance at a feature group level, two variables in the same group sharing importance do not impact the
conclusions. Thus, elevation and longwave radiation were removed from the analysis. The other input variables
that were removed were either land cover or soil features which are specific for every GHM/LSM. Results from
this input data selection are presented in Text S2 in Supporting Information S1.

2.5. Analysis

Our goal is to identify the influence of feature groups on different GHM/LSMs. So, we used RF models as a
replacement to the original GHM/LSMs to obtain feature importance estimates. Thus, each RF model was trained
with input and outputs of a single GHM/LSM. This is the usual approach, named here as the “Regular Case.”

However, there remains a challenge in confirming that the differences in the estimated feature importances be-
tween GHM/LSMs are related to their structure and not to correlations. The elimination of highly correlated
features mentioned in Section 2.4 only partially solved this problem, since there are still many features correlated.
Thus, we conducted a cross‐feature evaluation. This consisted of training RF with the input features of one GHM/
LSM and hydrological fluxes from another. Only the land cover and soil maps were swapped between GHM/
LSMs, since the remaining input features are exactly the same. The “Cross Case” does not necessarily eliminate
correlations but helps to identify them. It helps to understand (a) how much the correlation between input features
affects importance, and (b) to what extent different land cover and soil maps can still explain the variance of the
GHM/LSM outputs. One example for each category is presented below:

1. If the JULES soil map is only important for estimating the JULES hydrological fluxes and not the other GHM/
LSMs hydrological fluxes, it means that the soil importance is derived from the soil map exclusively.
However, if JULES soil map is important to predict hydrological fluxes from other GHM/LSMs while their
own soil maps are not that important, it means that the JULES soil map is correlated to some feature of greater
relevance (e.g., precipitation) and it might be “stealing” some of its importance.

2. If the RF model can equally represent JULES Evap predictions using JULES soil map and/or HTESSEL soil
map as input, it means that either the soil map is irrelevant for explaining JULES Evap spatial variance or the
HTESSEL and JULES soil maps have similar spatial patterns.

A pre‐assessment of the similarity between soil and land cover maps of GHM/LSMs was not processed for two
reasons. First, the classification is different from model to model, thus it is not possible to calculate a direct
correlation since there are no equivalent land and soil features between the models. Second, the spatial pattern
refers to the feature group (e.g., land cover) which is a combination of individual features (e.g., each land cover
class). Thus, a spatial similarity analysis between the land and soil inputs of different GHM/LSMs cannot be done
by a simple feature‐to‐feature correlation.
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Thus, we made two complementary analyses of feature importance: the “Regular Case,” where the output and
input features belong to the same model; and the “Cross Case,” where the metamodel is trained with every
possible combination of GHM/LSM input and output. In formula:

• Regular case:

FIi = fii ( Outi, Ini) i = 1…5 : models

• Cross case:

FIij = fij (Outi, Inj) i, j = 1…5 : models

Where Out and In are related to the outputs (hydrological fluxes) and input features, respectively. f represents the
MDI algorithm that calculates the features' importance FI. The methodological scheme can be visualized in
Figure 1.

3. Results and Interpretation
3.1. Random Forest Performance

The indirect sensitivity analysis through feature importance is only feasible if the surrogate models can
adequately replicate the GHM/LSMs. In general, the performance of the RF in reproducing model‐simulated
fields was satisfactory, even if training the RF model with soil and land cover features from different GHM/
LSMs (Figure 2). The RF models presented an R2 higher than 0.85, even achieving an R2 higher than 0.98 on the
predictions of average evaporation (Evap) and average runoff (Q). In terms of RMSE, the error was lower than
50 mm for Evap, lower than 60 mm for Q, and lower than 70 mm for surface (Qs) and subsurface (Qsb) runoff,
except when simulating the PCR‐GLOBWB outputs. The RMSE seems high compared to the mean values of
Evap,Q,Qs, andQsbwithin the domain, that is, 490 mm, 300mm, 110mm, and 190 mm respectively, however, it
is relatively smaller when compared to the spatial variability of these hydrological fluxes given by their standard
deviation: 350 mm, 460 mm, 190 mm, 340 mm respectively.

Evap and Q are key components of the water balance, so they have been easily replicated by RF models using
long‐term averages of meteorological variables (Merz & Blöschl, 2009). On the other hand, runoff partitioning in
quick (Qs) and slow flow (Qsb) is event‐related and more dependent on temporal variability and previous
moisture conditions.Qs is mostly formed in saturated areas (Dunne & Black, 1970; Saffarpour et al., 2016) which
depends on antecedent rainfall events and meteorological conditions. This is reflected in a slightly lower RF

Figure 1. Schematic diagram to explain the methodology. Data Acquisition: obtaining input and output data from the Global Hydrological Model/Land Surface Models
either from the E2O database (meteorological) or independently (soil, land cover and topography). Approach: using the input data as predictor and output data as target
variables of a Random Forest model. Analysis Design: the Regular Case (with a robustness test) and Cross Evaluation for feature importance analysis.
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performance forQs andQsb, although still showing quite acceptable R2 values. Even though the RMSE forQwas
just slightly lower than the RMSE forQs andQsb, it is important to remember thatQ is given by the sum ofQs and
Qsb, so the relative error for Q is significantly smaller. The same applies to Evap.

The RF model presented the best performance when both output and input features were from the same GHM/
LSM (Regular Case), that is, x‐axis label and symbol from the same GHM/LSM. Although this might seem
obvious, the number of land cover and soil features varied from 17/18 (ORCHIDEE, SURFEX) to 33 (HTES-
SEL), and some spurious correlations could have interfered with the RF performance. Nevertheless, the Regular
Case is only slightly better, presenting an RMSE 4.36 mm/year lower on average compared to the RF when
provided with a different predictor source (Cross Case). This can be explained by two reasons: (a) precipitation
and climate importance are generally higher than the land cover and soil importance (see next section), hence the
RF model performs well anyway because the GHM/LSMs were simulated with the same meteorological data; (b)
different soil and land cover databases still present similar spatial patterns, and the similarity can be sufficient to
explain the spatial variability of the hydrological fluxes.

Some GHM/LSMs input features were more closely related than others. For example, land cover and soil features
from PCR‐GLOBWB and ORCHIDEE could reasonably explain the variance of Qs and Qsb calculated from
ORCHIDEE, but performance was lower when using input features from JULES, HTESSEL or SURFEX. This
happened because soil features of PCR‐GLOBWB and ORCHIDEE both originate from the FAO Soil Map of the
World (DSMW) top soil layer map (S1), and soil features have high importance in predicting ORCHIDEE's Qs
and Qsb (see next section). We do not observe the same performance spread for PCR‐GLOBWB, because for
PCR‐GLOBWB soil was less important in the prediction ofQs andQsb. JULES and SURFEX input soil maps are

Figure 2. Performance of the Random Forest (RF) models in terms of root mean squared error (a) and R2 (b) for the testing set. Each chart represents a different
hydrological flux. Left to right: Evaporation, Runoff, Surface, and Subsurface Runoff. The hydrological fluxes were calculated from different Global Hydrological
Model (GHM)/Land Surface Models (LSMs) outputs (x‐axis). The symbols and colors indicate the GHM/LSM input features used to train the RF model.
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based on the Harmonized World Soil Database and the HTESSEL soil map is based on another soil layer (30–
100 cm) of the DSMW.

The hydrological fluxes estimated by PCR‐GLOBWB are the most difficult to predict. PCR‐GLOBWB is the
only GHM in this study and differs from LSMs in purpose and conceptualization (Beck, Van Dijk, De Roo,
et al., 2017; Haddeland et al., 2011). GHMs are traditionally focused on providing accurate estimates of
streamflow and surface/groundwater storage exchanges. As a result, hydrological processes are described in more
detail and require spatial data on, for example, irrigation and hydrogeological maps, which are employed by PCR‐
GLOBWB but were not considered here. On the other hand, LSMs are traditionally most concerned with the
vertical water balance and land‐atmosphere interactions, which might be easier to replicate by the RFmodels with
the given input feature groups.

3.2. Feature Importance Analysis

Figure 3 summarizes the main results of our study by showing the importance of each of the five feature groups
for all combinations of GHM/LSMs outputs and inputs. Where RF performance has not changed significantly (see
Figure 2), it means that the different maps can explain the variance of a hydrological flux from a specific GHM/
LSM to the same amount. So we assume that there is no great loss in averaging importances, and thus the Mean
Cross Case would be providing an approximately “unbiased” importance, since it eliminates an inflated
importance that may happen in one of the soil/land cover maps due to correlation with a more important feature
(like precipitation). On the other hand, when the RF performance has changed considerably, for example,
ORCHIDEE Qs/Qsb predicted with inputs from JULES, HTESSEL or SURFEX, this assumption is not
reasonable and the Regular Case (or an ensemble of the best performers) becomes the best representative of
feature importance.

In general, land cover, precipitation and climate share the importance for evaporation estimate equally (Figure 3).
By contrast, when estimating runoff more than 50% of the importance is associated with precipitation. Soil texture
and topographic slope overall seemed weakly related to the simulated long‐term water balance given by Q and
Evap. This corresponds with results from ML studies based on observed data that already asserted a relatively
minor influence of soil texture on mean discharge (Addor et al., 2018; Beck et al., 2015), and a high importance of
land cover and climate/precipitation for the water balance components (Cheng et al., 2022). Beck et al. (2015)
indicated climatological indices, such as the Aridity Index and mean precipitation, as the most important pre-
dictors of the flow duration curve, while the slope is shown in third with lower importance.

Besides identifying the general agreement between GHM/LSMs, we also want to evaluate their differences. In
doing so, additional caution is required as feature importances may be biased. A noticeable bias example is the
land cover importance of JULES. Evaluating the Regular Case alone, we are led to conclude that JULES Evap is
highly influenced by land cover compared to other GHM/LSMs. However, when considering the Cross Case,
Land Cover is predominant in each of the first of each group of columns (column J), which means that when using
the land cover map of JULES to predict Evap from any GHM/LSM, land cover will always be assigned a higher
importance. The JULES land cover bias can be visualized by the contrast between the Regular Case and the Mean
Cross Case. In summary, the high importance of land cover for Evap in JULES is thus not the result of the JULES
model structure, but of the choice for this particular land cover database that has a considerable spatial similarity
with climatological features.

We detected substantial differences between the GHM/LSMs for runoff partitioning. Three out of five GHM/
LSMs showed a significant influence of topographic slope on surface runoff (JULES, HTESSEL and PCR‐
GLOBWB). Theoretically, slope is directly related to surface runoff generation. On very steep terrains, hydro-
graphs are dominated by subsurface stormflow (Dunne, 1983), which is defined as part of surface runoff in this
article. In addition, hillslopes contribute to a convergent subsurface flow (Anderson & Burt, 1978) and conse-
quently to a greater saturated zone for overland flow (Dunne & Black, 1970). JULES modifications to include
slope as a predictor of surface runoff generation occurred during the E2O project as an improvement from Tier 1
to Tier 2 phases (Dutra et al., 2017; Martínez‐De La Torre et al., 2019). HTESSEL already considered topo-
graphic slope indirectly through the b coefficient of the ARNO model (Balsamo et al., 2009; Todini, 1996) while
PCR‐GLOBWB considered slope explicitly through the representation of subsurface stormflow (Van Beek &
Bierkens, 2008). ORCHIDEE and SURFEX do not seem to consider slope effects on surface runoff generation, at
least for the E2O project. The spatial difference between JULES and SURFEX in terms of surface runoff and

Water Resources Research 10.1029/2023WR036418

BRÊDA ET AL. 8 of 15

 19447973, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036418 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [20/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



precipitation ratio (Qs/P) can be visualized in the left column of Figure 4. We can see how theQs/P is outlined for
JULES, presenting values over 0.5 in almost all mountain areas such as Western North America, the Andes
Cordillera, Eastern Africa, the Caucasus, the Himalayas, New Guinea, the Altai mountains, etc., while we do not
observe the same demarcation for SURFEX.

The GHM/LSMs also disagree about the importance of soil for runoff partitioning. Soil features seem more
important to ORCHIDEE than for the other GHM/LSMs. For ORCHIDEE in particular, the feature importance
shown by the Regular Case is more suitable since the RF performance considerably declines when using soil maps
of other GHM/LSMs except for PCR‐GLOBWB (Figure 2). Soil importance for ORCHIDEEwas 15% forQs and
7.5% for Qsb, which is twice the importance of the second highest soil importance estimated (Qs—HTESSEL,

Figure 3. Feature importance of five feature groups (Precipitation, Climate, Soil, Land Cover, and Slope) for the prediction of four hydrological fluxes (Evap,Q,Qs, and
Qsb) by Random Forest models given different Global Hydrological Model (GHM)/Land Surface Model (LSM) as the source of input (predictors) and output
(predictand) data. The Cross Case considers all the possible combinations of GHM/LSM input and output data. The group columns indicated on the x‐axis refer to the
GHM/LSM that provided the output data and each minor column indicates which GHM/LSM provided the input data: J‐JULES, O‐ORCHIDEE, H‐HTESSEL, S‐
SURFEX, and P‐PCR‐GLOBWB. The Regular Case indicates the inputs and outputs data from the same GHM/LSM. The Mean Cross Case is the average of the group
columns of the Cross Case.

Water Resources Research 10.1029/2023WR036418

BRÊDA ET AL. 9 of 15

 19447973, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036418 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [20/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Qsb—PCR‐GLOBWB/JULES). We speculate that this high importance given to soil texture can be explained by
the infiltration‐excess mechanism for surface runoff generation adopted by ORCHIDEE. In ORCHIDEE, the
maximum infiltration capacity is equivalent to the soil hydraulic conductivity which is directly proportional to the
saturated hydraulic conductivity, determined solely by soil texture. Although the saturation‐excess mechanism
adopted in the other GHM/LSMs also depends on soil texture, the connection between soil texture and surface
runoff is not as straightforward. Tafasca et al. (2020) tested different soil texture maps in ORCHIDEE and
observed a low sensitivity of the water balance but a considerable sensitivity of surface runoff and soil moisture,
especially associated with soil clay percentage. Our findings seem in line with these conclusions. Previous ML
studies based on observations have detected a weak but existing soil texture importance for streamflow properties
with clay fraction ahead of sand and silt (Addor et al., 2018; Beck et al., 2015; Kratzert et al., 2019). Therefore,
soil texture indeed appears to have some importance for runoff, but the real extent of soil importance is still in
debate. For example, GHM/LSMs clearly represent it differently and there is a recently open discussion about
hydrological models overestimating the soil importance (Gao et al., 2023). Nevertheless, there is still much room
for improvements in soil process representation by global models (Vereecken et al., 2022), which may lead to
greater consensus on soil importance in the future.

Finally, the GHM/LSMs disagreed on the importance of precipitation/climate for Qsb. SURFEX presented the
highest precipitation importance (≈57%) and JULES the lowest (≈38%). Such a high influence of a single feature
(mean precipitation) onQsb from SURFEX explains why the RF performance (R2 > 0.98) was so high even when
using different soil and land cover databases (see Figure 2). Nevertheless, the visual differences between JULES
and SURFEX related to the spatial influence of precipitation on Qsb are not obvious (Figure 4), except on high
latitudes. This could also be related to the way these models treat frozen soils, and water flow within and over
these permafrost surfaces.

Figure 4. Global maps of the studied domain presenting the Slope Proxy, Annual Precipitation (mm), Surface and Subsurface Runoff Precipitation ratio (Qs/P and Qsb/
P) estimated with outputs from JULES and SURFEX. Obs.: Some areas are not included in the domain due to very low values of P which is in the denominator of the
hydrological indices (e.g., Sahara desert).

Water Resources Research 10.1029/2023WR036418

BRÊDA ET AL. 10 of 15

 19447973, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036418 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [20/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4. Limitations
There are several limitations associated with employing RF feature importance as a diagnostic approach. For
instance, the feature importance is not directly applied to GHM/LSMs but to surrogate models. Therefore, any
analysis conducted is greatly dependent on the ability of the surrogate models to replicate the GHM/LSMs
outputs. These constraints hinder the method's applicability and the outreach of this manuscript. However, all
measures were taken to provide the most robust results and parsimonious conclusions given the existing
limitations.

One relevant simplification relates to temporal aspects. Both predictors and target variables are long‐term av-
erages, so the feature importance did not reflect the GHM/LSMs responses to time variability such as meteo-
rological events or seasonality. This might have affected the performance of the surrogate models, especially for
the runoff partitioning since it depends on previous soil moisture conditions. Consequently, there could be an
impact on the feature importance given that the temporal variability of the hydrological fluxes is ignored.

Furthermore, the number of predictors is constrained by the overlapping of GHM/LSMs input features. Only
meteorological variables, soil texture, land cover, and topography were taken as predictors since they are the core
and common inputs for hydrological simulations. However, each GHM/LSM has its own set of inputs; for
instance, the PCR‐GLOBWB simulations also involve water demand and groundwater data. The lack of enough
predictors might explain why the surrogate models had the lowest performance for PCR‐GLOBWB.

Despite the aforementioned limitations, the RF models could reasonably replicate the outputs of the GHM/LSMs.
The coefficient of determination (R2) was over 0.85 for all hydrological fluxes, which indicates that they were
able to fairly represent the spatial variability of the global models. It also suggests that the respective input
features were sufficient and that the MDI algorithm provided acceptable feature importance estimates.

However, the MDI algorithm is also susceptible to correlations among input features. Given that dependencies
between environmental features are natural and inevitable, we proposed alternative solutions to reduce the
correlation impact. We establish high correlation thresholds for feature elimination, thereby retaining 83% of the
original input features designated for RF training. For instance, if we set the correlation threshold for different
groups to 0.5 (actual value equal to 0.75), the percentage of original features would drop to 55%. Therefore we
accepted highly correlated variables (>0.5) to the detriment of obtaining a larger number of representative fea-
tures and, consequently, a better performance from the surrogate models. As a drawback, the feature groups
remained highly correlated and the feature importance was compromised. This problem was exposed by the
biased importance of JULES Land Cover (Figure 3). We introduced the “Cross Case” which was able to identify
some of these problems, and the results were interpreted accordingly.

Lastly, it's worth mentioning that no set of observations was used. Thus, we only assessed how the models differ
among themselves and avoided judging the merits of the modeling approaches. We tried to establish connections
between the physical structure of the models and the respective feature importance. For instance, we identified
possible explanations for slope and soil texture importance on simulated surface and subsurface runoff genera-
tion. However, defining which modeling approach is more accurate would demand additional analysis, deeper
consensus on the underlying physical processes, and collaboration among modeling groups.

5. Conclusion
This paper proposed a novel model intercomparison approach that contributes to the structural understanding of
GHM/LSMs. Random Forest (RF) was used to mimic the temporal average of hydrological fluxes of GHM/
LSMs, enabling an indirect sensitivity analysis (Antoniadis et al., 2021). We presented a consistent set of ap-
proaches that increased the reliability of the results, such as considerably high RF performance, robustness test,
correlation analysis and cross‐feature evaluation.

Then we assessed the influence of five input feature groups (precipitation, climate, soil texture, land cover and
topographic slope) on explaining the variance of mean evaporation, runoff, surface runoff and subsurface runoff
on the global land domain. In general, GHM/LSMs agree on the importance of predictors for water balance but
not for runoff partitioning in fast and slow flow. Soil texture and slope were irrelevant for simulated water balance
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but relevant for surface and subsurface runoff, although GHM/LSMs disagreed on the strength of this importance.
Specifically, the topographic slope had no influence on surface runoff predictions of ORCHIDEE and SURFEX.

We noticed that the soil map selection is relevant, but to a degree that depends on the hydrological variable and
GHM/LSM analyzed. Tafasca et al. (2020) found a weak influence of soil mapping on the water balance for
ORCHIDEE, which agrees with our conclusion. However, we found that, for surface and subsurface runoff
calculated from ORCHIDEE itself, using different soil databases as predictors affected the surrogate model
performance. On the other hand, we could not reach the same conclusion for other GHM/LSMs since the soil
importance was lower compared to ORCHIDEE. Such findings are important for ongoing MIP projects such as
the Soil Parameter MIP (Verhoef et al., 2022).

The present study documents the diagnostic potential of ML methods and shows that these or similar statistical/
data‐driven approaches can be valuable for MIPs. Combined with observation data sets, this method can provide
an in‐depth evaluation of GHM/LSMs. For example, feature importance can identify significant differences in
model structures and point toward the best modeling approaches given that their performances are known. In
addition, the sensitivity analysis can indicate whether the models simulate accurate feedback between meteo-
rological drivers and hydrological fluxes on different landscapes. Nevertheless, this method was limited to mutual
features of GHM/LSMs and average fluxes of surrogate models. With adequate planning involving the coop-
eration of modelers, it is possible to reach an even deeper analysis, considering a complete and selected set of
input features and time‐dependent relationships. Finally, this study introduces the applicability of ML techniques
for intercomparison projects and adds to the existing literature on process‐based evaluations of GHM/LSMs. Our
work also highlights the great and enduring value of projects like E2O, which took care to standardize the model
run specifications (e.g., simulation period and spatiotemporal resolution) and which greatly facilitates compar-
isons between models and analysis such as the one presented here.

Data Availability Statement
The original meteorological data and outputs from the GHM/LSMs were obtained from the Earth2Observe
project (Dutra et al., 2017) and are available online. Processed data of all predictors and target variables, including
the codes for making figures from the main text and Supplement Material are also available online (Brêda, 2023).
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